1
|
Scharr AL, Mooney TA, Schweizer FE, Ketten DR. Aminoglycoside-induced damage in the statocyst of the longfin inshore squid, Doryteuthis pealeii. THE BIOLOGICAL BULLETIN 2014; 227:51-60. [PMID: 25216502 DOI: 10.1086/bblv227n1p51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Squid are a significant component of the marine biomass and are a long-established model organism in experimental neurophysiology. The squid statocyst senses linear and angular acceleration and is the best candidate for mediating squid auditory responses, but its physiology and morphology are rarely studied. The statocyst contains mechano-sensitive hair cells that resemble hair cells in the vestibular and auditory systems of other animals. We examined whether squid statocyst hair cells are sensitive to aminoglycosides, a group of antibiotics that are ototoxic in fish, birds, and mammals. To assess aminoglycoside-induced damage, we used immunofluorescent methods to image the major cell types in the statocyst of longfin squid (Doryteuthis pealeii). Statocysts of live, anesthetized squid were injected with either a buffered saline solution or neomycin at concentrations ranging from 0.05 to 3.0 mmol l(-1). The statocyst hair cells of the macula statica princeps were examined 5 h post-treatment. Anti-acetylated tubulin staining showed no morphological differences between the hair cells of saline-injected and non-injected statocysts. The hair cell bundles of the macula statica princeps in aminoglycoside-injected statocysts were either missing or damaged, with the amount of damage being dose-dependent. The proportion of missing hair cells did not increase at the same rate as damaged cells, suggesting that neomycin treatment affects hair cells in a nonlethal manner. These experiments provide a reliable method for imaging squid hair cells. Further, aminoglycosides can be used to induce hair cell damage in a primary sensory area of the statocyst of squid. Such results support further studies on loss of hearing and balance in squid.
Collapse
Affiliation(s)
- Alexandra L Scharr
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543; Stanford University School of Medicine, Palo Alto, California 94305;
| | - T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Felix E Schweizer
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Darlene R Ketten
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543; Harvard Medical School, Boston, Massachusetts 02114; and Curtin University, Perth, Western Australia 6845, Australia
| |
Collapse
|
2
|
Ultrastructural damage of Loligo vulgaris and Illex coindetii statocysts after low frequency sound exposure. PLoS One 2013; 8:e78825. [PMID: 24143265 PMCID: PMC3797068 DOI: 10.1371/journal.pone.0078825] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 09/16/2013] [Indexed: 12/02/2022] Open
Abstract
There is a considerable lack of information concerning marine invertebrate sensitivity to sound exposure. However, recent findings on cuttlefish and octopi showed that exposure to artificial noise had a direct consequence on the functionality and physiology of the statocysts, sensory organs, which are responsible for their equilibrium and movements in the water column. Owing to a lack of available data on deep diving cephalopod species, we conducted a noise exposure comparative experiment on one Mediterranean squid, Illex coindetii, and on the European squid Loligo vulgaris. Scanning electron microscopy (SEM) revealed similar injuries in the inner structure of the statocysts, as those found in cuttlefish and octopi. In addition to the ultrastructural description of the lesions, we publish here the first images of the crista-cupula system and inner statocyst cavity of I. coindetii.
Collapse
|
3
|
|
4
|
Short-distance navigation in cephalopods: a review and synthesis. Cogn Process 2007; 9:239-47. [PMID: 17932698 DOI: 10.1007/s10339-007-0192-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 09/19/2007] [Accepted: 09/21/2007] [Indexed: 02/03/2023]
Abstract
This paper provides a short overview of the scientific knowledge concerning short-distance navigation in cephalopods. Studies in laboratory controlled conditions and observations in the field provide converging evidence that cephalopods use visual cues to navigate and demonstrate spatial memory. A recent study also provides the first evidence for the neural substrates underlying spatial abilities in cuttlefish. The functions of spatial cognition in cephalopods are discussed from an evolutionary standpoint.
Collapse
|
5
|
Tu Y, Budelmann BU. Effects of nitric oxide donors on the afferent resting activity in the cephalopod statocyst. Brain Res 2000; 865:211-20. [PMID: 10821923 DOI: 10.1016/s0006-8993(00)02222-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of bath applications of the nitric oxide (NO) donors sodium nitroprusside (SNP), diethylamine sodium (DEA), 3-morpholinosydnonimine (SIN-1), and S-nitroso-N-acetyl-penicillamine (SNAP) on the resting activity (RA) of afferent crista fibers were studied in isolated statocysts of the cuttlefish Sepia officinalis. The NO donors had three different effects: inhibition, excitation, and excitation followed by an inhibition. The SNAP analog N-acetyl-DL-penicillamine (xSNAP; with no NO moiety) had no effect. When the preparation was pre-treated with the NO synthase inhibitor N(G)-nitric-L-arginine methyl ester HCl (L-NAME), the NO donors were still effective. When the preparation was pre-treated with the guanylate cyclase inhibitors methylene blue (M-BLU) or cystamine (CYS), NO donors had only excitatory effects, whereas their effects were inhibitory only when pre-treatment was with the adenylate cyclase inhibitors nicotinic acid (NIC-A), 2',3'-dideoxyadenosine (DDA), or MDL-12330A. When pre-treatment was with a guanylate and an adenylate cyclase inhibitor combined, NO donors had no effect; in that situation, the RA of the afferent fibers remained and the preparation still responded to bath applications of GABA. Selective experiments with statocysts from the squid Sepioteuthis lessoniana and the octopod Octopus vulgaris gave comparable results. These data indicate that in cephalopod statocysts an inhibitory NO-cGMP and an excitatory NO-cAMP signal transduction pathway exist, that these two pathways are the key pathways for the action of NO, and that they have only modulatory effects on, and are not essential for the generation of, the RA.
Collapse
Affiliation(s)
- Y Tu
- Marine Biomedical Institute, University of Texas Medical Branch, 301 University Boulevard, 77555-1163, Galveston, TX, USA
| | | |
Collapse
|
6
|
Arkhipkin AI, Bizikov VA. Role of the statolith in functioning of the acceleration receptor system in squids and sepioids. J Zool (1987) 2000. [DOI: 10.1111/j.1469-7998.2000.tb00575.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Abstract
The effects of bath application of the nitric oxide (NO) precursor L-arginine (L-ARG) on the resting activity (RA) of afferent crista fibers were studied in isolated statocysts of the cuttlefish Sepia officinalis under various experimental conditions. L-ARG (threshold 10(-7) M) had three different effects: inhibition, excitation, and excitation followed by an inhibition; only the inhibitory effect of L-ARG was dose-dependent. D-Arginine (D-ARG) had no effect. When the preparation was pre-treated with NO synthase inhibitors (N(G)-Nitric-L-arginine methyl ester HCl (L-NAME), N(G)-Nitro-L-arginine (L-NOARG)), both the inhibitory and the excitatory effects of L-ARG significantly decreased at higher concentrations (10(-5 to -4) M), or were completely blocked at lower concentrations (10(-7 to -6) M), of L-ARG. When the preparation was pre-treated with guanylate cyclase inhibitors (1H-[1,2, 4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ), methylene blue (M-BLU), cystamine (CYS)), L-ARG had only excitatory effects, whereas its effects were only inhibitory when the preparation was pre-treated with adenylate cyclase inhibitors 2',3'-dideoxyadenosine (DDA), MDL-12330A (MDL), nicotinic acid (NIC-A)). L-ARG had no effects when the pre-treatment was with a guanylate cyclase inhibitor and an adenylate cyclase inhibitor combined; in that situation, the RA of the afferent fibers remained. These data indicate that in cephalopod statocysts, a cGMP and a cAMP signal transduction pathway (presumably via the generation of NO) are responsible for the effects of L-ARG on the RA of crista afferent fibers. They also indicate that the L-ARG-cGMP pathway is the dominant pathway and is inhibitory, and that both pathways have only modulatory effects on, but are not essential for, the generation of the RA.
Collapse
Affiliation(s)
- Y Tu
- Marine Biomedical Institute, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1163, USA
| | | |
Collapse
|
8
|
Neumeister H, Budelmann BU. Structure and function of the Nautilus statocyst. Philos Trans R Soc Lond B Biol Sci 1997; 352:1565-88. [PMID: 9415917 PMCID: PMC1692077 DOI: 10.1098/rstb.1997.0142] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The two equilibrium receptor organs (statocysts) of Nautilus are avoid sacks, half-filled with numerous small, free-moving statoconia and half with endolymph. The inner surface of each statocyst is lined with 130,000-150,000 primary sensory hair cells. The hair cells are of two morphological types. Type A hair cells carry 10-15 kinocilia arranged in a single ciliary row; they are present in the ventral half of the statocyst. Type B hair cells carry 8-10 irregularly arranged kinocilia; they are present in the dorsal half of the statocyst. Both type of hair cells are morphologically polarized. To test whether these features allow the Nautilus statocyst to sense angular accelerations, behavioural experiments were performed to measure statocyst-dependent funnel movements during sinusoidal oscillations of restrained Nautilus around a vertical body axis. Such dynamic rotatory stimulation caused horizontal phase-locked movements of the funnel. The funnel movements were either in the same direction (compensatory funnel response), or in the opposite direction (funnel follow response) to that of the applied rotation. Compensatory funnel movements were also seen during optokinetic stimulation (with a black and white stripe pattern) and during stimulations in which optokinetic and statocyst stimulations were combined. These morphological and behavioural findings show that the statocysts of Nautilus, in addition to their function as gravity receptor organs, are able to detect rotatory movements (angular accelerations) without the specialized receptor systems (crista/cupula systems) that are found in the statocysts of coleoid cephalopods. The findings further indicate that both statocyst and visual inputs control compensatory funnel movements.
Collapse
Affiliation(s)
- H Neumeister
- Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555-1163, USA.
| | | |
Collapse
|
9
|
Abstract
The system for monitoring angular acceleration is described in 59 genera of cephalopods. The dimensions are measured and volumes calculated. The volume of the statocyst is always small relative to the size of the adult animal but is smallest in animals that move fast, such as ommastrephids, loliginids and sepiids; it is larger in neutrally buoyant squids and very large in cirroctopods. In many genera the flow of endolymph is restricted by knobs, the anticristae, usually arranged on a standard plan. These reach their greatest extent in non- buoyant squids and sepiids, where some of them join to form incomplete semicircular canals in the horizontal plane, providing the lower sensitivity appropriate to rapid turning to right or left. In buoyant squids and octopods the cavity is less obstructed. The system for adjusting sensitivity is not the same in all three planes: there are not three canals as in vertebrates. In the pitching and rolling planes the channels for endolymph flow are wide, presumably providing the higher sensitivity appropriate to slower movements. Sensitivity is perhaps also adjusted by variations in the cupulae, as it is in
Octopus
. The crista of pelagic octopods such as
Argonauta
and
Japetella
is divided into nine sections, as in the typical benthic forms. In cirroctopods the crista is not divided in this way and indeed shows no interruption of the rows of hair cells, even at the turns. In some cirroctopods and in
Vampyroteuthis
there are several anticristae, an apomorphic feature that they share with the decapods; but they have perilymph- and endolymph-like octopods. In the more active cranchiid squids the anticristae are arranged on a helical course, perhaps serving to provide appropriate sensitivity during turns from the head-down position. The statocyst of
Spirula
differs from both sepiids and teuthids.
Collapse
|
10
|
The angular acceleration receptor system of the statocyst of
Octopus vulgaris
: morphometry, ultrastructure, and neuronal and synaptic organization. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rstb.1987.0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The angular acceleration receptor system (crista/cupula system) of the statocyst of
Octopus vulgaris
has been thoroughly reinvestigated, and detailed information is presented regarding its morphometry, ultrastructure, and neuronal and synaptic organization. In each of the nine crista sections, some receptor hair cells are primary sensory cells with an axon extending from their base. Also, there are large and small secondary sensory hair cells without axons, which make afferent synapses with large and small first-order afferent neurons. The afferent synapses are of two morphologically distinct types, having either a finger-like or a flat postsynaptic process; both can be seen in the same hair cell. In addition to the afferents, there is a dense plexus of efferent fibres in each crista section, and efferent synapses can be seen at the level of the hair cells and of the neurons. The morphometric analysis of the nine crista sections shows obvious differences between the odd-numbered (C1, C3, C5, C7, C9) and the even-numbered (C2, C4, C6, C8) crista sections: they differ in length, in the number of the small primary sensory cells and in the number of the small first-order afferent neurons. Centrifugal cobalt filling of the three crista nerves revealed a disproportionate innervation of the nine crista sections: the anterior crista nerve innervates section C1 and the first half of section C2, the medial crista nerve innervates the second half of section C2, sections C3, C4, C5, and the first half of section C6, and the posterior crista nerve innervates the second half of section C6, and sections C7, C8 and C9. In each of the three crista nerves, only 25% of the total number of axons are afferent fibres, the remaining 75 % are efferent. To each of the nine crista sections a cupula is attached. In the form and size of the cupulae there is again a conspicuous difference between the odd and the even crista sections: a small widebased cupula is attached to each of the odd crista sections, whereas the even crista sections each have a large narrow-based cupula with a small area of attachment. The results are discussed with reference to their functional consequences.
Collapse
|
11
|
Tu Y, Budelmann BU. The effect of L-glutamate on the afferent resting activity in the cephalopod statocyst. Brain Res 1994; 642:47-58. [PMID: 7913392 DOI: 10.1016/0006-8993(94)90904-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of bath application of L-glutamate and of excitatory amino acid agonists and antagonists on the resting activity of afferent crista fibers were studied in isolated preparations of the statocyst of the cuttlefish, Sepia officinalis. L-Glutamate (threshold 10(-5) M) and its agonists quisqualate and kainate (thresholds 10(-6) M) increased the resting activity in a dose-dependent manner. Glutamine (threshold 10(-5) M) was also excitatory, while D-glutamate had no effect. Also, no obvious excitatory effects were seen for NMDA and L-aspartate, nor was any antagonistic effect seen for the selective NMDA-receptor antagonist D-2-amino-5-phosphonovaleric acid (D-AP-5). The spider toxin Argiotoxin636 (threshold 10(-11) M), 2-amino-4-phosphonobutyric acid (AP-4), glutamic acid diethyl ester (GDEE), gamma-D-glutamylaminomethyl-sulfonic acid (GAMS), and kynurenic acid decreased the resting activity and effectively blocked or reversed the effect of L-glutamate and its non-NMDA agonists. Preliminary experiments with statocysts from the squid Sepioteuthis lessoniana and the octopod Octopus bimaculoides gave comparable results. All data show that in cephalopod statocysts L-glutamate, via non-NMDA receptors, has an excitatory effect on the activity of afferent fibers, an effect consistent with its possible function as a hair cell transmitter.
Collapse
Affiliation(s)
- Y Tu
- Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555-0863
| | | |
Collapse
|
12
|
Chrachri A, Williamson R. Electrical coupling between primary hair cells in the statocyst of the squid, Alloteuthis subulata. Neurosci Lett 1993; 161:227-31. [PMID: 8272270 DOI: 10.1016/0304-3940(93)90300-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intracellular recordings were made from primary sensory hair cells located on the dorsal side of the anterior crista segment of the squid statocyst. These hair cells were electrophysiologically identified by the occurrence of an antidromic action potential after electrical stimulation of the crista nerve. Two types of subthreshold, depolarising potentials were observed in the primary sensory hair cells. Firstly, those due to efferent inputs onto the primary hair cells and secondly those correlated one-to-one with action potentials in neighbouring primary hair cells. The former depolarising potentials could be blocked by bath applied cobalt, indicating chemical transmission, while the latter could not. Injection of a depolarising or hyperpolarising current into a primary hair cell depolarised or hyperpolarised, respectively, a neighbouring primary hair cell implying that the hair cells are electrically coupled with an electrical coupling coefficient of up to 0.4.
Collapse
Affiliation(s)
- A Chrachri
- Marine Biological Association of the UK, Citadel Hill, Plymouth
| | | |
Collapse
|
13
|
|
14
|
Wentworth SL, Muntz WRA. Asymmetries in the sense organs and central nervous system of the squidHistioteuthis. J Zool (1987) 1989. [DOI: 10.1111/j.1469-7998.1989.tb02603.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Williamson R. Electrical coupling between secondary hair cells in the statocyst of the squid Alloteuthis subulata. Brain Res 1989; 486:67-72. [PMID: 2541872 DOI: 10.1016/0006-8993(89)91278-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cephalopod angular acceleration receptor system has sensory response characteristics similar to those of the vertebrate semicircular canal system and, unusual for an invertebrate, contains secondary receptor hair cells. The experiments reported use intracellular recordings from pairs of hair cells to show that at least one subset of the hair cells is electrically coupled along the entire length of the crista section. The coupling can be reduced by application of heptanol or octanol. Intracellular injection of H+ ions into a hair cell reduces the coupling of cells on the opposite site of the injected hair cell but does not abolish it completely. It is proposed that the coupling is likely to result in an improvement in the signal-to-noise ratio of the receptor system, a reduction in overall frequency response, but an increase in the low frequency sensitivity.
Collapse
|
16
|
Williamson R. Secondary hair cells and afferent neurones of the squid statocyst receive both inhibitory and excitatory efferent inputs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1989. [DOI: 10.1007/bf00610883] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Fermin CD, Colmers WF, Igarashi M. Electron-microscopic observations of the gravity receptor epithelia of normal and spinner juvenile Octopus maya. Cell Tissue Res 1985; 240:701-4. [PMID: 2861903 DOI: 10.1007/bf00216358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Light and electron microscopy of the gravity receptor epithelia (maculae) of statocysts of normal and "spinner" juvenile Octopus maya showed differences between the structures of the hair cells, supporting cells, and afferent neurons of these cephalopods. The maculae of spinner animals were approximately 30% smaller in their surface area and had 40% fewer hair cells. Moreover, the average distance between randomly-chosen hair bundles in scanning electron micrographs of maculae of normal animals was significantly greater (4.33 +/- 6.47 microns) than those of maculae of spinner animals (3.38 +/- 4.90 microns; P less than 0.0001). The sectional area of the supporting cell's microvilli in spinner maculae was larger (0.16 +/- 0.18 microns) than those of normal (0.10 +/- 0.10 micron; P less than 0.0001) O. maya. The morphological differences observed between certain structural components of the maculae of normal and spinner O. maya may be related to the absence and/or malformation of the neuroepithelial suprastructures in spinners. This may have direct or indirect effects to their inability to orient to gravity with these organs.
Collapse
|