1
|
Ecomorphology of toothed whales (Cetacea, Odontoceti) as revealed by 3D skull geometry. J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractExtant odontocetes (toothed whales) exhibit differences in body size and brain mass, biosonar mode, feeding strategies, and diving and habitat adaptations. Strong selective pressures associated with these factors have likely contributed to the morphological diversification of their skull. Here, we used 3D landmark geometric morphometric data from the skulls of 60 out of ~ 72 extant odontocete species and a well-supported phylogenetic tree to test whether size and shape variation are associated with ecological adaptations at an interspecific scale. Odontocete skull morphology exhibited a significant phylogenetic signal, with skull size showing stronger signal than shape. After accounting for phylogeny, significant associations were detected between skull size and biosonar mode, body length, brain and body mass, maximum and minimum prey size, and maximum peak frequency. Brain mass was also strongly correlated with skull shape together with surface temperature and average and minimum prey size. When asymmetric and symmetric components of shape were analysed separately, a significant correlation was detected between sea surface temperature and both symmetric and asymmetric components of skull shape, and between diving ecology and the asymmetric component. Skull shape variation of odontocetes was strongly influenced by evolutionary allometry but most of the associations with ecological variables were not supported after phylogenetic correction. This suggests that ecomorphological feeding adaptations vary more between, rather than within, odontocete families, and functional anatomical patterns across odontocete clades are canalised by size constraints.
Collapse
|
2
|
Lanzetti A, Coombs EJ, Portela Miguez R, Fernandez V, Goswami A. The ontogeny of asymmetry in echolocating whales. Proc Biol Sci 2022; 289:20221090. [PMID: 35919995 PMCID: PMC9346347 DOI: 10.1098/rspb.2022.1090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Extreme asymmetry of the skull is one of the most distinctive traits that characterizes toothed whales (Odontoceti, Cetacea). The origin and function of cranial asymmetry are connected to the evolution of echolocation, the ability to use high-frequency sounds to navigate the surrounding environment. Although this novel phenotype must arise through changes in cranial development, the ontogeny of cetacean asymmetry has never been investigated. Here we use three-dimensional geometric morphometrics to quantify the changes in degree of asymmetry and skull shape during prenatal and postnatal ontogeny for five genera spanning odontocete diversity (oceanic dolphins, porpoises and beluga). Asymmetry in early ontogeny starts low and tracks phylogenetic relatedness of taxa. Distantly related taxa that share aspects of their ecology overwrite these initial differences via heterochronic shifts, ultimately converging on comparable high levels of skull asymmetry. Porpoises maintain low levels of asymmetry into maturity and present a decelerated rate of growth, probably retained from the ancestral condition. Ancestral state reconstruction of allometric trajectories demonstrates that both paedomorphism and peramorphism contribute to cranial shape diversity across odontocetes. This study provides a striking example of how divergent developmental pathways can produce convergent ecological adaptations, even for some of the most unusual phenotypes exhibited among vertebrates.
Collapse
Affiliation(s)
- Agnese Lanzetti
- Department of Life Sciences, Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, UK
| | - Ellen J. Coombs
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, PO Box 37012, MRC 108, Washington, DC 20013-7012, USA
| | - Roberto Portela Miguez
- Department of Life Sciences, Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, UK
| | | | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, UK
| |
Collapse
|
3
|
Vicari D, Sabin RC, Brown RP, Lambert O, Bianucci G, Meloro C. Skull morphological variation in a British stranded population of false killer whale (Pseudorca crassidens): a three-dimensional geometric morphometric approach. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The false killer whale (Pseudorca crassidens (Owen, 1846)) is a globally distributed delphinid that shows geographical differentiation in its skull morphology. We explored cranial morphological variation in a sample of 85 skulls belonging to a mixed sex population stranded in the Moray Firth, Scotland, in 1927. A three-dimensional digitizer (Microscribe 2GX) was used to record 37 anatomical landmarks on the cranium and 25 on the mandible to investigate size and shape variation and to explore sexual dimorphism using geometric morphometric. Males showed greater overall skull size than females, whereas no sexual dimorphism could be identified in cranial and mandibular shape. Allometric skull changes occurred in parallel for both males and females, supporting the lack of sexual shape dimorphism for this particular sample. Also, fluctuating asymmetry did not differ between crania of males and females. This study confirms the absence of sexual shape dimorphism and the presence of a sexual size dimorphism in this false killer whale population.
Collapse
Affiliation(s)
- Deborah Vicari
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Richard C. Sabin
- Department of Life Sciences, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Richard P. Brown
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Olivier Lambert
- D.O. Terre et Histoire de la Vie, Institut Royal des Sciences Naturelles de Belgique, 1000 Brussels, Belgium
| | - Giovanni Bianucci
- Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
4
|
OUP accepted manuscript. J Mammal 2022. [DOI: 10.1093/jmammal/gyac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
5
|
White HE, Goswami A, Tucker AS. The Intertwined Evolution and Development of Sutures and Cranial Morphology. Front Cell Dev Biol 2021; 9:653579. [PMID: 33842480 PMCID: PMC8033035 DOI: 10.3389/fcell.2021.653579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Phenotypic variation across mammals is extensive and reflects their ecological diversification into a remarkable range of habitats on every continent and in every ocean. The skull performs many functions to enable each species to thrive within its unique ecological niche, from prey acquisition, feeding, sensory capture (supporting vision and hearing) to brain protection. Diversity of skull function is reflected by its complex and highly variable morphology. Cranial morphology can be quantified using geometric morphometric techniques to offer invaluable insights into evolutionary patterns, ecomorphology, development, taxonomy, and phylogenetics. Therefore, the skull is one of the best suited skeletal elements for developmental and evolutionary analyses. In contrast, less attention is dedicated to the fibrous sutural joints separating the cranial bones. Throughout postnatal craniofacial development, sutures function as sites of bone growth, accommodating expansion of a growing brain. As growth frontiers, cranial sutures are actively responsible for the size and shape of the cranial bones, with overall skull shape being altered by changes to both the level and time period of activity of a given cranial suture. In keeping with this, pathological premature closure of sutures postnatally causes profound misshaping of the skull (craniosynostosis). Beyond this crucial role, sutures also function postnatally to provide locomotive shock absorption, allow joint mobility during feeding, and, in later postnatal stages, suture fusion acts to protect the developed brain. All these sutural functions have a clear impact on overall cranial function, development and morphology, and highlight the importance that patterns of suture development have in shaping the diversity of cranial morphology across taxa. Here we focus on the mammalian cranial system and review the intrinsic relationship between suture development and morphology and cranial shape from an evolutionary developmental biology perspective, with a view to understanding the influence of sutures on evolutionary diversity. Future work integrating suture development into a comparative evolutionary framework will be instrumental to understanding how developmental mechanisms shaping sutures ultimately influence evolutionary diversity.
Collapse
Affiliation(s)
- Heather E White
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Laeta M, Ruenes GF, Siciliano S, Oliveira JA, Galatius A. Variation in cranial asymmetry among the Delphinoidea. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The remarkable directional cranial asymmetry of odontocete skulls has been proposed to be related to sound production. We investigated the variation in quality and quantity of cranial asymmetry in the superfamily Delphinoidea using geometric morphometrics and then investigated the relationship between asymmetry and aspects of sound production. In the average asymmetric shape, the dorsal aspect of the skull outline and interparietal suture crest were displaced to the right, while the nasal septum, nasal bones and right premaxilla were displaced to the left. The nasal bone, premaxilla and maxilla were all larger on the right side. Three delphinoid families presented similar expressions of asymmetry; however, the magnitude of the asymmetry varied. The Monodontidae showed the greatest magnitude of asymmetry, whereas the Phocoenidae were much less asymmetric. The most speciose family, the Delphinidae, presented a wide spectrum of asymmetry, with globicephalines and lissodelphinines among the most and least asymmetric species, respectively. Generalized linear models explaining the magnitude of asymmetry with characteristics of echolocation clicks, habitat use and size revealed associations with source level, dive depth and centroid size. This supports a relationship between asymmetry and sound production, with more asymmetric species emitting louder sounds. For example, louder clicks would be beneficial for prey detection at longer ranges in deeper waters.
Collapse
Affiliation(s)
- Maíra Laeta
- Programa de Pós-graduação em Biodiversidade e Biologia Evolutiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Setor de Mastozoologia, Departamento de Vertebrados, Museu Nacional/Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos, Praia Seca, Araruama, RJ, Brazil
| | - Greicy F Ruenes
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Estadual do Norte Fluminense “Darcy Ribeiro”, Campos dos Goytacazes, RJ, Brazil
- Laboratório de Ecologia de Mamíferos, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil
| | - Salvatore Siciliano
- Laboratório de Biodiversidade, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos, Praia Seca, Araruama, RJ, Brazil
| | - João A Oliveira
- Setor de Mastozoologia, Departamento de Vertebrados, Museu Nacional/Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anders Galatius
- Marine Mammal Research, Department of Bioscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
7
|
Kuroda M, Miki N, Matsuishi TF. Determinants of echolocation click frequency characteristics in small toothed whales: recent advances from anatomical information. Mamm Rev 2020. [DOI: 10.1111/mam.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mika Kuroda
- Faculty of Fisheries Sciences Hokkaido University 3‐1‐1 Minato‐cho Hakodate Hokkaido041‐8611Japan
| | - Nobuhiro Miki
- Future University Hakodate 116‐2 Kamedanakano‐cho Hakodate Hokkaido041‐8655Japan
| | - Takashi Fritz Matsuishi
- Faculty of Fisheries Sciences Hokkaido University 3‐1‐1 Minato‐cho Hakodate Hokkaido041‐8611Japan
| |
Collapse
|
8
|
Coombs EJ, Clavel J, Park T, Churchill M, Goswami A. Wonky whales: the evolution of cranial asymmetry in cetaceans. BMC Biol 2020; 18:86. [PMID: 32646447 PMCID: PMC7350770 DOI: 10.1186/s12915-020-00805-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unlike most mammals, toothed whale (Odontoceti) skulls lack symmetry in the nasal and facial (nasofacial) region. This asymmetry is hypothesised to relate to echolocation, which may have evolved in the earliest diverging odontocetes. Early cetaceans (whales, dolphins, and porpoises) such as archaeocetes, namely the protocetids and basilosaurids, have asymmetric rostra, but it is unclear when nasofacial asymmetry evolved during the transition from archaeocetes to modern whales. We used three-dimensional geometric morphometrics and phylogenetic comparative methods to reconstruct the evolution of asymmetry in the skulls of 162 living and extinct cetaceans over 50 million years. RESULTS In archaeocetes, we found asymmetry is prevalent in the rostrum and also in the squamosal, jugal, and orbit, possibly reflecting preservational deformation. Asymmetry in odontocetes is predominant in the nasofacial region. Mysticetes (baleen whales) show symmetry similar to terrestrial artiodactyls such as bovines. The first significant shift in asymmetry occurred in the stem odontocete family Xenorophidae during the Early Oligocene. Further increases in asymmetry occur in the physeteroids in the Late Oligocene, Squalodelphinidae and Platanistidae in the Late Oligocene/Early Miocene, and in the Monodontidae in the Late Miocene/Early Pliocene. Additional episodes of rapid change in odontocete skull asymmetry were found in the Mid-Late Oligocene, a period of rapid evolution and diversification. No high-probability increases or jumps in asymmetry were found in mysticetes or archaeocetes. Unexpectedly, no increases in asymmetry were recovered within the highly asymmetric ziphiids, which may result from the extreme, asymmetric shape of premaxillary crests in these taxa not being captured by landmarks alone. CONCLUSIONS Early ancestors of living whales had little cranial asymmetry and likely were not able to echolocate. Archaeocetes display high levels of asymmetry in the rostrum, potentially related to directional hearing, which is lost in early neocetes-the taxon including the most recent common ancestor of living cetaceans. Nasofacial asymmetry becomes a significant feature of Odontoceti skulls in the Early Oligocene, reaching its highest levels in extant taxa. Separate evolutionary regimes are reconstructed for odontocetes living in acoustically complex environments, suggesting that these niches impose strong selective pressure on echolocation ability and thus increased cranial asymmetry.
Collapse
Affiliation(s)
- Ellen J Coombs
- Genetics, Evolution, and Environment Department, University College London, Gower Street, London, WC1E 6BT, UK.
- Department of Life Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK.
| | - Julien Clavel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Travis Park
- Department of Life Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
| | - Morgan Churchill
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, WI, 54901, USA
| | - Anjali Goswami
- Genetics, Evolution, and Environment Department, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Life Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
9
|
Kaplan JD, Goodrich SY, Melillo-Sweeting K, Reiss D. Behavioural laterality in foraging bottlenose dolphins ( Tursiops truncatus). ROYAL SOCIETY OPEN SCIENCE 2019; 6:190929. [PMID: 31827837 PMCID: PMC6894562 DOI: 10.1098/rsos.190929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Lateralized behaviour is found in humans and a wide variety of other species. At a population level, lateralization of behaviour suggests hemispheric specialization may underlie this behaviour. As in other cetaceans, dolphins exhibit a strong right-side bias in foraging behaviour. Common bottlenose dolphins in The Bahamas use a foraging technique termed 'crater feeding', in which they swim slowly along the ocean floor, scanning the substrate using echolocation, and then bury their rostrums into the sand to obtain prey. The bottlenose dolphins off Bimini, The Bahamas, frequently execute a sharp turn before burying their rostrums in the sand. Based on data collected from 2012 to 2018, we report a significant right-side (left turn) bias in these dolphins. Out of 709 turns recorded from at least 27 different individuals, 99.44% (n = 705) were to the left (right side and right eye down) [z = 3.275, p = 0.001]. Only one individual turned right (left side and left eye down, 4/4 turns). We hypothesize that this right-side bias may be due in part to the possible laterization of echolocation production mechanisms, the dolphins' use of the right set of phonic lips to produce echolocation clicks, and a right eye (left hemisphere) advantage in visual discrimination and visuospatial processing.
Collapse
Affiliation(s)
| | - Samantha Y. Goodrich
- Department of Psychology, St Mary's College of Maryland, St Mary's City, MD, USA
| | | | - Diana Reiss
- Department of Psychology, Hunter College, CUNY, New York, NY, 10065, USA
| |
Collapse
|
10
|
Churchill M, Miguel J, Beatty BL, Goswami A, Geisler JH. Asymmetry drives modularity of the skull in the common dolphin (Delphinus delphis). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Morgan Churchill
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Jacob Miguel
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Brian L Beatty
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Anjali Goswami
- Life Sciences Department, Natural History Museum, London, UK
| | - Jonathan H Geisler
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| |
Collapse
|