1
|
Mao Y, Chen Y, Liu C, He X, Zheng Y, Chen X, Wang Y, Chen W, Wu Y, Shen Y, Yang H, Ma S. Cefquinome Sulfate Oily Nanosuspension Designed for Improving its Bioavailability in the Treatment of Veterinary Infections. Int J Nanomedicine 2022; 17:2535-2553. [PMID: 35677677 PMCID: PMC9169852 DOI: 10.2147/ijn.s348822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Cefquinome sulfate (CS) is the first fourth-generation antibiotic for animals, which has a wide antibacterial spectrum, strong antibacterial activity and low drug resistance. However, it is accompanied by problems of poor therapeutic efficacy. In this context, the use of nanosuspensions have been found to be an attractive strategy. The main objective of this work is to develop a new oily nanosuspension to improve bioavailability and stability of CS formulations. Methods After screening the formulations, cefquinome sulfate oily nanosuspension (CS-NSP) was prepared by mortar grinding, using propylene glycol dicaprolate/dicaprate (Labrafac™ PG) as oil medium and caprylocaproyl polyoxyl-8 glycerides (Labrasol®) as stabilizer. The properties of CS-NSP were investigated by testing its physicochemical characteristics, stability, in vitro release, hemolysis, and muscle irritation. The in vivo pharmacokinetics of CS-NSP was studied using rats. Results Results show that CS-NSP presents suitable stability, physicochemical properties and safety. Moreover, a rapid release and high bioavailability of CS-NSP have also been verified in the study. Pharmacokinetic experiments in vivo showed that the bioavailability of CS-NSP was about 1.6 times that of commercial cefquinome sulfate injection (CS-INJ, Chuangdao®) (p<0.01). These advantages of CS-NSP were carried out by small particle size and low viscosity, being associated with the use of Labrafac PG and stabilizer Labrasol. Conclusion The results proved that the new preparation is safe and effective and is expected to become a promising veterinary nanodelivery system.
Collapse
Affiliation(s)
- Yujuan Mao
- Jiangsu Animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Yumeng Chen
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Xingyue He
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yi Zheng
- Jiangsu Animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Xiaolan Chen
- Jiangsu Animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Ying Wang
- Jiangsu Animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Wei Chen
- Jiangsu Animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Yanling Wu
- Jiangsu Animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Haifeng Yang
- Jiangsu Animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, People’s Republic of China
- Correspondence: Haifeng Yang, Email
| | - Songbo Ma
- Department of Oral and Maxillofacial Surgery, Taizhou People’s Hospital, Taizhou, Jiangsu, 225300, People’s Republic of China
- Songbo Ma, Email
| |
Collapse
|
2
|
Optimization and Validation of Dosage Regimen for Ceftiofur against Pasteurella multocida in Swine by Physiological Based Pharmacokinetic-Pharmacodynamic Model. Int J Mol Sci 2022; 23:ijms23073722. [PMID: 35409082 PMCID: PMC8998519 DOI: 10.3390/ijms23073722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Model informed drug development is a valuable tool for drug development and clinical application due to its ability to integrate variability and uncertainty of data. This study aimed to determine an optimal dosage of ceftiofur against P. multocida by ex vivo pharmacokinetic/pharmacodynamic (PK/PD) model and validate the dosage regimens by Physiological based Pharmacokinetic-Pharmacodynamic (PBPK/PD) model. The pharmacokinetic profiles of ceftiofur both in plasma and bronchoalveolar lavage fluid (BALF) are determined. PD performance of ceftiofur against P. multocida was investigated. By establishing PK/PD model, PK/PD parameters and doses were determined. PBPK model and PBPK/PD model were developed to validate the dosage efficacy. The PK/PD parameters, AUC0–24 h/MIC, for bacteriostatic action, bactericidal action and elimination were determined as 44.02, 89.40, and 119.90 h and the corresponding dosages were determined as 0.22, 0.46, and 0.64 mg/kg, respectively. AUC24 h/MIC and AUC 72 h/MIC are simulated by PBPK model, compared with the PK/PD parameters, the therapeutic effect can reach probability of target attainment (PTA) of 90%. The time-courses of bacterial growth were predicted by the PBPK/PD model, which indicated the dosage of 0.46 mg/kg body weight could inhibit the bacterial growth and perform good bactericidal effect.
Collapse
|
3
|
Elbadawy M, Soliman A, Abugomaa A, Alkhedaide A, Soliman MM, Aboubakr M. Disposition of Cefquinome in Turkeys ( Meleagris gallopavo) Following Intravenous and Intramuscular Administration. Pharmaceutics 2021; 13:pharmaceutics13111804. [PMID: 34834219 PMCID: PMC8622898 DOI: 10.3390/pharmaceutics13111804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
The bioavailability and pharmacokinetics in turkeys of cefquinome (CFQ), a broad-spectrum 4th-generation cephalosporin antibiotic, were explored after a single injection of 2 mg/kg body weight by intravenous (IV) and intramuscular (IM) routes. In a crossover design and 3-weeks washout interval, seven turkeys were assigned for this objective. Blood samples were collected prior to and at various time intervals following each administration. The concentration of CFQ in plasma was measured using HPLC with a UV detector set at 266 nm. For pharmacokinetic analysis, non-compartmental methods have been applied. Following IV administration, the elimination half-life (t1/2ʎz), distribution volume at steady state (Vdss), and total body clearance (Cltot) of CFQ were 1.55 h, 0.54 L/kg, and 0.32 L/h/kg, respectively. Following the IM administration, CFQ was speedily absorbed with an absorption half-life (t1/2ab) of 0.25 h, a maximum plasma concentration (Cmax) of 2.71 μg/mL, attained (Tmax) at 0.56 h. The bioavailability (F) and in vitro plasma protein binding of CFQ were 95.56% and 11.5%, respectively. Results indicated that CFQ was speedily absorbed with a considerable bioavailability after IM administration. In conclusion, CFQ has a favorable disposition in turkeys that can guide to estimate optimum dosage regimes and eventually lead to its usage to eradicate turkey's susceptible bacterial infections.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalioubiya, Egypt;
- Correspondence: (M.E.); (A.A.); Tel.: +81-90-2076-8122 (M.E.); +81-90-1238-1298 (A.A.)
| | - Ahmed Soliman
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
- Correspondence: (M.E.); (A.A.); Tel.: +81-90-2076-8122 (M.E.); +81-90-1238-1298 (A.A.)
| | - Adel Alkhedaide
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalioubiya, Egypt;
| |
Collapse
|
4
|
Xiao X, Lan W, Zhao Y, Li R, Liu Y, Liu J, Wang Z. In vivo Pharmacokinetic and Pharmacodynamic (PK/PD) Modeling and Establishment of the PK/PD Cutoff of Florfenicol Against Pasteurella multocida in Ducks. Front Microbiol 2021; 11:616685. [PMID: 33505384 PMCID: PMC7829356 DOI: 10.3389/fmicb.2020.616685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
Pasteurella multocida can invade and translocate through endothelial cells and result in vascular-system infection, which can cause severe economic losses in the poultry industry. Antibacterial therapy (especially florfenicol) plays an important part in controlling P. multocida infection. To preserve the effect of florfenicol, in vivo pharmacokinetic/pharmacodynamic (PK/PD) modeling of florfenicol against three P. multocida strains in duck was established. Then, the efficacy of the currently marketed dose, a rational dosage regimen for populations, and the PK/PD cutoff were predicted through Monte Carlo simulations (MCSs). The area under the concentration–time curve from 0 to 24 h/minimum inhibitory concentration (AUC0–24 h/MIC) was the optimal PK/PD parameter. The PK/PD surrogate values of florfenicol against P. multocida were similar using different organs as the PD target, but varied in different strains. For the florfenicol-sensitive strain 0825Y1, when the AUC0–24 h/MIC reached 117.54 and 108.19, florfenicol showed a bactericidal effect in the liver and lung, respectively. For the florfenicol-sensitive strain 0901J1, the corresponding value was 78.39 and 54.30, respectively. For the florfenicol-resistant strain JY160110, florfenicol could attain a maximum effect of 1 – log10 reduction in bacteria in the liver and lung when the AUC0–24 h/MIC reached 2.03 and 2.06, respectively. The PK/PD-based prediction for the population dose indicated a poor effect for the low end of the currently marketed dose (40 mg/kg body weight per day), but a robust effect for the high end of the currently marketed dose (60 mg/kg body weight per day) with a target attainment rate of 92.79% and 81.44% against P. multocida in mainland China and worldwide, respectively. The recommended dose optimized by MCSs was 52 mg/kg body weight in mainland China. The PK/PD cutoff of florfenicol against P. multocida at the low end and high end of the current daily dose (40 and 60 mg/kg body weight) and predicted daily dose in mainland China (52 mg/kg body weight) was 0.25, 4, and 0.5 μg/ml, respectively. These results suggested that more than one strain should be involved for PK/PD modeling and contributed to rational use of florfenicol in populations. We also provided fundamental data for determination of florfenicol breakpoints in poultry.
Collapse
Affiliation(s)
- Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Weixuan Lan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yaqin Zhao
- Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Wulumuqi, China.,Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Wulumuqi, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Juan Liu
- Pizhou Animal Health Supervision Institute, Xuzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Wulumuqi, China.,Institutes of Agricultural Science and Technology Development, Yangzhou, China
| |
Collapse
|
5
|
Smith JS, Mochel JP, Seo YJ, Ahrens AP, Griffith RW. Evaluation of a Pasteurella multocida Respiratory Disease Induction Model for Goats ( Capra aegagrus hircus). Comp Med 2020; 70:323-328. [PMID: 32907695 DOI: 10.30802/aalas-cm-20-000002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infectious respiratory diseases are a serious health concern worldwide. However, few models describe the experimental induction of lung infection, or the effect of experimental infection on clinical pathologic parameters in goats. Goats offer benefits compared to cattle because of size and tractability and compared to sheep with regard to specific features of their anatomy. In previous experimental models of infection in goats, coadministration of an immunosuppressive dose of a corticosteroid is common; however, protocols that use corticosteroid often note mortality as an adverse effect. We therefore investigated an infection protocol that did not use immunosuppression but instead relied on 2 intratracheal inoculations of Pasteurella multocida in healthy meat goats to induce clinical and hematologic changes associated with respiratory infection. Healthy Boer or Boer-Kiko cross goats (n = 6; age, 10 mo) were inoculated with Pasteurella multocida and were monitored over a 312-h period for clinical and hematologic parameters of infection. After induction of pneumonia, the goats had a significant 1.2 °C rise in rectal temperature and auscultatable rales for up to 96 h. Lymphocyte counts, serum amyloid A values, and respiratory scores were significantly different before and after induction of disease and were consistent with respiratory infection. No mortality was associated with this experimental infection, and minimal gross pathologic changes were noted at study termination. The clinical and pathologic findings of this study suggest a potentially reproducible method of establishing clinical respiratory infection in goats. The repeated intratracheal inoculation method of inducing caprine respiratory disease can be used to produce experimental respiratory disease in goats when the use of corticosteroid is not desirable. With the feasibility of this method established, additional research evaluating the optimal dose and frequency of P. multocida administration is needed.
Collapse
Affiliation(s)
- Joe S Smith
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa; Systems Modelling and Reverse Translational Pharmacology, Iowa State University, Ames, Iowa; Biomedical Sciences, Iowa State University, Ames, Iowa; Current affiliation. Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee;,
| | - Jonathan P Mochel
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa; Systems Modelling and Reverse Translational Pharmacology, Iowa State University, Ames, Iowa; Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Yeon-Jung Seo
- Systems Modelling and Reverse Translational Pharmacology, Iowa State University, Ames, Iowa; Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Amanda P Ahrens
- Laboratory Animal Resources, Iowa State University, Ames, Iowa
| | - Ronald W Griffith
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
6
|
Altayban A, Kandeel M, Kitade Y, Al-Nazawi M. A pilot study on the pharmacokinetics of a single intramuscular injection of cefquinome in Arabian camel calves. Acta Vet Hung 2020; 68:59-64. [PMID: 32384074 DOI: 10.1556/004.2020.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Abstract
This study was conducted to evaluate the pharmacokinetics of cefquinome in camel calves after a single intramuscular injection in a dose of 2 mg/kg body weight (kg b. w.). Cefquinome concentrations were measured by ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). A non-compartmental pharmacokinetic model was used to fit the time-concentration curve and estimate the pharmacokinetic parameters. The peak serum concentration (Cmax) was 28.4 μg/mL at the time of maximum concentration (Tmax) of 25 min. The elimination half-life (t1/2) was 17.4 h. The area under the concentration-time curve (AUC0-∞) was 103.7 μg/ml-1h and the mean residence time (MRT0-∞) was 21.3 h. In comparison with other animal species, the pharmacokinetics of cefquinome in Arabian camel calves showed faster absorption from the site of injection and slower elimination. Since cefquinome, as other beta-lactams, is a time-dependent antimicrobial agent, a single dose of 2 mg/kg b. w. might be sufficient against the most sensitive organisms in camel calves owing to its prolonged elimination phase. However, dose readjustment is required for cases needing concentrations above 2 µg/mL for 12 h or above 1 µg/mL for 24 h.
Collapse
Affiliation(s)
- Abdullah Altayban
- 1Department of Physiology, Biochemistry and Pharmacology, King Faisal University, Al Hofuf, Al Ahsa, 31982, Saudi Arabia
| | - Mahmoud Kandeel
- 1Department of Physiology, Biochemistry and Pharmacology, King Faisal University, Al Hofuf, Al Ahsa, 31982, Saudi Arabia
- 2Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshiekh University, Kafrelshiekh, Egypt
| | - Yukio Kitade
- 3Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, Yakuza, Toyota, Japan
- 4Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, Japan
| | - Mohammed Al-Nazawi
- 1Department of Physiology, Biochemistry and Pharmacology, King Faisal University, Al Hofuf, Al Ahsa, 31982, Saudi Arabia
| |
Collapse
|
7
|
Smith JS, Mochel JP, Borts DJ, Griffith RW. Effects of experimentally induced respiratory disease on the pharmacokinetics and tissue residues of tulathromycin in meat goats. J Vet Pharmacol Ther 2019; 42:420-429. [PMID: 31183876 DOI: 10.1111/jvp.12764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/21/2019] [Accepted: 03/03/2019] [Indexed: 11/30/2022]
Abstract
Tulathromycin is a macrolide antibiotic commonly used for the treatment of respiratory disease in food animal species including goats. Recent research in pigs has suggested that the presence of disease could alter the pharmacokinetics of tulathromycin in animals with respiratory disease. The objectives of this study were (a) compare the plasma pharmacokinetics of tulathromycin in healthy goats as well as goats with an induced respiratory disease; and (b) to compare the tissue residue concentrations of tulathromycin marker in both groups. For this trial, disease was induced with Pasteurella multocida. Following disease induction, tulathromycin was administered. Samples of plasma were collected at various time points up to 312 hr posttreatment, when study animals were euthanized and tissue samples were collected. For PK parameters in plasma, Vz (control: 28.7 ± 11.9 ml/kg; experimental: 57.8 ± 26.6 ml/kg) was significantly higher (p = 0.0454) in the experimental group than the control group, and nonsignificant differences were noted in other parameters. Among time points significantly lower plasma concentrations were noted in the experimental group at 168 hr (p = 0.023), 216 hr (p = 0.036), 264 hr (p = 0.0017), 288 hr (p = 0.0433), and 312 hr (p = 0.0486). None of the goats had tissue residues above the US bovine limit of 5 µg/g at the end of the study. No differences were observed between muscle, liver, or fat concentrations. A significantly lower concentration (p = 0.0095) was noted in the kidneys of experimental goats when compared to the control group. These results suggest that the effect of respiratory disease on the pharmacokinetics and tissue residues appear minimal after experimental P. multocida infection, however as evidenced by the disparity in Cmax , significant differences in plasma concentrations at terminal time points, as well as the differences in kidney concentrations, there is the potential for alterations in diseased versus clinical animals.
Collapse
Affiliation(s)
- Joe S Smith
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa
| | - Jonathan P Mochel
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa
| | - David J Borts
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa
| | - Ronald W Griffith
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
8
|
Lei Z, Liu Q, Qi Y, Yang B, Khaliq H, Xiong J, Moku GK, Ahmed S, Li K, Zhang H, Zhang W, Cao J, He Q. Optimal Regimens and Cutoff Evaluation of Tildipirosin Against Pasteurella multocida. Front Pharmacol 2018; 9:765. [PMID: 30093860 PMCID: PMC6071545 DOI: 10.3389/fphar.2018.00765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023] Open
Abstract
Pasteurella multocida (PM) can invade the upper respiratory tract of the body and cause death and high morbidity. Tildipirosin, a new 16-membered-ring macrolide antimicrobial, has been recommended for the treatment of respiratory diseases. The objective of this research was to improve the dose regimes of tildipirosin to PM for reducing the macrolides resistance development with the pharmacokinetic/pharmacodynamic (PK/PD) modeling approach and to establish an alternate cutoff for tildipirosin against PM. A single dose (4 mg/kg body weight) of tildipirosin was administered via intramuscular (i.m.) and intravenous (i.v.) injection to the pigs. The minimum inhibitory concentration (MIC) values of clinical isolates (112) were measured in the range of 0.0625–32 μg/ml, and the MIC50 and MIC90 values were 0.5 and 2 μg/ml, respectively. The MIC of the selected PM04 was 2 and 0.5 μg/ml in the tryptic soy broth (TSB) and serum, respectively. The main pharmacokinetic (PK) parameters including the area under the curve at 24 h (AUC24 h), AUC, terminal half-life (T1/2), the time to peak concentration (Tmax), peak concentration (Cmax), relative total systemic clearance (CLb), and the last mean residence time (MRTlast) were calculated to be 7.10, 7.94 μg∗h/ml, 24.02, NA h, NA μg/ml, 0.46 L/h∗kg, 8.06 h and 3.94, 6.79 μg∗h/ml, 44.04, 0.25 h, 0.98 μg/ml, 0.43 L/h∗kg, 22.85 h after i.v. and i.m. induction, respectively. Moreover, the bioavailability of i.m. route was 85.5%, and the unbinding of tildipirosin to serum protein was 78%. The parameters AUC24 h/MIC in serum for bacteriostatic, bactericidal, and elimination activities were calculated as 18.91, 29.13, and 34.03 h based on the inhibitory sigmoid Emax modeling. According to the Monte Carlo simulation, the optimum doses for bacteriostatic, bactericidal, and elimination activities were 6.10, 9.41, and 10.96 mg/kg for 50% target and 7.86, 12.17, and 14.57 mg/kg for 90% target, respectively. The epidemiological cutoff value (ECV) was calculated to be 4 μg/ml which could cover 95% wild-type clinical isolates distribution. The PK-PD cutoff (COPD) was analyzed to be 0.25 μg/ml in vitro for tildipirosin against PM based on the Monte Carlo simulation. Compared with these two cutoff values, the finial susceptible breakpoint was defined as 4 μg/ml. The data presented now provides the optimal regimens (12.17 mg/kg) and susceptible breakpoint (4 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.
Collapse
Affiliation(s)
- Zhixin Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Qianying Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yi Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jincheng Xiong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gopi Krishna Moku
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Saeed Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenqiu Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|