1
|
Su L, Guo J, Shi W, Tong W, Li X, Yang B, Xiang Z, Qin C. Metagenomic analysis reveals the community composition of the microbiome in different segments of the digestive tract in donkeys and cows: implications for microbiome research. BMC Microbiol 2024; 24:530. [PMID: 39695983 DOI: 10.1186/s12866-024-03696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION The intestinal microbiota plays a crucial role in health and disease. This study aimed to assess the composition and functional diversity of the intestinal microbiota in donkeys and cows by examining samples collected from different segments of the digestive tract using two distinct techniques: direct swab sampling and faecal sampling. RESULTS In this study, we investigated and compared the effects of multiple factors on the composition and function of the intestinal microbial community. Approximately 300 GB of metagenomic sequencing data from 91 samples obtained from various segments of the digestive tract were used, including swabs and faecal samples from monogastric animals (donkeys) and polygastric animals (cows). We assembled 4,004,115 contigs for cows and 2,938,653 contigs for donkeys, with a total of 9,060,744 genes. Our analysis revealed that, compared with faecal samples, swab samples presented a greater abundance of Bacteroidetes, whereas faecal samples presented a greater abundance of Firmicutes. Additionally, we observed significant variations in microbial composition among different digestive tract segments in both animals. Our study identified key bacterial species and pathways via different methods and provided evidence that multiple factors can influence the microbial composition. These findings provide new insights for the accurate characterization of the composition and function of the gut microbiota in microbiome research. CONCLUSIONS The results obtained by both sampling methods in the present study revealed that the composition and function of the intestinal microbiota in donkeys and cows exhibit species-specific and region-specific differences. These findings highlight the importance of using standardized sampling protocols to ensure accurate and consistent characterization of the intestinal microbiota in various animal species. The implications and underlying mechanisms of these associations provide multiple perspectives for future microbiome research.
Collapse
Affiliation(s)
- Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
| | - Jindan Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Weixiong Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Wei Tong
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Bochao Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Zhiguang Xiang
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| |
Collapse
|
2
|
Bishop RC, Kemper AM, Clark LV, Wilkins PA, McCoy AM. Stability of Gastric Fluid and Fecal Microbial Populations in Healthy Horses under Pasture and Stable Conditions. Animals (Basel) 2024; 14:2979. [PMID: 39457909 PMCID: PMC11503871 DOI: 10.3390/ani14202979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Equine gastrointestinal microbial communities vary across the gastrointestinal tract and in response to diet or disease. Understanding the composition and stability of gastric fluid microbiota in healthy horses is a prerequisite to understanding changes associated with the development of disease. The objective of this study was to describe microbial communities in the gastric fluid and feces of healthy horses longitudinally. Horses were maintained on pasture (6 weeks), stabled (5 weeks), then returned to pasture. A consistent forage diet was provided throughout. Native gastric fluid and feces were collected weekly for full-length 16S ribosomal DNA sequencing and microbial profiling analysis. Fewer taxa were identified in the gastric fluid (770) than in the feces (5284). Species richness and diversity were significantly different between sample types (p < 0.001), but not between housing locations (p = 0.3). There was a significant effect of housing and horse on the Bray-Curtis compositional diversity of gastric (p = 0.005; p = 0.009) and fecal (p = 0.001; p = 0.001) microbiota. When horses moved from pasture to stable, the relative proportions of gastric fluid Lactobacillaceae increased and Streptococcaceae decreased, while fecal Firmicutes increased and Bacteriodota decreased. Within each housing condition, there was no significant week-to-week variation in gastric (p = 0.9) or fecal (p = 0.09) microbiota. Overall, these findings support the maintenance of stable gastric and fecal microbial populations under each management condition, providing a basis for further investigation of gastric fluid microbiota in diseases of the foregut.
Collapse
Affiliation(s)
- Rebecca C. Bishop
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ann M. Kemper
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Lindsay V. Clark
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Pamela A. Wilkins
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Annette M. McCoy
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
3
|
Sun X, Sitters J, Ruytinx J, Wassen MJ, Olde Venterink H. Microbial community composition in the dung of five sympatric European herbivore species. Ecol Evol 2024; 14:e11071. [PMID: 38481755 PMCID: PMC10933625 DOI: 10.1002/ece3.11071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 06/21/2024] Open
Abstract
The dung microbiome is a complex system that is highly influenced by species and diet. This study characterized the dung bacterial and fungal communities of five herbivore species inhabiting the National Park Zuid-Kennemerland, the Netherlands. The five selected herbivore species were rabbit (Oryctolagus cuniculus L.), cow (Bos taurus L.), horse (Equus ferus caballus L.), fallow deer (Dama dama L.), and European bison (Bison bonasus L.). We explored the effects of distinct digestive physiology (ruminants vs. non-ruminants) and diverse dietary preferences on the microbial community composition of herbivore dung. Firmicutes and Bacteroidetes were dominant bacterial phyla in the dung of all five herbivore species, and Ascomycota was the predominant fungal phylum. Verrucomicrobiota and Mucoromycota were more present in horse dung and Proteobacteria were more abundant in rabbit dung than the three ruminant dung types. There were few significant differences in the microbial community structure among the three ruminant dung types. The alpha and beta diversity of dung microbial communities significantly differed between ruminants and non-ruminants, especially in bacterial communities. Based on MetaCyc pathways, we found that the primary functions of bacteria in herbivore dung were focused on biosynthesis, various super pathways, and degradation, with a few differences between ruminant and non-ruminant dung. FUNGuild analysis showed that horse dung had more saprotrophic fungi, while the fungi in fallow deer dung had more symbiotrophic properties, with the fungal functions of bison, cow, and rabbit dung somewhere in between. There was also a correlation between microbial community and nutrient composition of the substrate in herbivore dung. Understanding the dung microbial community composition of these herbivore species can enrich the database of mammalian gut microbiomes for studying the mechanisms of microbial community variation while preparing for exploring a new perspective to study the impact of herbivores on ecosystems through dung deposition.
Collapse
Affiliation(s)
- Xingzhao Sun
- Research Group WILDVrije Universiteit BrusselBrusselsBelgium
| | - Judith Sitters
- Research Group WILDVrije Universiteit BrusselBrusselsBelgium
- B‐WARE Research CentreNijmegenThe Netherlands
| | - Joske Ruytinx
- Research Groups Microbiology and Plant GeneticsVrije Universiteit BrusselBrusselsBelgium
| | - Martin J. Wassen
- Environmental Sciences, Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
4
|
Bull K, Davies G, Jenkins TP, Peachey L. The faecal microbiome of Exmoor ponies shows step-wise compositional changes with increasing levels of management by humans. Equine Vet J 2024; 56:159-170. [PMID: 37264698 DOI: 10.1111/evj.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Horses can suffer from gastrointestinal (GI) disease in domestic environments, often precipitated by human-led changes in management. Understanding the consequences of these changes on equine gut microbiota is key to the prevention of such disease episodes. OBJECTIVE Profile the faecal microbiota of adult female Exmoor ponies under three management conditions, representing increasing levels of management by humans, encompassing different diets; whilst controlling for age, breed and sex. STUDY DESIGN Cross-sectional descriptive. METHODS Faecal samples were collected from three populations of Exmoor ponies kept under contrasting management conditions: 29 adult female ponies in groups with low management (LM) (n = 10), medium management (MM) (n = 10) and high management (HM) (n = 9) levels, based on diet, drug use, handling and exercise. Faecal microbial composition was profiled via high-throughput sequencing of the bacterial 16S rRNA gene, and functional metagenome predictions. RESULTS We observed profound step-wise changes in microbiome structure in the transition from LM to MM to HM. A relatively high abundance of Proteobacteria and Tenericutes was associated with the HM group; higher abundance of Methanobacteria was observed in the LM group. The MM group had intermediate levels of these taxa and exhibited high 'within group' variation in alpha diversity. Functional predictions revealed increased amino acid and lipid metabolism in HM; energy metabolism in LM and carbohydrate metabolism and immune/metabolic disease pathways in MM. MAIN LIMITATIONS Low group sizes, incomplete knowledge of bacterial genomes in equine gut microbiota and it was not possible to assess the relative impact of diet, drug use, handling and exercise on the microbiome as variables were confounded. CONCLUSIONS Human-led management factors had profound step-wise effects on faecal microbial composition. Based on functional metagenome predictions, we hypothesise that dietary differences between groups were the major driver of observed differences.
Collapse
Affiliation(s)
- Katie Bull
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Gareth Davies
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura Peachey
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Cain JL, Norris JK, Swan MP, Nielsen MK. A diverse microbial community and common core microbiota associated with the gonad of female Parascaris spp. Parasitol Res 2023; 123:56. [PMID: 38105374 DOI: 10.1007/s00436-023-08086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The microbiome plays an important role in health, where changes in microbiota composition can have significant downstream effects within the host, and host-microbiota relationships can be exploited to affect health outcomes. Parasitic helminths affect animals globally, but an exploration of their microbiota has been limited, despite the development of anti-Wolbachia drugs to help control infections with some filarial nematodes. The equine ascarids, Parascaris spp., are considered the most pathogenic nematodes affecting juvenile horses and are also the only ascarid parasite to have developed widespread anthelmintic resistance. The aim of this study was to characterize the microbiota of this helminth, focusing on the female gonad, determine a core microbiota for this organ, identify bacterial species, and show bacterial localization to the female gonad via in situ hybridization (ISH). A total of 22 gonads were isolated from female Parascaris spp. collected from three foals, and 9 female parasites were formalin-fixed and paraffin-embedded for ISH. Next-generation sequencing was performed using V3-V4 primers as well as the Swift Amplicon™ 16S+ ITS Panel. Overall, ten genera were identified as members of the Parascaris spp. female gonad and twelve bacterial species were identified. The most prevalent genus was Mycoplasma, followed by Reyranella, and there were no differences in alpha diversity between parasites from different horses. Specific eubacteria staining was identified in both the intestine and within the gonad using ISH. Overall, this study provided in-depth information regarding the female Parascaris spp. microbiota and was the first to identify the core microbiota within a specific parasite organ.
Collapse
Affiliation(s)
- Jennifer L Cain
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA.
| | - Jamie K Norris
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA
| | - Melissa P Swan
- University of Kentucky Veterinary Diagnostic Laboratory, 1490 Bull Lea Road, Lexington, KY, 40511, USA
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA
| |
Collapse
|
6
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
7
|
Lagounova M, MacNicol JL, Weese JS, Pearson W. The Effect of Dietary Synbiotics in Actively Racing Standardbred Horses Receiving Trimethoprim/Sulfadiazine. Animals (Basel) 2023; 13:2344. [PMID: 37508120 PMCID: PMC10376248 DOI: 10.3390/ani13142344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Synbiotics are often provided to horses receiving antibiotics to protect against microbiome disturbances, despite a lack of evidence for efficacy. The purpose of this study was to evaluate the effect of a synbiotic product in horses receiving antibiotics. Sixteen actively racing Standardbred horses were randomly allocated (four-way crossover) to one of four groups: antibiotics (10 days; AB), synbiotics (28 days; PROBIOPlusTM; PBP), PBP + AB, or Control. The fecal microbiome was investigated using 16S rRNA sequencing, and fecal dry matter (DM; %), pH, and scores (FS; 0-9) were measured. Data were analyzed with two-way ANOVA. Results found microbiota differences in community membership between PBP + AB and all other treatments during and after antibiotic treatment. During antibiotic treatment, AB and PBP + AB were significantly different from Control. After antibiotic treatment, PBP + AB was significantly different from all other treatments. The few differences found in relative abundance of phyla or predominant genera were mostly in fiber degrading bacteria. The Fibrobacter population was significantly higher in AB and PBP + AB horses than Control. Unclassified Ruminococcaceae was significantly higher in Control than AB and PBP. After antibiotic treatment, PBP + AB horses were significantly higher than PBP horses. In conclusion, these data provide support for the ability of PROBIOPlus™ to maintain healthy gastrointestinal microbiome during antibiotic treatment.
Collapse
Affiliation(s)
- Maria Lagounova
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer L MacNicol
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J Scott Weese
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Arnold CE, Pilla R. What Is the Microbiota and What Is Its Role in Colic? Vet Clin North Am Equine Pract 2023:S0749-0739(23)00016-0. [PMID: 37121786 DOI: 10.1016/j.cveq.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The fecal microbiome of the horse is reflective of the large colon and plays an important role in the health of the horse. The microbes of the gastrointestinal tract digest fiber and produce energy for the host. Healthy horses have Firmicutes, Bacteroidetes, and Verrucromicrobia as the most common phyla. During gastrointestinal disease such as colic or colitis, the microbiome shows less diversity and changes in bacterial community composition.
Collapse
Affiliation(s)
- Carolyn E Arnold
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Street, Amarillo, Texas 79106, USA.
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Theelen MJP, Luiken REC, Wagenaar JA, Sloet van Oldruitenborgh-Oosterbaan MM, Rossen JWA, Schaafstra FJWC, van Doorn DA, Zomer AL. Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome. MICROBIOME 2023; 11:33. [PMID: 36850017 PMCID: PMC9969626 DOI: 10.1186/s40168-023-01465-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract.
Collapse
Affiliation(s)
- Mathijs J. P. Theelen
- Department of Clinical Sciences (Equine Sciences), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, the Netherlands
- Department of Biomolecular Health Sciences (Infectious Diseases and Immunology), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Roosmarijn E. C. Luiken
- Department of Biomolecular Health Sciences (Infectious Diseases and Immunology), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Jaap A. Wagenaar
- Department of Biomolecular Health Sciences (Infectious Diseases and Immunology), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | | | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, Ste #1100, Salt Lake City, Utah 84112 USA
| | - Femke J. W. C. Schaafstra
- HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE ‘s-Hertogenbosch, the Netherlands
- Department of Population Health Sciences (Farm Animal Health), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - David A. van Doorn
- Department of Clinical Sciences (Equine Sciences), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, the Netherlands
- Department of Population Health Sciences (Farm Animal Health), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Aldert L. Zomer
- Department of Biomolecular Health Sciences (Infectious Diseases and Immunology), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| |
Collapse
|
10
|
Boisseau M, Dhorne-Pollet S, Bars-Cortina D, Courtot É, Serreau D, Annonay G, Lluch J, Gesbert A, Reigner F, Sallé G, Mach N. Species interactions, stability, and resilience of the gut microbiota - Helminth assemblage in horses. iScience 2023; 26:106044. [PMID: 36818309 PMCID: PMC9929684 DOI: 10.1016/j.isci.2023.106044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The nature and strength of interactions entertained among helminths and their host gut microbiota remain largely unexplored. Using 40 naturally infected Welsh ponies, we tracked the gut microbiota-cyathostomin temporal dynamics and stability before and following anthelmintic treatment and the associated host blood transcriptomic response. High shedders harbored 14 species of cyathostomins, dominated by Cylicocyclus nassatus. They exhibited a highly diverse and temporal dynamic gut microbiota, with butyrate-producing Clostridia likely driving the ecosystem steadiness and host tolerance toward cyathostomins infection. However, anthelmintic administration sharply bent the microbial community. It disrupted the ecosystem stability and the time-dependent network of interactions, affecting longer term microbial resilience. These observations highlight how anthelmintic treatments alter the triangular relationship of parasite, host, and gut microbiota and open new perspectives for adding nutritional intervention to current parasite management strategies.
Collapse
Affiliation(s)
- Michel Boisseau
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France,IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Sophie Dhorne-Pollet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - David Bars-Cortina
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Élise Courtot
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Delphine Serreau
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Gwenolah Annonay
- INRAE, US UMR 1426, Genomic platform, 31326 Castanet-Tolosan, France
| | - Jérôme Lluch
- INRAE, US UMR 1426, Genomic platform, 31326 Castanet-Tolosan, France
| | - Amandine Gesbert
- INRAE, UE Physiologie Animale de l’Orfrasière, 37380 Nouzilly, France
| | - Fabrice Reigner
- INRAE, UE Physiologie Animale de l’Orfrasière, 37380 Nouzilly, France
| | - Guillaume Sallé
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France,Corresponding author
| | - Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France,IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France,Corresponding author
| |
Collapse
|
11
|
Results of a Clinical Trial Showing Changes to the Faecal Microbiome in Racing Thoroughbreds after Feeding a Nutritional Supplement. Vet Sci 2022; 10:vetsci10010027. [PMID: 36669028 PMCID: PMC9861731 DOI: 10.3390/vetsci10010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Next-generation sequencing (NGS) has been used to evaluate the effect of various interventions on the equine microbiome. The aim of this randomised blinded clinical trial was to determine if a prebiotic nutritional supplement would result in a change from baseline in the faecal microbiome composition of racing Thoroughbred horses in training being fed a high concentrate/grain-based diet to be more similar to that found in forage fed/pasture grazed horses. Thirty-two horses on one training yard were randomised to either receive the supplement or not. Faecal samples were collected at baseline, 6 and 12 weeks for NGS of the 16S ribosomal subunit gene. Twenty-two horses completed the trial, met the inclusion criteria and were included in the intention to treat analysis; 20 horses were included in the per protocol analysis. The mean and median percent decreases in Bacteroidetes, increases in Firmicutes and the Firmicutes:Bacteroidetes ratio were significantly greater than zero for the treated horses only. Supplemented horses (8/10) were more likely than control horses (2/10) to show an increase in Firmicutes of a ≥9% with ≥24% increase in Clostridia, ≥5% decrease in Bacteroidetes, ≥16% increase in the F:B ratio and ≥2% increase in Actinobacteria (RR = 4, 95% CI: 1.1-14.4, p = 0.01). This provides useful information for further investigations on long-term effects on the microbiome and on health and racing-related outcomes.
Collapse
|
12
|
Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-Intestinal Microbiota in Equines and Its Role in Health and Disease: The Black Box Opens. Microorganisms 2022; 10:microorganisms10122517. [PMID: 36557769 PMCID: PMC9783266 DOI: 10.3390/microorganisms10122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Horses are large non-ruminant herbivores and rely on microbial fermentation for energy, with more than half of their maintenance energy requirement coming from microbial fermentation occurring in their enlarged caecum and colon. To achieve that, the gastro-intestinal tract (GIT) of horses harbors a broad range of various microorganisms, differing in each GIT segment, which are essential for efficient utilization of feed, especially to use nutrients that are not or little degraded by endogenous enzymes. In addition, like in other animal species, the GIT microbiota is in permanent interplay with the host's cells and is involved in a lot of functions among which inflammation, immune homeostasis, and energy metabolism. As for other animals and humans, the horse gut microbiome is sensitive to diet, especially consumption of starch, fiber, and fat. Age, breeds, stress during competitions, transportation, and exercise may also impact the microbiome. Because of its size and its complexity, the equine GIT microbiota is prone to perturbations caused by external or internal stressors that may result in digestive diseases like gastric ulcer, diarrhea, colic, or colitis, and that are thought to be linked with systemic diseases like laminitis, equine metabolic syndrome or obesity. Thus, in this review we aim at understanding the common core microbiome -in terms of structure and function- in each segment of the GIT, as well as identifying potential microbial biomarkers of health or disease which are crucial to anticipate putative perturbations, optimize global practices and develop adapted nutritional strategies and personalized nutrition.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702 Blagnac, France
- UMR MEDIS, INRAE, Université Clermont-Auvergne, 63122 Saint-Genès Champanelle, France
| | | | - Kip Karges
- Lallemand Specialities Inc., Milwaukee, WI 53218, USA
| | | |
Collapse
|
13
|
Li XB, Huang XX, Li Q, Li XY, Li JH, Li C, He LJ, Jing HX, Yang KL. Effects of different grains on bacterial diversity and enzyme activity associated with digestion of starch in the foal stomach. BMC Vet Res 2022; 18:407. [PMCID: PMC9670411 DOI: 10.1186/s12917-022-03510-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Compared with the stomach of ruminant cattle, the stomach of horse is small and mainly for chemical digestion, but the microorganisms in the stomach play an important role in maintaining the homeostasis of the internal environment. Due to the complexity of the microbes in the stomach, little is known about the diversity and structure of bacteria in the equine stomach. Grains are the main energy source for plant-eating livestock and energy is derived through enzymatic hydrolysis of grains into glucose or their microbial fermentation into Volatile fatty acids (VFA). However, the mechanism through which these ingested grains are chemically digested as well as the effect of these grains on the stomach remains elusive. This study explored the effects of feeding different grains (corn, oats, and barley) on bacterial diversity, structure, and composition in the foal’s stomach content. Furthermore, the effects of different grains on the vitality of starch digestion-related stomach enzymes were investigated.
Results
No significant differences were observed (P > 0.05) in the bacterial rarefaction curves of Operational Taxonomic Units (OTUs) and diversity of the stomach microbiota in all foals. This study also revealed the statistical differences for Firmicutes, Cyanobacteria, Actinobacteria, Fibrobacteres, Lactobacillaceae, Streptococcaceae, Unidentified_Clostridiales, Prevotellaceae, Lactobacillus, Streptococcus, Unidentified_Cyanobacteria, Unidentified_Clostridiales, Lactococcus, Sphingomonas, Lactobacillus_hayakitensis, Lactobacillus_equigenerosi, and Clostridium_perfringens. The linear discriminant analysis effect size analysis revealed 9 bacteria at each classification level. The functional analysis of species information by using FAPROTAX software was able to predict 35 functions, and the top 5 functions were chemoheterotrophy, fermentation, animal_parasites_or_symbionts, nitrate_reduction, and aerobic_chemoheterotrophy. The study also revealed statistical differences for pH, glucose concentration, β-amylase, maltase, and amylase.
Conclusions
The different grains had no significant effect on the microbial diversity of the stomach content of the foal. However, the relative bacterial abundances differed significantly in response to different diets. Particularly, oats fed to the foals significantly increased the relative abundance of Firmicutes, Lactobacillaceae, Lactobacillus, and Lactobacillus_hayakitensis. The grain had no significant effect on the pH of the stomach content, glucose concentration, and enzyme viability in the foal.
Collapse
|
14
|
Homeostasis of the Intestinal Mucosa in Healthy Horses-Correlation between the Fecal Microbiome, Secretory Immunoglobulin A and Fecal Egg Count. Animals (Basel) 2022; 12:ani12223094. [PMID: 36428322 PMCID: PMC9687066 DOI: 10.3390/ani12223094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
The defensive function of the intestinal mucosa depends both on the ability to secrete immunoglobulin A and communication with the mucus microbiome. In horses, the functioning of this system is also influenced by the presence of nematode eggs. Feces collected from healthy horses were examined to determine the fecal egg count, immunoglobulin A level (ELISA), microbiome composition (Next-Generation Sequencing, NGS, V3−V4 and V7−V9 hypervariable regions of the 16S rRNA gene analysis and short-chain fatty acid (SCFA) production ((high-performance liquid chromatography, HPLC). In the taxonomic analysis within the phylum, the following order of dominance was found: Firmicutes, Bacteroidota, Verrucomicrobiota and Fibrobacterota. The coefficient of phylogenetic diversity of the microbiome positively correlated with both secretory immunoglobulin A (SIgA) [μg/g of feces] (p = 0.0354, r = 0.61) and SIgA [μg/mg of fecal protein] (p = 0.0382, r = 0.6) and with the number of Cyathostomum eggs (p = 0.0023, r = 0.79). Important components of the key microbiome in horses, such as phylum Proteobacteria and species Ruminococcus flavefaciens, were positively correlated with the fecal SIgA (p < 0.05). All the obtained results indicate the existence of significant relationships between the host response (SIgA production) and composition and SCFA production in the microbiome as well as the presence of small strongyles in the digestive tract of horses.
Collapse
|
15
|
The microbial community associated with Parascaris spp. infecting juvenile horses. Parasit Vectors 2022; 15:408. [PMID: 36333754 PMCID: PMC9636743 DOI: 10.1186/s13071-022-05533-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Parasitic nematodes, including large roundworms colloquially known as ascarids, affect the health and well-being of livestock animals worldwide. The equine ascarids, Parascaris spp., are important parasites of juvenile horses and the first ascarids to develop widespread anthelmintic resistance. The microbiota has been shown to be an important factor in the fitness of many organisms, including parasitic nematodes, where endosymbiotic Wolbachia have been exploited for treatment of filariasis in humans. Methods This study used short-read 16S rRNA sequences and Illumina sequencing to characterize and compare microbiota of whole worm small intestinal stages and microbiota of male and female intestines and gonads. Diversity metrics including alpha and beta diversity, and the differential abundance analyses DESeq2, ANCOM-BC, corncob, and metagenomeSeq were used for comparisons. Results Alpha and beta diversity of whole worm microbiota did not differ significantly between groups, but Simpson alpha diversity was significantly different between female intestine (FI) and male gonad (MG) (P= 0.0018), and Shannon alpha diversity was significantly different between female and male gonads (P = 0.0130), FI and horse jejunum (HJ) (P = 0.0383), and FI and MG (P= 0.0001). Beta diversity (Fig. 2B) was significantly different between female and male gonads (P = 0.0006), male intestine (MI) and FG (P = 0.0093), and MG and FI (P = 0.0041). When comparing organs, Veillonella was differentially abundant for DESeq2 and ANCOM-BC (p < 0.0001), corncob (P = 0.0008), and metagenomeSeq (P = 0.0118), and Sarcina was differentially abundant across four methods (P < 0.0001). Finally, the microbiota of all individual Parascaris spp. specimens were compared to establish shared microbiota between groups. Conclusions Overall, this study provided important information regarding the Parascaris spp. microbiota and provides a first step towards determining whether the microbiota may be a viable target for future parasite control options. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05533-y.
Collapse
|
16
|
Guerra V, Tiago I, Aires A, Coelho C, Nunes J, Martins LO, Veríssimo A. The gastrointestinal microbiome of browsing goats (Capra hircus). PLoS One 2022; 17:e0276262. [PMID: 36251671 PMCID: PMC9576075 DOI: 10.1371/journal.pone.0276262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the growing interest in the ruminants' gastrointestinal tract (GIT) microbiomes' ability to degrade plant materials by animal husbandry and industrial sectors, only a few studies addressed browsing ruminants. The present work describes the taxonomic and functional profile of the bacterial and archaeal communities from five different gastrointestinal sections (rumen, omasum-abomasum, jejunum, cecum and colon) of browsing Capra hircus, by metabarcoding using 16S rRNA genes hypervariable regions. The bacterial communities across the GITs are mainly composed of Bacillota and Bacteroidota. Prevotella was the leading bacterial group found in the stomachs, Romboutsia in the jejuna, and Rikenellaceae_RC9_gut_group, Bacteroides, UCG-010_ge, UCG-005, and Alistipes in large intestines. The archaeal communities in the stomachs and jejuna revealed to be mainly composed of Methanobrevibacter, while in the large intestines its dominance is shared with Methanocorpusculum. Across the GITs, the main metabolic functions were related to carbohydrate, amino acid, and energy metabolisms. Significant differences in the composition and potential biological functions of the bacterial communities were observed among stomachs, jejuna and large intestines. In contrast, significant differences were observed among stomachs and jejuna verse large intestines for archaeal communities. Overall different regions of the GIT are occupied by different microbial communities performing distinct biological functions. A high variety of glycoside hydrolases (GHs) indispensable for degrading plant cell wall materials were predicted to be present in all the GIT sections.
Collapse
Affiliation(s)
- Vera Guerra
- Department of Life Sciences, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre Bio R&D Unit, Association BLC3—Technology and Innovation Campus, Lagares da Beira, Oliveira do Hospital, Portugal
| | - Igor Tiago
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Aitana Aires
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
- FitoLab, Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Catarina Coelho
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - João Nunes
- Centre Bio R&D Unit, Association BLC3—Technology and Innovation Campus, Lagares da Beira, Oliveira do Hospital, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia e Química Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Veríssimo
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
17
|
Mach N, Midoux C, Leclercq S, Pennarun S, Le Moyec L, Rué O, Robert C, Sallé G, Barrey E. Mining the equine gut metagenome: poorly-characterized taxa associated with cardiovascular fitness in endurance athletes. Commun Biol 2022; 5:1032. [PMID: 36192523 PMCID: PMC9529974 DOI: 10.1038/s42003-022-03977-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Emerging evidence indicates that the gut microbiome contributes to endurance exercise performance. Still, the extent of its functional and metabolic potential remains unknown. Using elite endurance horses as a model system for exercise responsiveness, we built an integrated horse gut gene catalog comprising ~25 million unique genes and 372 metagenome-assembled genomes. This catalog represents 4179 genera spanning 95 phyla and functional capacities primed to exploit energy from dietary, microbial, and host resources. The holo-omics approach shows that gut microbiomes enriched in Lachnospiraceae taxa are negatively associated with cardiovascular capacity. Conversely, more complex and functionally diverse microbiomes are associated with higher glucose concentrations and reduced accumulation of long-chain acylcarnitines and non-esterified fatty acids in plasma, suggesting increased ß-oxidation capacity in the mitochondria. In line with this hypothesis, more fit athletes show upregulation of mitochondrial-related genes involved in energy metabolism, biogenesis, and Ca2+ cytosolic transport, all of which are necessary to improve aerobic work power, spare glycogen usage, and enhance cardiovascular capacity. The results identify an associative link between endurance performance and gut microbiome composition and gene function, laying the basis for nutritional interventions that could benefit horse athletes. An integrated gene catalog of the gut microbiome in elite endurance horses is build. The holo-omics analyses identify an associative link between endurance performance and gut microbiome composition and gene function.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France. .,Université de Toulouse, INRAE, ENVT, IHAP, Toulouse, France.
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, PROSE, Antony, France
| | | | | | - Laurence Le Moyec
- Université d'Évry Val d'Essonne, Université Paris-Saclay, Évry, France.,Muséum National d'Histoire Naturelle, CNRS, MCAM, Paris, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Céline Robert
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Guillaume Sallé
- Université François Rabelais de Tours, INRAE, ISP, Nouzilly, France
| | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
18
|
Hernández-Quiroz F, Murugesan S, Flores-Rivas C, Piña-Escobedo A, Juárez-Hernández JI, García-Espitia M, Chávez-Carbajal A, Nirmalkar K, García-Mena J. A high-throughput DNA sequencing study of fecal bacteria of seven Mexican horse breeds. Arch Microbiol 2022; 204:382. [PMID: 35687150 DOI: 10.1007/s00203-022-03009-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Horses are non-ruminant, herbivorous mammals, been used through history for various purposes, with a gut microbiota from cecum to the colon, possessing remarkable fermentative capacity. We studied the fecal microbiota of Azteca, Criollo, Frisian, Iberian, Pinto, Quarter and Spanish horse breeds living in Mexico by next-generation DNA sequencing of 16S rRNA gene libraries. Dominant phyla Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, Fibrobacteres, Actinobacteria and Verrucomicrobia have different relative abundances among breeds, with contrasted alpha and beta diversities as well. Heatmap analysis revealed that Ruminococcaceae, Lachnospiraceae, Mogibacteriaceae families, and order Clostridiales are more abundant in Spanish, Azteca, Quarter and Criollo breeds. The LEfSe analysis displayed higher abundance of order Bacteroidales, family BS11, and genera Faecalibacterium, Comamonas, Collinsella, Acetobacter, and Treponema in Criollo, Azteca, Iberian, Spanish, Frisian, Pinto, and Quarter horse breeds. The conclusion is that dominant bacterial taxa, found in fecal samples of horse breeds living in Mexico, have different relative abundances.
Collapse
Affiliation(s)
- Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico.,Computer Science Department, University of Nebraska-Lincoln (UNL), Lincoln, NE, USA
| | - Selvasankar Murugesan
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico.,Division of Translational Medicine, Research Department, Sidra Medicine, 26999, Doha, Qatar
| | - Cintia Flores-Rivas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
| | - Josué Isaac Juárez-Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
| | - Matilde García-Espitia
- Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, CDMX, 07320, Ciudad de México, Mexico
| | - Alejandra Chávez-Carbajal
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Khemlal Nirmalkar
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico.,Biodesign Center for Health through Microbiomes, Arizona State 16 University, Tempe, AZ, USA
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Gilroy R, Leng J, Ravi A, Adriaenssens EM, Oren A, Baker D, La Ragione RM, Proudman C, Pallen MJ. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity. PeerJ 2022; 10:e13084. [PMID: 35345588 PMCID: PMC8957277 DOI: 10.7717/peerj.13084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background The horse plays crucial roles across the globe, including in horseracing, as a working and companion animal and as a food animal. The horse hindgut microbiome makes a key contribution in turning a high fibre diet into body mass and horsepower. However, despite its importance, the horse hindgut microbiome remains largely undefined. Here, we applied culture-independent shotgun metagenomics to thoroughbred equine faecal samples to deliver novel insights into this complex microbial community. Results We performed metagenomic sequencing on five equine faecal samples to construct 123 high- or medium-quality metagenome-assembled genomes from Bacteria and Archaea. In addition, we recovered nearly 200 bacteriophage genomes. We document surprising taxonomic diversity, encompassing dozens of novel or unnamed bacterial genera and species, to which we have assigned new Candidatus names. Many of these genera are conserved across a range of mammalian gut microbiomes. Conclusions Our metagenomic analyses provide new insights into the bacterial, archaeal and bacteriophage components of the horse gut microbiome. The resulting datasets provide a key resource for future high-resolution taxonomic and functional studies on the equine gut microbiome.
Collapse
Affiliation(s)
- Rachel Gilroy
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Joy Leng
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Anuradha Ravi
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Aharon Oren
- The Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dave Baker
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | | | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
20
|
Ijoma GN, Nkuna R, Mutungwazi A, Rashama C, Matambo TS. Applying PICRUSt and 16S rRNA functional characterisation to predicting co-digestion strategies of various animal manures for biogas production. Sci Rep 2021; 11:19913. [PMID: 34620937 PMCID: PMC8497515 DOI: 10.1038/s41598-021-99389-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
An estimated 25 million tons of animal manure is produced globally every year, causing considerable impact to the environment. These impacts can be managed through the use of anaerobic digestion (AD) This process achieves waste degradation through enzymatic activity, the efficiency of the AD process is directly related to microorganisms that produce these enzymes. Biomethane potential (BMP) assays remain the standard theoretical framework to pre-determine biogas yield and have been used to determine the feasibility of substrates or their combination for biogas production. However, an integrated approach that combines substrate choice and co-digestion would provide an improvement to the current predictive models. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) addresses the limitations of assays in this regard. In this paper, the biochemical functions of horse, cow, and pig manures are predicted. A total of 135 predicted KEGG Orthologies (KOs) showed amino acids, carbohydrate, energy, lipid, and xenobiotic metabolisms in all the samples. Linear discriminant analysis (LDA) combined with the effect size measurements (LEfSe), showed that fructose, mannose, amino acid and nucleotide sugar, phosphotransferase (PST) as well as starch and sucrose metabolisms were significantly higher in horse manure samples. 36 of the KOs were related to the acidogenesis and/or acetogenesis AD stages. Extended bar plots showed that 11 significant predictions were observed for horse-cow, while 5 were predicted for horse-pig and for cow-pig manures. Based on these predictions, the AD process can be enhanced through co-digestion strategies that takes into account the predicted metabolic contributions of the manure samples. The results supported the BMP calculations for the samples in this study. Biogas yields can be improved if this combined approach is employed in routine analysis before co-digesting different substrates.
Collapse
Affiliation(s)
- Grace N Ijoma
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa.
| | - Rosina Nkuna
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa
| | - Asheal Mutungwazi
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa
| | - Charles Rashama
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa
| | - Tonderayi S Matambo
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa
| |
Collapse
|
21
|
Akter R, El-Hage CM, Sansom FM, Carrick J, Devlin JM, Legione AR. Metagenomic investigation of potential abortigenic pathogens in foetal tissues from Australian horses. BMC Genomics 2021; 22:713. [PMID: 34600470 PMCID: PMC8487468 DOI: 10.1186/s12864-021-08010-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/14/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Abortion in horses leads to economic and welfare losses to the equine industry. Most cases of equine abortions are sporadic, and the cause is often unknown. This study aimed to detect potential abortigenic pathogens in equine abortion cases in Australia using metagenomic deep sequencing methods. RESULTS After sequencing and analysis, a total of 68 and 86 phyla were detected in the material originating from 49 equine abortion samples and 8 samples from normal deliveries, respectively. Most phyla were present in both groups, with the exception of Chlamydiae that were only present in abortion samples. Around 2886 genera were present in the abortion samples and samples from normal deliveries at a cut off value of 0.001% of relative abundance. Significant differences in species diversity between aborted and normal tissues was observed. Several potential abortigenic pathogens were identified at a high level of relative abundance in a number of the abortion cases, including Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Streptococcus equi subspecies zooepidemicus, Pantoea agglomerans, Acinetobacter lwoffii, Acinetobacter calcoaceticus and Chlamydia psittaci. CONCLUSIONS This work revealed the presence of several potentially abortigenic pathogens in aborted specimens. No novel potential abortigenic agents were detected. The ability to screen samples for multiple pathogens that may not have been specifically targeted broadens the frontiers of diagnostic potential. The future use of metagenomic approaches for diagnostic purposes is likely to be facilitated by further improvements in deep sequencing technologies.
Collapse
Affiliation(s)
- Rumana Akter
- Asia Pacific Centre for Animal Health, The Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Charles M El-Hage
- Asia Pacific Centre for Animal Health, The Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Fiona M Sansom
- Asia Pacific Centre for Animal Health, The Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joan Carrick
- Equine Specialist Consulting, Scone, New South Wales, 2337, Australia
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, The Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alistair R Legione
- Asia Pacific Centre for Animal Health, The Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
22
|
Huang Z, Zhou X, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Comparative Genomics and Specific Functional Characteristics Analysis of Lactobacillus acidophilus. Microorganisms 2021; 9:microorganisms9091992. [PMID: 34576887 PMCID: PMC8464880 DOI: 10.3390/microorganisms9091992] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/26/2023] Open
Abstract
Lactobacillus acidophilus is a common kind of lactic acid bacteria usually found in the human gastrointestinal tract, oral cavity, vagina, and various fermented foods. At present, many studies have focused on the probiotic function and industrial application of L. acidophilus. Additionally, dozens of L. acidophilus strains have been genome sequenced, but there has been no research to compare them at the genomic level. In this study, 46 strains of L. acidophilus were performed comparative analyses to explore their genetic diversity. The results showed that all the L. acidophilus strains were divided into two clusters based on ANI values, phylogenetic analysis and whole genome comparison, due to the difference of their predicted gene composition of bacteriocin operon, CRISPR-Cas systems and prophages mainly. Additionally, L. acidophilus was a pan-genome open species with a difference in carbohydrates utilization, antibiotic resistance, EPS operon, surface layer protein operon and other functional gene composition. This work provides a better understanding of L. acidophilus from a genetic perspective, and offers a frame for the biotechnological potentiality of this species.
Collapse
Affiliation(s)
- Zheng Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingya Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; (C.S.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Reynolds Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; (C.S.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; (C.S.); (R.P.R.)
- Correspondence: ; Tel.: +86-510-8591-2155
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Fernandes KA, Rogers CW, Gee EK, Kittelmann S, Bolwell CF, Bermingham EN, Biggs PJ, Thomas DG. Resilience of Faecal Microbiota in Stabled Thoroughbred Horses Following Abrupt Dietary Transition between Freshly Cut Pasture and Three Forage-Based Diets. Animals (Basel) 2021; 11:2611. [PMID: 34573577 PMCID: PMC8471312 DOI: 10.3390/ani11092611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
The management of competition horses in New Zealand often involves rotations of short periods of stall confinement and concentrate feeding, with periods of time at pasture. Under these systems, horses may undergo abrupt dietary changes, with the incorporation of grains or concentrate feeds to the diet to meet performance needs, or sudden changes in the type of forage fed in response to a lack of fresh or conserved forage. Abrupt changes in dietary management are a risk factor for gastrointestinal (GI) disturbances, potentially due to the negative effects observed on the population of GI microbiota. In the present study, the faecal microbiota of horses was investigated to determine how quickly the bacterial communities; (1) responded to dietary change, and (2) stabilised following abrupt dietary transition. Six Thoroughbred mares were stabled for six weeks, consuming freshly cut pasture (weeks 1, 3 and 5), before being abruptly transitioned to conserved forage-based diets, both offered ad libitum. Intestinal markers were administered to measure digesta transit time immediately before each diet change. The conserved forage-based diets were fed according to a 3 × 3 Latin square design (weeks 2, 4 and 6), and comprised a chopped ensiled forage fed exclusively (Diet FE) or with whole oats (Diet FE + O), and perennial ryegrass hay fed with whole oats (Diet H + O). Faecal samples were collected at regular intervals from each horse following the diet changes. High throughput 16S rRNA gene sequencing was used to evaluate the faecal microbiota. There were significant differences in alpha diversity across diets (p < 0.001), and a significant effect of diet on the beta diversity (ANOSIM, p = 0.001), with clustering of samples observed by diet group. There were differences in the bacterial phyla across diets (p < 0.003), with the highest relative abundances observed for Firmicutes (62-64%) in the two diets containing chopped ensiled forage, Bacteroidetes (32-38%) in the pasture diets, and Spirochaetes (17%) in the diet containing hay. Major changes in relative abundances of faecal bacteria appeared to correspond with the cumulative percentage of intestinal markers retrieved in the faeces as the increasing amounts of digesta from each new diet transited the animals. A stable faecal microbiota profile was observed in the samples from 96 h after abrupt transition to the treatment diets containing ensiled chopped forage. The present study confirmed that the diversity and community structure of the faecal bacteria in horses is diet-specific and resilient following dietary transition and emphasised the need to have modern horse feeding management that reflects the ecological niche, particularly by incorporating large proportions of forage into equine diets.
Collapse
Affiliation(s)
- Karlette A. Fernandes
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (K.A.F.); (C.W.R.)
| | - Chris W. Rogers
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (K.A.F.); (C.W.R.)
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - Erica K. Gee
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - Sandra Kittelmann
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (S.K.); (E.N.B.)
| | - Charlotte F. Bolwell
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - Emma N. Bermingham
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (S.K.); (E.N.B.)
| | - Patrick J. Biggs
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - David G. Thomas
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (K.A.F.); (C.W.R.)
| |
Collapse
|
24
|
Seasonal Variation in the Faecal Microbiota of Mature Adult Horses Maintained on Pasture in New Zealand. Animals (Basel) 2021; 11:ani11082300. [PMID: 34438757 PMCID: PMC8388417 DOI: 10.3390/ani11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Ten horses were kept on pasture for one year, with hay provided from June to October. Each month we measured how much pasture was present and collected pasture and hay samples to assess their nutrient content, and faecal samples from all horses to investigate the diversity of the bacterial species present using next-generation sequencing technology. The population of faecal bacteria was more diverse during the months when the horses were kept exclusively on pasture compared to the months when pasture was supplemented with hay. The diet offered, and the season and the month we sampled the paddock all had a major influence on the diversity of the species of bacteria in the faeces. While there were some differences between the horses, generally the bacterial populations could be grouped together in samples obtained during May, June, and July (late-autumn to winter period), and January, February, and March (a period of drought). More specifically we were able to show an association between specific bacterial species, nutrients (dry matter, protein, and structural carbohydrates), and climatic conditions (rainfall and temperature). Our study showed that the diversity and composition of the bacterial population of horses kept on pasture changes over a 12-month period, and this reflects changes in the nutrient composition of the pasture, which in turn is influenced by climate. The findings of this study may have implications for managing horses on pasture and the use of forages for horses susceptible to digestive problems. Abstract Seasonal variation in the faecal microbiota of forage-fed horses was investigated over a 12-month period to determine whether the bacterial diversity fluctuated over time. Horses (n = 10) were maintained on pasture for one year, with hay supplemented from June to October. At monthly intervals, data were recorded on pasture availability and climate (collected continuously and averaged on monthly basis), pasture and hay samples were collected for nutrient analysis, and faecal samples were collected from all horses to investigate the diversity of faecal microbiota using next-generation sequencing on the Illumina MiSeq platform. The alpha diversity of bacterial genera was high in all samples (n = 118), with significantly higher Simpson’s (p < 0.001) and Shannon-Wiener (p < 0.001) diversity indices observed during the months when horses were kept exclusively on pasture compared to the months when pasture was supplemented with hay. There were significant effects of diet, season, and month (ANOSIM, p < 0.01 for each comparison) on the beta diversity of bacterial genera identified in the faeces. While there was some inter-horse variation, hierarchical clustering of beta diversity indices showed separate clades originating for samples obtained during May, June, and July (late-autumn to winter period), and January, February, and March (a period of drought), with a strong association between bacterial taxa and specific nutrients (dry matter, protein, and structural carbohydrates) and climate variables (rainfall and temperature). Our study supports the hypothesis that the diversity and community structure of the faecal microbiota of horses kept on pasture varied over a 12-month period, and this variation reflects changes in the nutrient composition of the pasture, which in turn is influenced by climatic conditions. The findings of this study may have implications for grazing management and the preparation of conserved forages for those horses susceptible to perturbations of the hindgut microbiota.
Collapse
|
25
|
Integrated Phenotypic-Genotypic Analysis of Latilactobacillus sakei from Different Niches. Foods 2021; 10:foods10081717. [PMID: 34441495 PMCID: PMC8393274 DOI: 10.3390/foods10081717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing attention has been paid to the potential probiotic effects of Latilactobacillus sakei. To explore the genetic diversity of L. sakei, 14 strains isolated from different niches (feces, fermented kimchi, and meat products) and 54 published strains were compared and analyzed. The results showed that the average genome size and GC content of L. sakei were 1.98 Mb and 41.22%, respectively. Its core genome mainly encodes translation and transcription, amino acid synthesis, glucose metabolism, and defense functions. L. sakei has open pan-genomic characteristics, and its pan-gene curve shows an upward trend. The genetic diversity of L. sakei is mainly reflected in carbohydrate utilization, antibiotic tolerance, and immune/competition-related factors, such as clustering regular interval short palindromic repeat sequence (CRISPR)-Cas. The CRISPR system is mainly IIA type, and a few are IIC types. This work provides a basis for the study of this species.
Collapse
|
26
|
Arnold CE, Pilla R, Chaffin MK, Leatherwood JL, Wickersham TA, Callaway TR, Lawhon SD, Lidbury JA, Steiner JM, Suchodolski JS. The effects of signalment, diet, geographic location, season, and colitis associated with antimicrobial use or Salmonella infection on the fecal microbiome of horses. J Vet Intern Med 2021; 35:2437-2448. [PMID: 34268795 PMCID: PMC8478058 DOI: 10.1111/jvim.16206] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The fecal microbiome of healthy horses may be influenced by signalment, diet, environmental factors, and disease. OBJECTIVES To assess the effects of age, breed, sex, geographic location, season, diet, and colitis caused by antibiotic use (antimicrobial-associated diarrhea [AAD]) and Salmonella infection on fecal microbiota. ANIMALS Healthy horses (n = 80) were sampled from nonhospital environments across multiple geographical locations in the United States. Horses with AAD (n = 14) were defined as those that developed diarrhea secondary to antimicrobial use. Horses with Salmonella infection (n = 12) were presented with spontaneous onset of colitis and subsequently tested positive on Salmonella quantitative polymerase chain reaction. All horses were >1 year of age and stratified by a dietary scale that included forages (pasture and hay) and concentrates grouped by percentage of fiber and amount. METHODS Illumina sequencing of 16S rRNA genes was performed on fecal DNA. RESULTS Healthy horses fed higher amounts of grain clustered separately from those fed lower amounts of grain (analysis of similarities [ANOSIM], R = 0.356-0.385, Q = 0.002). Horses with AAD and Salmonella had decreased richness and evenness compared to healthy horses (P < .05). Univariable analysis of the 3 groups identified increases in Bacteroidetes (Q = 0.002) and Protebacteria (Q = 0.001) and decreases in Verrucomicrobia (Q = 0.001) in AAD horses whereas Salmonella horses had less Firmicutes (Q = 0.001) when compared to healthy horses. CONCLUSIONS AND CLINICAL IMPORTANCE Although the amount of grain in the diet had some impact on the fecal microbiome, colitis had a significantly larger influence. Horses with ADD have a more severe dysbiosis than do horses with Salmonella.
Collapse
Affiliation(s)
- Carolyn E Arnold
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - M Keith Chaffin
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Tryon A Wickersham
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jonathan A Lidbury
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Joerg M Steiner
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
27
|
Complete Genome Sequences of Three Human Oral Treponema parvum Isolates. Microbiol Resour Announc 2021; 10:e0039421. [PMID: 34236225 PMCID: PMC8265222 DOI: 10.1128/mra.00394-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Treponema parvum is a spirochete associated with human and animal oral/nonoral soft tissue infections. Here, we report the complete genome sequences of three human oral isolates of T. parvum, namely, ATCC 700770T (OMZ 833T), ATCC 700773 (OMZ 842), and OMZ 843, which possess circular chromosomes of a median size of 2.63 Mb.
Collapse
|
28
|
Walshe N, Cabrera-Rubio R, Collins R, Puggioni A, Gath V, Crispie F, Cotter PD, Brennan L, Mulcahy G, Duggan V. A Multiomic Approach to Investigate the Effects of a Weight Loss Program on the Intestinal Health of Overweight Horses. Front Vet Sci 2021; 8:668120. [PMID: 34222398 PMCID: PMC8249564 DOI: 10.3389/fvets.2021.668120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Obesity is endemic in human populations in the western society, and with mounting evidence that the intestinal ecological environment plays a major role in its pathogenesis, identification of therapies based on intestinal microbiota modulation are gaining attention. Obesity in companion animals is also a common clinical problem. We set out using a multidimensional approach, to determine the effectiveness and safety of a weight loss program for horses incorporating diet restriction and exercise. In addition, we aimed to investigate the effect of this program on the overall intestinal health of overweight sedentary horses. The investigation comprised of a randomized, controlled, 6-week study of 14 overweight sedentary horses and ponies who were blocked for age, gender, and breed (controls n = 7, treatment n = 7). The treatment group were fed a restricted diet (1.4% of body weight dry matter intake) and the control group a maintenance diet (2% of body weight as dry matter intake) over the study period. The treatment group were subjected to a prescribed exercise regime, while the control group were exercised to mimic foraging conditions. Several clinical measurements were taken at the start and end of the study, including morphological parameters, ultrasound measurements of subcutaneous fat, and blood pressure. Fecal microbiota analysis was performed using 16S rRNA gene sequence analysis, and fecal metabolome was analyzed using NMR spectroscopy, on samples taken at weeks 1, 3, and 6 of the study. All horses completed the study period successfully. However, two of the treatment group had to have modified exercise regimes. The treatment group showed significant weight loss (p < 0.00001) and an associated decrease in waste circumference (p < 0.0001) when compared with the control group. The alpha-diversity of the fecal microbiota in the treatment group showed a significant increase from the start to the end of the study period (p < 0.05); however, there was no significant difference between groups at any sampling point. There were significant changes (p < 0.05) in the metabolome in both groups between the start and end of the study, but not between groups at any sampling point. Finally, the resting blood pressure of all horses was significantly lower by the end of the study.
Collapse
Affiliation(s)
- Nicola Walshe
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Roisin Collins
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Antonella Puggioni
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Vivian Gath
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
- VistaMilk, Cork, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Vivienne Duggan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
The Equine Faecal Microbiota of Healthy Horses and Ponies in The Netherlands: Impact of Host and Environmental Factors. Animals (Basel) 2021; 11:ani11061762. [PMID: 34204691 PMCID: PMC8231505 DOI: 10.3390/ani11061762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Several studies have described the bacterial composition in the intestines of horses, and several factors of influence have been detected. Variation in the results between studies, however, is substantial. Therefore, the current study aimed to study the bacterial composition in the faeces of healthy horses and ponies kept under standard housing and management condition in The Netherlands. Seventy-nine horses and ponies originating from two farms were included. Several factors, such as location, age, the season of sampling, horse type (horses vs. ponies) and pasture access significantly affected the bacterial composition. The current study provides important baseline information on variation in the bacterial composition in healthy horses and ponies under standard housing and management conditions. The aforementioned factors identified in this study to affect the bacterial population of the gut should be considered in future studies regarding the bacterial population of the equine gut. Abstract Several studies have described the faecal microbiota of horses and the factors that influence its composition, but the variation in results is substantial. This study aimed to investigate the microbiota composition in healthy equids in The Netherlands under standard housing and management conditions and to evaluate the effect of age, gender, horse type, diet, pasture access, the season of sampling and location on it. Spontaneously produced faecal samples were collected from the stall floor of 79 healthy horses and ponies at two farms. The validity of this sampling technique was evaluated in a small pilot study including five ponies showing that the microbiota composition of faecal samples collected up to 6 h after spontaneous defaecation was similar to that of the samples collected rectally. After DNA extraction, Illumina Miseq 16S rRNA sequencing was performed to determine microbiota composition. The effect of host and environmental factors on microbiota composition were determined using several techniques (NMDS, PERMANOVA, DESeq2). Bacteroidetes was the largest phylum found in the faecal microbiota (50.1%), followed by Firmicutes (28.4%). Alpha-diversity and richness decreased significantly with increasing age. Location, age, season, horse type and pasture access had a significant effect on beta-diversity. The current study provides important baseline information on variation in faecal microbiota in healthy horses and ponies under standard housing and management conditions. These results indicate that faecal microbiota composition is affected by several horse-related and environment-related factors, and these factors should be considered in future studies of the equine faecal microbiota.
Collapse
|
30
|
Establishment and assessment of an amplicon sequencing method targeting the 16S-ITS-23S rRNA operon for analysis of the equine gut microbiome. Sci Rep 2021; 11:11884. [PMID: 34088956 PMCID: PMC8178347 DOI: 10.1038/s41598-021-91425-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
Microbial communities are commonly studied by using amplicon sequencing of part of the 16S rRNA gene. Sequencing of the full-length 16S rRNA gene can provide higher taxonomic resolution and accuracy. To obtain even higher taxonomic resolution, with as few false-positives as possible, we assessed a method using long amplicon sequencing targeting the rRNA operon combined with a CCMetagen pipeline. Taxonomic assignment had > 90% accuracy at the species level in a mock sample and at the family level in equine fecal samples, generating similar taxonomic composition as shotgun sequencing. The rRNA operon amplicon sequencing of equine fecal samples underestimated compositional percentages of bacterial strains containing unlinked rRNA genes by a fourth to a third, but unlinked rRNA genes had a limited effect on the overall results. The rRNA operon amplicon sequencing with the A519F + U2428R primer set was able to detect some kind of archaeal genomes such as Methanobacteriales and Methanomicrobiales, whereas full-length 16S rRNA with 27F + 1492R could not. Therefore, we conclude that amplicon sequencing targeting the rRNA operon captures more detailed variations of equine microbiota.
Collapse
|
31
|
Park T, Yoon J, Kim A, Unno T, Yun Y. Comparison of the Gut Microbiota of Jeju and Thoroughbred Horses in Korea. Vet Sci 2021; 8:81. [PMID: 34064714 PMCID: PMC8151153 DOI: 10.3390/vetsci8050081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
(1) Background: The large intestine of horses is an anaerobic fermentative chamber filled with fibrolytic bacteria that play essential roles in digesting and absorbing nutrients for energy production. Although Jeju horses are a prominent local breed in Korea, few studies have investigated the gut microbiota of Jeju horses; (2) Methods: This study performed sequencing of V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from horse fecal samples and compared the gut microbiota between Jeju and Thoroughbred horses. Thirty and 24 fecal samples were obtained from Jeju and Thoroughbred horses, respectively; (3) Results: The gut microbiota belonged to 23 phyla and 159 families. Firmicutes and Bacteroidetes were the most abundant and predominant phyla, followed by Verrucomicrobia, Euryachaeota, and Spirochaete. The ratio of Firmicutes to Bacteroidetes (F/B), which is known as a relevant marker of gut dysbiosis, was 1.84 for Jeju horses, whereas it was 1.76 for Thoroughbred horses. Moreover, at the genus level, 21 genera were significantly different between the Jeju and Thoroughbred horses (p < 0.05); (4) Conclusions: The Thoroughbred horse's gut microbiotas had significantly higher diversity than the Jeju horses (p < 0.05). In addition, beneficial commensal bacteria that produce short-chain fatty acids thus providing a significant source of energy are also more abundant in Thoroughbred horses. These results provide novel information on the horse gut microbiota and insights for further studies related to the horse gut microbiota.
Collapse
Affiliation(s)
- Taemook Park
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Jungho Yoon
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
| | - Ahram Kim
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
| | - Tatsuya Unno
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju 63243, Korea
| | - Youngmin Yun
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
32
|
Collinet A, Grimm P, Julliand S, Julliand V. Sequential Modulation of the Equine Fecal Microbiota and Fibrolytic Capacity Following Two Consecutive Abrupt Dietary Changes and Bacterial Supplementation. Animals (Basel) 2021; 11:ani11051278. [PMID: 33946811 PMCID: PMC8144951 DOI: 10.3390/ani11051278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The equine hindgut is colonized by microorganisms, some of which are involved in fiber digestion and are crucial for the horse’s nutrition and health. These key microorganisms are very sensitive to dietary changes, which have been identified as a risk factor for colics. This study assessed the stressful effect of two consecutive abrupt dietary changes on the diversity, the composition, and the activity of fecal microorganisms focusing on fibrolytic bacteria. Twelve horses were subjected to an abrupt change from forage to a concentrate-rich diet, followed by a second change from a concentrate to forage-rich diet 5 days later. Half of the horses were given a supplement of living bacteria as a probiotic. Two days after the sudden change from forage to concentrate diet, the proportions and types of microorganisms were altered drastically, as was their capacity to degrade fibers. After this dietary stress, it took 3–4 weeks of a high-fiber diet to recover the basal state. Supplementation with probiotics promoted an earlier recovery of fibrolytic bacteria after the dietary stress. Abrupt dietary changes should be limited in horse management to protect the hindgut microorganisms and their capacity to use forage fibers, and consequently to limit the development of colic. Abstract In horses, abrupt changes from high-fiber (HF) to high-starch (HS) diets can affect the cecal and colonic microbiota. This study investigated modifications and recovery of fecal microbiota after two consecutive abrupt dietary changes. Twelve horses fed HF for 2 weeks were changed to HS for 5 days then returned to HF for 7 weeks. Six received lactic acid bacteria supplementation. Bacterial population diversity, structure, and activity, especially fibrolysis, were assessed to obtain an overview of alteration in hindgut microbiota. Two days after the abrupt change from HF to HS, the findings in feces were consistent with those previously reported in the cecum and colon, with a decrease in fibrolytic activity and an increase in amylolytic activity. Fecal parameters stabilized at their basal level 3–4 weeks after the return to HF. A bloom of cellulolytic bacteria and lower pH were observed after 1.5 weeks, suggesting a higher level of fiber degradation. In supplemented horses the relative abundance of potentially fibrolytic genera was enhanced 2 days after HS and 2 days to 2–3 weeks after the return to HF. Fecal analysis could be a promising technique for monitoring hindgut microbial variations accompanying dietary changes.
Collapse
Affiliation(s)
- Axelle Collinet
- Lab To Field, 21000 Dijon, France; (A.C.); (P.G.); (S.J.)
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM) A 02.102, AgroSup Dijon, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pauline Grimm
- Lab To Field, 21000 Dijon, France; (A.C.); (P.G.); (S.J.)
| | - Samy Julliand
- Lab To Field, 21000 Dijon, France; (A.C.); (P.G.); (S.J.)
| | - Véronique Julliand
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM) A 02.102, AgroSup Dijon, University Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
33
|
Cotozzolo E, Cremonesi P, Curone G, Menchetti L, Riva F, Biscarini F, Marongiu ML, Castrica M, Castiglioni B, Miraglia D, Luridiana S, Brecchia G. Characterization of Bacterial Microbiota Composition along the Gastrointestinal Tract in Rabbits. Animals (Basel) 2020; 11:ani11010031. [PMID: 33375259 PMCID: PMC7824689 DOI: 10.3390/ani11010031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
The microbiota is extremely important for the animal's health, but, to date, knowledge on the intestinal microbiota of the rabbit is very limited. This study aimed to describe bacterial populations that inhabit the different gastrointestinal compartments of the rabbit: stomach, duodenum, jejunum, ileum, caecum, and colon. Samples of the luminal content from all compartments of 14 healthy New White Zealand rabbits were collected at slaughter and analyzed using next generation 16S rRNA Gene Sequencing. The findings uncovered considerable differences in the taxonomic levels among the regions of the digestive tract. Firmicutes were the most abundant phylum in all of the sections (45.9%), followed by Bacteroidetes in the large intestine (38.9%) and Euryarchaeota in the foregut (25.9%). Four clusters of bacterial populations were observed along the digestive system: (i) stomach, (ii) duodenum and jejunum, (iii) ileum, and (iv) large intestine. Caecum and colon showed the highest richness and diversity in bacterial species, while the highest variability was found in the upper digestive tract. Knowledge of the physiological microbiota of healthy rabbits could be important for preserving the health and welfare of the host as well as for finding strategies to manipulate the gut microbiota in order to also promote productive performance.
Collapse
Affiliation(s)
- Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy;
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology (IBBA)—National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy; (P.C.); (F.B.); (B.C.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
| | - Laura Menchetti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40137 Bologna, Italy;
| | - Federica Riva
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
- Correspondence: (F.R.); (G.B.); Tel.: +39-02503-34519 (F.R.); Tel.: +39-02-50334583 (G.B.)
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA)—National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy; (P.C.); (F.B.); (B.C.)
| | - Maria Laura Marongiu
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy; (M.L.M.); (S.L.)
| | - Marta Castrica
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA)—National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy; (P.C.); (F.B.); (B.C.)
| | - Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Sebastiano Luridiana
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy; (M.L.M.); (S.L.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
- Correspondence: (F.R.); (G.B.); Tel.: +39-02503-34519 (F.R.); Tel.: +39-02-50334583 (G.B.)
| |
Collapse
|
34
|
No Worm Is an Island; The Influence of Commensal Gut Microbiota on Cyathostomin Infections. Animals (Basel) 2020; 10:ani10122309. [PMID: 33291496 PMCID: PMC7762139 DOI: 10.3390/ani10122309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary There is increasing evidence for the importance of gut bacteria in animal health and disease. This is particularly relevant for gastrointestinal infections, such as parasitic worms, which share a niche with gut bacteria. Parasitic worms are highly prevalent in domestic horses and are a significant cause of disease in this population. This commentary explores the complex relationships between the most common parasitic worm in horses (cyathostomins) and gut bacteria, based on recent studies in horses and other species. We propose novel theories and avenues for research that harness these relationships and have the potential to improve control of parasitic worms, and overall equine health, in the future. Abstract The importance of the gut microbiome for host health has been the subject of intense research over the last decade. In particular, there is overwhelming evidence for the influence of resident microbiota on gut mucosal and systemic immunity; with significant implications for the outcome of gastrointestinal (GI) infections, such as parasitic helminths. The horse is a species that relies heavily on its gut microbiota for GI and overall health, and disturbances in this complex ecosystem are often associated with life-threatening disease. In turn, nearly all horses harbour parasitic helminths from a young age, the most prevalent of which are the small strongyles, or cyathostomins. Research describing the relationship between gut microbiota and cyathostomin infection is in its infancy, however, to date there is evidence of meaningful interactions between these two groups of organisms which not only influence the outcome of cyathostomin infection but have long term consequences for equine host health. Here, we describe these interactions alongside supportive evidence from other species and suggest novel theories and avenues for research which have the potential to revolutionize our approach to cyathostomin prevention and control in the future.
Collapse
|
35
|
Liu Y, Bailey KE, Dyall-Smith M, Marenda MS, Hardefeldt LY, Browning GF, Gilkerson JR, Billman-Jacobe H. Faecal microbiota and antimicrobial resistance gene profiles of healthy foals. Equine Vet J 2020; 53:806-816. [PMID: 33030244 DOI: 10.1111/evj.13366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The human and domestic animal faecal microbiota can carry various antimicrobial resistance genes (ARGs), especially if they have been exposed to antimicrobials. However, little is known about the ARG profile of the faecal microbiota of healthy foals. A high-throughput qPCR array was used to detect ARGs in the faecal microbiota of healthy foals. OBJECTIVES To characterise the faecal microbiota and ARG profiles in healthy Australian foals aged less than 1 month. STUDY DESIGN Observational study. METHODS The faecal microbiota and ARG profiles of 37 Thoroughbred foals with no known gastrointestinal disease or antimicrobial treatment were determined using 16S rRNA gene sequencing and a high-throughput ARG qPCR array. Each foal was sampled on one occasion. RESULTS Firmicutes and Bacteroidetes were dominant in the faecal microbiota. Foals aged 1-2 weeks had significantly lower microbiota richness than older foals. Tetracycline resistance genes were the most common ARGs in the majority of foals, regardless of age. ARGs of high clinical concern were rarely detected in the faeces. The presence of ARGs was associated with the presence of class I integron genes. MAIN LIMITATIONS Samples were collected for a case-control study so foals were not sampled longitudinally, and thus the development of the microbiota as individual foals aged could not be proven. The history of antimicrobial treatment of the dams was not collected and may have affected the microbiota of the foals. CONCLUSION The ARGs in foal faeces varied concomitantly with age-related microbiota shifts. The high abundance of tetracycline resistance genes was likely due to the dominance of Bacteroides spp.
Collapse
Affiliation(s)
- Yuhong Liu
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Kirsten E Bailey
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - Michael Dyall-Smith
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Laura Y Hardefeldt
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - James R Gilkerson
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| |
Collapse
|
36
|
Ahasan MS, Waltzek TB, Owens L, Ariel E. Characterisation and comparison of the mucosa-associated bacterial communities across the gastrointestinal tract of stranded green turtles, Chelonia mydas. AIMS Microbiol 2020; 6:361-378. [PMID: 33364533 PMCID: PMC7755585 DOI: 10.3934/microbiol.2020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
Chelonia mydas are primarily herbivorous long-distance migratory sea turtles that contribute to marine ecosystems. Extensive research has been conducted to restore the populations of green turtles. Little is known about their gut microbiota which plays a vital role in their health. We investigated the mucosa-associated bacterial communities across the gastrointestinal (GI) tract of a total four (3, juvenile and 1, adult) stranded green turtles. Samples taken from four GI regions including oesophagus, stomach, small intestine and large intestine were analysed by high-throughput sequencing targeting hypervariable V1-V3 regions of the bacterial 16S rRNA gene. Bacterial diversity and richness decreased longitudinally along the GI tract from oesophagus to the small intestine of stranded turtles. The large intestine showed a higher bacterial diversity and richness compared to small intestine. The bacterial community of green turtles' GI tract was largely dominated by Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. Aerobic and facultative anaerobic bacteria prevailed primarily in the oesophagus while anaerobes (Lachnospiraceae, Peptostreptococcaceae and Ruminococcaceae) constituted the bulk of large intestinal microbiota. Firmicutes dominated the GI tract except within the small intestine where Proteobacteria prevailed. At the OTU level, six percent of the total OTUs (>1% relative abundance) were common in all GI regions. This is a comprehensive characterisation of bacterial microbiota across the GI tract in green turtles which will provide a reference for future studies on turtle gut microbiome and their metabolism to improve their health and nutrition during rehabilitation.
Collapse
Affiliation(s)
- Mohammad Shamim Ahasan
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia.,Faculty of Veterinary and Animal Sciences, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Rangpur, Bangladesh
| | - Thomas B Waltzek
- College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Leigh Owens
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia
| |
Collapse
|
37
|
Walshe N, Mulcahy G, Crispie F, Cabrera-Rubio R, Cotter P, Jahns H, Duggan V. Outbreak of acute larval cyathostominosis - A "perfect storm" of inflammation and dysbiosis. Equine Vet J 2020; 53:727-739. [PMID: 32920897 PMCID: PMC8246859 DOI: 10.1111/evj.13350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
Background Cyathostomins are prevalent and pathogenic intestinal helminths of horses, causing acute and chronic disease, including acute larval cyathostominosis, which has a mortality rate of 50%. Factors determining individual susceptibility to acute larval cyathostominosis are unknown. Investigation of these factors could lead to novel treatment and prevention strategies. Objectives To investigate clinicopathological and faecal microbiota changes associated with disease in individual horses in an acute larval cyathostominosis outbreak. Study design Case series. Methods The study population was a herd of 23 mixed breed horses in Ireland. The outbreak occurred in November 2018. Fourteen horses were clinically affected. Clinical status was monitored and recorded. Blood and faecal sampling allowed clinicopathological, faecal 16s rRNA gene sequencing and faecal egg count analyses. Results Two horses were euthanised, whilst 12 recovered. Common clinical signs included loose faecal consistency, weight loss and pyrexia. Consistent clinicopathological findings were borderline anaemia, leucocytosis, thrombocytosis, hyperfibrinogenaemia, hyperglobulinaemia and a reverse A: G ratio. Decreased alpha‐diversity of the faecal microbiota and greater relative abundance of the genus Streptococcus, class Bacilli, order Lactobacillales and family Streptococcaceae, and family Prevotelleceae was found in clinically affected horses compared to their clinically normal cohorts. An increase in obligate fibrolytic bacteria was seen in the clinically normal group compared to the clinical group. Histopathological findings of the colon and caecum revealed a severe necrotising typhlocolitis associated with cyathostomin larvae and bacterial overgrowth in the mucosa of the large intestine. Main limitations The study population in this outbreak is small. There are several confounding factors limiting this to a descriptive case series. Faecal microbiota has been shown to reflect the large intestinal microbiota but do not represent changes directly. Conclusions These findings suggest that acute larval cyathostominosis is associated with dysbiosis of the gut microbiota as well as the inflammatory stimulus of numerous emerging larvae leading to structural and functional pathology of the large intestine.
Collapse
Affiliation(s)
- Nicola Walshe
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, APC Microbiome, Moorepark, Ireland.,APC Microbiome Ireland, Moorepark, Ireland
| | | | - Paul Cotter
- Teagasc Food Research Centre, APC Microbiome, Moorepark, Ireland.,APC Microbiome Ireland, Moorepark, Ireland.,Vistamilk, Moorepark, Ireland
| | - Hanne Jahns
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Vivienne Duggan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Garber A, Hastie P, McGuinness D, Malarange P, Murray JA. Abrupt dietary changes between grass and hay alter faecal microbiota of ponies. PLoS One 2020; 15:e0237869. [PMID: 32810164 PMCID: PMC7446798 DOI: 10.1371/journal.pone.0237869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Abrupt dietary changes, as can be common when managing horses, may lead to compositional changes in gut microbiota, which may result in digestive or metabolic disturbances. The aim of this study was to describe and compare the faecal microbiota of ponies abruptly changed from pasture grazing ad libitum to a restricted hay-only diet and vice versa. The experiment consisted of two, 14-day periods. Faecal samples were collected on day 0 and days 1–3,7,14 after abrupt dietary change from grass to hay and from hay to grass. Microbial populations were characterised by sequencing the V3-V4 region of the 16S rRNA gene using the Illumina MiSeq platform, 4,777,315 sequences were obtained from 6 ponies. Further analyses were performed to characterise the microbiome as well as the relative abundance of microbiota present. The results of this study suggest that the faecal microbiota of mature ponies is highly diverse, and the relative abundances of individual taxa change in response to abrupt changes in diet. The faecal microbiota of ponies maintained on a restricted amount of hay-only was similar to that of the ponies fed solely grass ad libitum in terms of richness and phylogenetic diversity; however, it differed significantly in terms of the relative abundances at distinct taxonomic levels. Class Bacilli, order Lactobacillales, family Lactobacillaceae, and genus Lactobacillus were presented in increased relative abundance on day 2 after an abrupt dietary change from hay to grass compared to all other experimental days (P <0.05). Abrupt changes from grass to hay and vice versa affect the faecal microbial community structure; moreover, the order of dietary change appears to have a profound effect in the first few days following the transition. An abrupt dietary change from hay to grass may represent a higher risk for gut disturbances compared to abrupt change from grass to hay.
Collapse
Affiliation(s)
- Anna Garber
- AB Vista, Marlborough, United Kingdom
- * E-mail:
| | - Peter Hastie
- School of Veterinary Medicine, University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - David McGuinness
- University of Glasgow, Glasgow Polyomics, Glasgow, United Kingdom
| | - Pauline Malarange
- EPLEFPA des Combrailles, Saint Gervais D’Auvergne, Puy-de-Dôme, France
| | - Jo-Anne Murray
- School of Veterinary Medicine, University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| |
Collapse
|
39
|
Cui J, Wu F, Yang X, Liu T, Xia X, Chang X, Wang H, Sun L, Wei Y, Jia Z, Liu S, Han S, Chen B. Effect of gaseous hydrogen sulphide on growth performance and cecal microbial diversity of weaning pigs. Vet Med Sci 2020; 7:424-431. [PMID: 32729230 PMCID: PMC8025610 DOI: 10.1002/vms3.324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to examine the effect of gaseous hydrogen sulphide on growth performance and cecal microbial diversity in weaning pigs. A total of 24 weaning pigs (Landrace × Yorkshire × Duroc; average body weight = 8.55 ± 0.68 kg;weaning at 28 days) were selected and randomly divided into four groups (six replicates in each group). The piglets were exposed to hydrogen sulphide (0, 5, 10 and 15 mg/m3) during the experiment period, which lasted 28 days in four controlled environmental chambers. The results showed that exposure to hydrogen sulphide reduced the average daily gain (ADG), average daily feed intake (ADFI), and increased the diarrhoea rate of piglets. Hydrogen sulphide could increase the abundance and diversity of intestinal microbiota. The abundance of Firmicutes and Proteobacteria increased and Bacteroides decreased in the treatment groups. Five biomarkers, such as Eubacterium_1coprostanoligenes, Clostridiales, Phascolarctobacterium, Acidaminococcaceae and Ruminococcaceae_UCG_002 were selected by Lefse analysis. Our results reveal that hydrogen sulphide damaged the growth performance and destroyed the microbial bacteria balance of weaning pigs. The concentrations of hydrogen sulphide should fall below 5 mg/m3.
Collapse
Affiliation(s)
- Jia Cui
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Fengyang Wu
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Xinyu Yang
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Tingting Liu
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Xueru Xia
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Xingfa Chang
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Haonan Wang
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Lei Sun
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Yuchao Wei
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Zenghao Jia
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Shudong Liu
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Shuaijuan Han
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Baojiang Chen
- Department of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| |
Collapse
|
40
|
Abstract
There is a need to develop feeding strategies to prevent the adverse effect of concentrate feeding in high-performance horses fed energy-dense diets aiming to maintain their health and welfare. The objective of this study is to determine the effect of a VistaEQ product containing 4% live yeast Saccharomyces cerevisiae (S. cerevisiae), with activity 5 × 108 colony-forming unit/g and fed 2 g/pony per day, on faecal microbial populations when supplemented with high-starch and high-fibre diets using Illumina next generation sequencing of the V3-V4 region of the 16S ribosomal RNA gene. The four treatments were allocated to eight mature Welsh section A pony geldings enrolled in a 4-period × 8 animal crossover design. Each 19-day experimental period consisted of an 18-day adaptation phase and a single collection day, followed by a 7-day wash out period. After DNA extraction from faeces and library preparation, α-diversity and linear discriminant analysis effect size were performed using 16S metagenomics pipeline in Quantitative Insights Into Microbial Ecology (QIIME™) and Galaxy/Hutlab. Differences between the groups were considered significant when linear discriminant analysis score was >2 corresponding to P < 0.05. The present study showed that S. cerevisiae used was able to induce positive changes in the equine microbiota when supplemented to a high-fibre diet: it increased relative abundance (RA) of Lachnospiraceae and Dehalobacteriaceae family members associated with a healthy core microbiome. Yeast supplementation also increased the RA of fibrolytic bacteria (Ruminococcus) when fed with a high-fibre diet and reduced the RA of lactate producing bacteria (Streptococcus) when a high-starch diet was fed. In addition, yeast increased the RA of acetic, succinic acid producing bacterial family (Succinivibrionaceae) and butyrate producing bacterial genus (Roseburia) when fed with high-starch and high-fibre diets, respectively. VistaEQ supplementation to equine diets can be potentially used to prevent acidosis and increase fibre digestibility. It may help to meet the energy requirements of performance horses while maintaining gut health.
Collapse
|
41
|
Budd K, Gunn JC, Finch T, Klymus K, Sitati N, Eggert LS. Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna ( Loxodonta africana) and forest elephants ( L. cyclotis). Ecol Evol 2020; 10:5637-5650. [PMID: 32607180 PMCID: PMC7319146 DOI: 10.1002/ece3.6305] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
The gut microbiome, or the community of microorganisms inhabiting the digestive tract, is often unique to its symbiont and, in many animal taxa, is highly influenced by host phylogeny and diet. In this study, we characterized the gut microbiome of the African savanna elephant (Loxodonta africana) and the African forest elephant (Loxodonta cyclotis), sister taxa separated by 2.6-5.6 million years of independent evolution. We examined the effect of host phylogeny on microbiome composition. Additionally, we examined the influence of habitat types (forest versus savanna) and diet types (crop-raiding versus noncrop-raiding) on the microbiome within L. africana. We found 58 bacterial orders, representing 16 phyla, across all African elephant samples. The most common phyla were Firmicutes, Proteobacteria, and Bacteroidetes. The microbiome of L. africana was dominated by Firmicutes, similar to other hindgut fermenters, while the microbiome of L. cyclotis was dominated by Proteobacteria, similar to more frugivorous species. Alpha diversity did not differ across species, habitat type, or diet, but beta diversity indicated that microbial communities differed significantly among species, diet types, and habitat types. Based on predicted KEGG metabolic pathways, we also found significant differences between species, but not habitat or diet, in amino acid metabolism, energy metabolism, and metabolism of terpenoids and polyketides. Understanding the digestive capabilities of these elephant species could aid in their captive management and ultimately their conservation.
Collapse
Affiliation(s)
- Kris Budd
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Joe C. Gunn
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Tabitha Finch
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
- Vermont Genetics NetworkUniversity of VermontBurlingtonVTUSA
| | - Katy Klymus
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
- Columbia Environmental Research CenterUnited States Geological SurveyColumbiaMOUSA
| | - Noah Sitati
- World Wide Fund for NatureDar es SalaamTanzania
| | - Lori S. Eggert
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
42
|
Paßlack N, Vahjen W, Zentek J. Impact of Dietary Cellobiose on the Fecal Microbiota of Horses. J Equine Vet Sci 2020; 91:103106. [PMID: 32684251 DOI: 10.1016/j.jevs.2020.103106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/24/2022]
Abstract
Cellobiose is a disaccharide with potential prebiotic effects, as demonstrated in different animal species, but not yet in horses. It was, therefore, the aim of the present study to evaluate the impact of dietary cellobiose on the fecal microbiota of horses. Eight healthy adult horses and two ponies were included in this study. The animals received a diet without or with 10 g and 20 g cellobiose per day for 14 days each. At the end of the feeding periods, fresh fecal samples were collected to measure bacterial metabolites and the microbial composition. For the microbiota analysis, 16S rRNA gene sequencing was used. Cellobiose was well accepted and tolerated by the animals. The lowest fecal concentrations of D-lactate, propionic acid, i-valeric acid, and total short-chain fatty acids were measured at the dose 10 g cellobiose per horse per day (quadratic effect: P < .05). A dose-dependent increase of the relative abundance of Firmicutes (P = .049), Coriobacteriales (P < .001), and Clostridium (P = .031) could be detected. In addition, a dose-dependent decrease of the relative abundance of Bacteroidetes (P = .035) was observed. In conclusion, the increase of Coriobacteriales and Clostridium indicates a bacterial fermentation of cellobiose in the equine intestine, as members of both groups exert saccharolytic activity. As clostridia have previously been assumed to be a key component of the intestinal microbiota in horses, the observed increase of Clostridium in the feces might indicate beneficial and potentially prebiotic effects of cellobiose in horses. However, this finding requires further investigation, particularly with regard to the Clostridium species that have been promoted by dietary cellobiose.
Collapse
Affiliation(s)
- Nadine Paßlack
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany.
| | - Wilfried Vahjen
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
43
|
In Vitro Gas Production from Batch Cultures of Stomach and Hindgut Digesta of Horses Adapted to a Prebiotic Dose of Fructooligosaccharides and Inulin. J Equine Vet Sci 2020; 90:103020. [PMID: 32534784 DOI: 10.1016/j.jevs.2020.103020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022]
Abstract
Fructooligosaccharides (FOS) and inulin may modulate hindgut fermentation. It was tested if digesta batch cultures taken from horses adapted to FOS and inulin show different fermentation compared with such taken from nonsupplemented horses. Six horses received 0.15 g FOS and inulin/kg body weight/d via Jerusalem artichoke meal (JAM) upon a hay-based diet; six horses received corncob meal without grains (CMG) as placebo. The horses were euthanized after 20 days. Digesta samples were taken from stomach, cecum, ventral colon ascendens (VCA), and colon transversum (CT). Digesta batch cultures were incubated 48 hours to measure in vitro gas production as well as pre- and post-incubation pH and oxidation-reduction potential (ORP). A distinct fermentation of the surplus of fructans present in the inoculum was found with JAM-adapted batch cultures. Gas production was accelerated in inoculated gastric contents of horses adapted to JAM compared with CMG adapted ones (7.8 vs. 16.4 hours to achieve half of the 48 hours gas quantity, respectively; P > .05). Although buffered, pH decreased during fermentation. Postincubation pH was lower with JAM than CMG-adapted batch cultures (P > .05). Preinoculation ORP was lower with stomach batch cultures adapted to CMG than with such adapted to JAM. The ORP increased twofold from pre- to post-incubation with the latter. Asymptotic maximal gas production decreased gradually using cecum, VCA, or CT digesta. Parts of FOS and inulin of digesta are fermented in the stomach, which reduce possible effects on hindgut fermentation. Elevated fermentation may considerably impact stomach health.
Collapse
|
44
|
Fitzgerald DM, Spence RJ, Stewart ZK, Prentis PJ, Sillence MN, de Laat MA. The effect of diet change and insulin dysregulation on the faecal microbiome of ponies. J Exp Biol 2020; 223:jeb219154. [PMID: 32098884 DOI: 10.1242/jeb.219154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
The equine microbiome can change in response to dietary alteration and may play a role in insulin dysregulation. The aim of this study was to determine the effect of adding pasture to a hay diet on the faecal bacterial microbiome of both healthy and insulin-dysregulated ponies. Faecal samples were collected from 16 ponies before and after dietary change to enable bacterial 16S rRNA sequencing of the V3-V4 region. The dominant phyla in all samples were the Firmicutes and Bacteroidetes. The evenness of the bacterial populations decreased after grazing pasture, and when a pony was moderately insulin dysregulated (P=0.001). Evenness scores negatively correlated with post-prandial glucagon-like peptide-1 concentration after a hay-only diet (r²=-0.7, P=0.001). A change in diet explained 3% of faecal microbiome variability. We conclude that metabolically healthy ponies have greater microbial stability when challenged with a subtle dietary change, compared with moderately insulin-dysregulated ponies.
Collapse
Affiliation(s)
- Danielle M Fitzgerald
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Robert J Spence
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zachary K Stewart
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Peter J Prentis
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Martin N Sillence
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Melody A de Laat
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
45
|
Comparative Genomics Analysis of Lactobacillus ruminis from Different Niches. Genes (Basel) 2020; 11:genes11010070. [PMID: 31936280 PMCID: PMC7016997 DOI: 10.3390/genes11010070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
Lactobacillus ruminis is a commensal motile lactic acid bacterium living in the intestinal tract of humans and animals. Although a few genomes of L. ruminis were published, most of them were animal derived. To explore the genetic diversity and potential niche-specific adaptation changes of L. ruminis, in the current work, draft genomes of 81 L. ruminis strains isolated from human, bovine, piglet, and other animals were sequenced, and comparative genomic analysis was performed. The genome size and GC content of L. ruminis on average were 2.16 Mb and 43.65%, respectively. Both the origin and the sampling distance of these strains had a great influence on the phylogenetic relationship. For carbohydrate utilization, the human-derived L. ruminis strains had a higher consistency in the utilization of carbon source compared to the animal-derived strains. L. ruminis mainly increased the competitiveness of niches by producing class II bacteriocins. The type of clustered regularly interspaced short palindromic repeats /CRISPR-associated (CRISPR/Cas) system presented in L. ruminis was mainly subtype IIA. The diversity of CRISPR/Cas locus depended on the high denaturation of spacer number and sequence, although cas1 protein was relatively conservative. The genetic differences in those newly sequenced L. ruminis strains highlighted the gene gains and losses attributed to niche adaptations.
Collapse
|
46
|
Kauter A, Epping L, Semmler T, Antao EM, Kannapin D, Stoeckle SD, Gehlen H, Lübke-Becker A, Günther S, Wieler LH, Walther B. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Anim Microbiome 2019; 1:14. [PMID: 33499951 PMCID: PMC7807895 DOI: 10.1186/s42523-019-0013-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the complex interactions of microbial communities including bacteria, archaea, parasites, viruses and fungi of the gastrointestinal tract (GIT) associated with states of either health or disease is still an expanding research field in both, human and veterinary medicine. GIT disorders and their consequences are among the most important diseases of domesticated Equidae, but current gaps of knowledge hinder adequate progress with respect to disease prevention and microbiome-based interventions. Current literature on enteral microbiomes mirrors a vast data and knowledge imbalance, with only few studies tackling archaea, viruses and eukaryotes compared with those addressing the bacterial components.Until recently, culture-dependent methods were used for the identification and description of compositional changes of enteral microorganisms, limiting the outcome to cultivatable bacteria only. Today, next generation sequencing technologies provide access to the entirety of genes (microbiome) associated with the microorganisms of the equine GIT including the mass of uncultured microbiota, or "microbial dark matter".This review illustrates methods commonly used for enteral microbiome analysis in horses and summarizes key findings reached for bacteria, viruses and fungi so far. Moreover, reasonable possibilities to combine different explorative techniques are described. As a future perspective, knowledge expansion concerning beneficial compositions of microorganisms within the equine GIT creates novel possibilities for early disorder diagnostics as well as innovative therapeutic approaches. In addition, analysis of shotgun metagenomic data enables tracking of certain microorganisms beyond species barriers: transmission events of bacteria including pathogens and opportunists harboring antibiotic resistance factors between different horses but also between humans and horses will reach new levels of depth concerning strain-level distinctions.
Collapse
Affiliation(s)
- Anne Kauter
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | | | - Dania Kannapin
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Sabita D Stoeckle
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Günther
- Pharmaceutical Biology Institute of Pharmacy, Universität Greifswald, Greifswald, Germany
| | | | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| |
Collapse
|
47
|
Massacci FR, Clark A, Ruet A, Lansade L, Costa M, Mach N. Inter-breed diversity and temporal dynamics of the faecal microbiota in healthy horses. J Anim Breed Genet 2019; 137:103-120. [PMID: 31523867 DOI: 10.1111/jbg.12441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Understanding gut microbiota similarities and differences across breeds in horses has the potential to advance approaches aimed at personalized microbial modifications, particularly those involved in improving sport athletic performance. Here, we explore whether faecal microbiota composition based on faecal 16S ribosomal RNA gene sequencing varies across six different sport breeds at two time points 8 months apart within a cohort of 189 healthy horses cared for under similar conditions. Lusitano horses presented the smallest and Hanoverians the greatest bacterial diversity. We found subtle but significant differences in β-diversity between Lusitano, Anglo Arabian and the central European breeds, and we reproduced these results across the two time points. Repeat sampling of subjects showed community to be temporally more stable in Lusitano and Anglo Arabian breeds. Additionally, we found that 27 genera significantly varied in abundance across breeds. Overall, 33% of these taxa overlapped with previously identified taxa that were associated with genetic variation in humans or other species. However, a non-significant correlation was observed between microbial composition and the host pedigree-based kinship. Despite a notable variation in the diversity and composition of the faecal microbiota, breed exerted limited effects on the equine faecal microbiota.
Collapse
Affiliation(s)
- Francesca Romana Massacci
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Research and Development Department, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy.,Agricultural and Food Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Allison Clark
- Gastroenterology Department, Vall d'Hebron Research Center, Barcelona, Spain
| | - Alice Ruet
- PRC, INRA, CNRS, IFCE, University of Tours, Nouzilly, France
| | - Léa Lansade
- PRC, INRA, CNRS, IFCE, University of Tours, Nouzilly, France
| | - Marcio Costa
- Biomedical Veterinary Sciences Department, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Núria Mach
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
48
|
Gänzle MG, Zheng J. Lifestyles of sourdough lactobacilli – Do they matter for microbial ecology and bread quality? Int J Food Microbiol 2019; 302:15-23. [DOI: 10.1016/j.ijfoodmicro.2018.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
|
49
|
Do different livestock dwellings on single grassland share similar faecal microbial communities? Appl Microbiol Biotechnol 2019; 103:5023-5037. [PMID: 31055653 DOI: 10.1007/s00253-019-09849-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Huge numbers of microorganisms reside in livestock faeces and constitute one of the most complex microbial ecosystems. Here, faecal microbial communities of three typical livestock in Xilingol steppe grassland, i.e. sheep, cattle, and horse, were investigated by Illumina MiSeq sequencing and quantitative real-time polymerase chain reaction (qPCR). Firmicutes and Bacteroidetes comprised the majority of bacterial communities in three livestock faeces. Sordariomycetes, Leotiomycetes, and Dothideomycetes were dominant in fungal communities, as well as Methanobacteria and Methanomicrobia were dominant in archaeal communities in three livestock faeces. Similar fungal community dominated in these samples, with 95.51% of the sequences falling into the overlap of three livestock faeces. In contrast, bacterial communities were quite variable among three different livestock faeces, but a similar community was observed in sheep and cattle faeces. Nearly all the archaea were identified as methanogens, whilst the most diverse and abundant methanogens were detected in cattle faeces. Potential pathogens including Bacteroides spp., Desulfovibrio spp., and Fusarium spp. were also detected in livestock faeces. Overall, this study provides the first detailed microbial comparison of typical livestock faeces dwelling on single grassland, and may be help guide management strategies for livestock grazing and grassland restoration.
Collapse
|
50
|
Walshe N, Duggan V, Cabrera-Rubio R, Crispie F, Cotter P, Feehan O, Mulcahy G. Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. Int J Parasitol 2019; 49:489-500. [PMID: 30986403 DOI: 10.1016/j.ijpara.2019.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
The interactions between parasitic helminths and gut microbiota are considered to be an important, although as yet incompletely understood, factor in the regulation of immunity, inflammation and a range of diseases. Infection with intestinal helminths is ubiquitous in grazing horses, with cyathostomins (about 50 species of which are recorded) predominating. Consequences of infection include both chronic effects, and an acute inflammatory syndrome, acute larval cyathostominosis, which sometimes follows removal of adult helminths by administration of anthelmintic drugs. The presence of cyathostomins as a resident helminth population of the equine gut (the "helminthome") provides an opportunity to investigate the effect helminth infection, and its perturbation, has on both the immune system and bacterial microbiome of the gut, as well as to determine the specific mechanisms of pathophysiology involved in equine acute larval cyathostominosis. We studied changes in the faecal microbiota of two groups of horses following treatment with anthelmintics (fenbendazole or moxidectin). We found decreases in both alpha diversity and beta diversity of the faecal microbiota at Day 7 post-treatment, which were reversed by Day 14. These changes were accompanied by increases in inflammatory biomarkers. The general pattern of faecal microbiota detected was similar to that seen in the relatively few equine gut microbiome studies reported to date. We conclude that interplay between resident cyathostomin populations and the bacterial microbiota of the equine large intestine is important in maintaining homeostasis and that disturbance of this ecology can lead to gut dysbiosis and play a role in the aetiology of inflammatory conditions in the horse, including acute larval cyathostominosis.
Collapse
Affiliation(s)
- Nicola Walshe
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Vivienne Duggan
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Orna Feehan
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland.
| |
Collapse
|