1
|
Raheja Y, Singh V, Sharma G, Tsang A, Chadha BS. A thermostable and inhibitor resistant β-glucosidase from Rasamsonia emersonii for efficient hydrolysis of lignocellulosics biomass. Bioprocess Biosyst Eng 2024; 47:567-582. [PMID: 38470501 DOI: 10.1007/s00449-024-02988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The present study reports a highly thermostable β-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular β-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified β-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50-70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of β-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of β-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal β-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant β-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted β-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.
Collapse
Affiliation(s)
- Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | | |
Collapse
|
2
|
Rheem HB, Choi H, Yang S, Han S, Rhee SY, Jeong H, Lee KB, Lee Y, Kim IS, Lee H, Choi IS. Fugetaxis of Cell-in-Catalytic-Coat Nanobiohybrids in Glucose Gradients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301431. [PMID: 37282761 DOI: 10.1002/smll.202301431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Manipulation and control of cell chemotaxis remain an underexplored territory despite vast potential in various fields, such as cytotherapeutics, sensors, and even cell robots. Herein is achieved the chemical control over chemotactic movement and direction of Jurkat T cells, as a representative model, by the construction of cell-in-catalytic-coat structures in single-cell nanoencapsulation. Armed with the catalytic power of glucose oxidase (GOx) in the artificial coat, the nanobiohybrid cytostructures, denoted as Jurkat[Lipo_GOx] , exhibit controllable, redirected chemotactic movement in response to d-glucose gradients, in the opposite direction to the positive-chemotaxis direction of naïve, uncoated Jurkat cells in the same gradients. The chemically endowed, reaction-based fugetaxis of Jurkat[Lipo_GOx] operates orthogonally and complementarily to the endogenous, binding/recognition-based chemotaxis that remains intact after the formation of a GOx coat. For instance, the chemotactic velocity of Jurkat[Lipo_GOx] can be adjusted by varying the combination of d-glucose and natural chemokines (CXCL12 and CCL19) in the gradient. This work offers an innovative chemical tool for bioaugmenting living cells at the single-cell level through the use of catalytic cell-in-coat structures.
Collapse
Affiliation(s)
- Hyeong Bin Rheem
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyunwoo Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Seoin Yang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Su Yeon Rhee
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyeongseop Jeong
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Kyung-Bok Lee
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Yeji Lee
- Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Chemical & Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - In-San Kim
- Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Chemical & Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hojae Lee
- Department of Chemistry, Hallym University, Chuncheon, 24252, South Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
3
|
Chen F, Xia X, Ye D, Li T, Huang X, Cai C, Zhu C, Lin C, Deng T, Liu F. A Green-Emitting Luminol Analogue as the Next-Generation Chemiluminescent Substrate in Biochemical Analysis. Anal Chem 2023; 95:5773-5779. [PMID: 36919412 DOI: 10.1021/acs.analchem.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Luminol and its derivatives are extensively used as chemiluminogenic substrates in bioimaging and biochemical analysis. Luminol reagents can typically emit blue chemiluminescence (CL), whose wavelength is normally outside the most sensitive detection range of human naked eyes and most CL analyzers with silicon-based charge-coupled device (CCD) detectors. Development of luminol analogues with longer wavelength emission is thus attractive. Herein, four new phthalhydrazide CL probes (GL-1/2/3/4) have been prepared through the derivatization of luminol. The most promising one, 5-(4-hydroxy-1,3-dioxoisoindolin-2-yl)-2,3-dihydrophthalazine-1,4-dione (GL-1), emits bright green CL upon oxidation and shows enhanced CL performance compared to its parent luminol. Bloodstain imaging, horseradish peroxidase (HRP)-based immunoassay, and the analysis of glucose/glucose oxidase reaction have been performed using the GL-1 reagent. These results indicate that GL-1 is a new chemiluminogenic luminol analogue with great potential in real analytical applications and will be an alternative to replace luminol in practical CL analysis.
Collapse
Affiliation(s)
- Fuqian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.,Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaotong Xia
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Dong Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ting Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xinxin Huang
- Chemical Engineering College, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Chun Cai
- Chemical Engineering College, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Tao Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| |
Collapse
|
4
|
Markova EA, Shaw RE, Reynolds CR. Prediction of strain engineerings that amplify recombinant protein secretion through the machine learning approach MaLPHAS. ENGINEERING BIOLOGY 2022; 6:82-90. [PMID: 36968340 PMCID: PMC9995161 DOI: 10.1049/enb2.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
This article presents a discussion of the process of precision fermentation (PF), describing the history of the space, the expected 70% growth over the next 5 years, various applications of precision fermented products, and the markets available to be disrupted by the technology. A range of prokaryotic and eukaryotic host organisms used for PF are described, with the advantages, disadvantages and applications of each. The process of setting up PF and strain engineering is described, as well as various ways that computational analysis and design techniques can be employed to assist PF engineering. The article then describes the design and implementation of a machine learning method, machine learning predictions having amplified secretion (MaLPHAS) to predict strain engineerings, which optimise the secretion of a recombinant protein. This approach showed an in silico cross-validated R 2 accuracy on the training data of up to 46.6% and in an in vitro test on a Komagataella phaffii strain, identified one gene engineering out of five predicted, which was shown to double the secretion of a heterologous protein and outperform three of the best-known edits from the literature for improving secretion in K. phaffii.
Collapse
|
5
|
Insights into the Structures, Inhibitors, and Improvement Strategies of Glucose Oxidase. Int J Mol Sci 2022; 23:ijms23179841. [PMID: 36077243 PMCID: PMC9456440 DOI: 10.3390/ijms23179841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Glucose oxidase, which uses molecular oxygen as an electron acceptor to specifically catalyze the conversion of β-d-glucose to gluconic acid and hydrogen peroxide (H2O2), has been considered an important enzyme in increasing environmental sustainability and food security. However, achieving the high yield, low price and high activity required for commercial viability remains challenging. In this review, we first present a brief introduction, looking at the sources, characteristics, catalytic process, and applications of glucose oxidase. Then, the predictive structures of glucose oxidase from two different sources are comparatively discussed. We summarize the inhibitors of glucose oxidase. Finally, we highlight how the production of glucose oxidase can be improved by optimizing the culture conditions and microbial metabolic engineering.
Collapse
|
6
|
Enhanced in vitro anticancer activity of yeast expressed recombinant glucose oxidase versus commercial enzyme. Appl Microbiol Biotechnol 2021; 105:2377-2384. [PMID: 33616698 DOI: 10.1007/s00253-021-11179-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
Cancer treatments continue to have many disadvantages. Reactive oxygen species, such as H2O2, in high concentrations, can cause cytotoxicity to cells, being even greater in cancer cells. One of the H2O2-producing enzymes is glucose oxidase; its application in cancer treatment should be explored. In this work, the extracellular expression of the mutated recombinant enzyme glucose oxidase was carried out in the eukaryotic expression system Pichia pastoris SMD1168, through the modification and optimization of the gox gene of Aspergillus niger to improve its expression in yeast and its purification. Also, the secretion signal of the alpha-mating factor from Saccharomyces cerevisiae was added to the gene for extracellular expression, and it was inserted into the expression vector pPIC3.5k. The extracellular expression of the enzyme facilitated purification by anion exchange chromatography; the purification was corroborated by SDS-PAGE, with a molecular weight of its subunit between 63 kDa and 100 kDa. The mutated recombinant enzyme glucose oxidase showed greater anticancer activity compared to the commercial glucose oxidase and could have potential for cancer treatment. KEY POINTS: • Pichia pastoris is an excellent eukaryotic expression system for proteins that need post-translational modifications. • Extracellular expression facilitates protein purification. • Glucose oxidase has potential application in cancer treatment.
Collapse
|
7
|
Duman-Özdamar ZE, Binay B. Production of Industrial Enzymes via Pichia pastoris as a Cell Factory in Bioreactor: Current Status and Future Aspects. Protein J 2021; 40:367-376. [DOI: 10.1007/s10930-021-09968-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
|
8
|
Biomimetic selenocystine based dynamic combinatorial chemistry for thiol-disulfide exchange. Nat Commun 2021; 12:163. [PMID: 33420034 PMCID: PMC7794297 DOI: 10.1038/s41467-020-20415-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Dynamic combinatorial chemistry applied to biological environments requires the exchange chemistry of choice to take place under physiological conditions. Thiol-disulfide exchange, one of the most popular dynamic combinatorial chemistries, usually needs long equilibration times to reach the required equilibrium composition. Here we report selenocystine as a catalyst mimicking Nature's strategy to accelerate thiol-disulfide exchange at physiological pH and low temperatures. Selenocystine is able to accelerate slow thiol-disulfide systems and to promote the correct folding of an scrambled RNase A enzyme, thus broadening the practical range of pH conditions for oxidative folding. Additionally, dynamic combinatorial chemistry target-driven self-assembly processes are tested using spermine, spermidine and NADPH (casting) and glucose oxidase (molding). A non-competitive inhibitor is identified in the glucose oxidase directed dynamic combinatorial library.
Collapse
|
9
|
Wang Y, Wang J, Leng F, Ma J, Bagadi A. Expression of Aspergillus niger glucose oxidase in Pichia pastoris and its antimicrobial activity against Agrobacterium and Escherichia coli. PeerJ 2020; 8:e9010. [PMID: 32832258 PMCID: PMC7413082 DOI: 10.7717/peerj.9010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
The gene encoding glucose oxidase from Aspergillus niger ZM-8 was cloned and transferred to Pichia pastoris GS115, a transgenic strain P. pastoris GS115-His-GOD constructed. The growth curve of P. pastoris GS115-His-GOD was consistent with that of Pichia pastoris GS115-pPIC9K under non-induced culture conditions. Under methanol induction conditions, the growth of the GOD-transgenic strain was significantly lowered than P. pastoris GS115-pPIC9K with the induced-culture time increase, and the optical densities of GOD-transgenic strain reached one-third of that of the P. pastoris GS115-pPIC9K at 51 h. The activity of glucose oxidase in the cell-free supernatant, the supernatant of cell lysate, and the precipitation of cell lysate was 14.3 U/mL, 18.2 U/mL and 0.48 U/mL, respectively. The specific activity of glucose oxidase was 8.3 U/mg, 6.52 U/mg and 0.73 U/mg, respectively. The concentration of hydrogen peroxide formed by glucose oxidase from supernatant of the fermentation medium, the supernatant of the cell lysate, and the precipitation of cell lysate catalyzing 0.2 M glucose was 14.3 μg/mL, 18.2 μg/mL, 0.48 μg/mL, respectively. The combination of different concentrations of glucose oxidase and glucose could significantly inhibit the growth of Agrobacterium and Escherichia coli in logarithmic phase. The filter article containing supernatant of the fermentation medium, supernatant of the cell lysate, and precipitation of cell lysate had no inhibitory effect on Agrobacterium and E. coli. The minimum inhibitory concentration of hydrogen peroxide on the plate culture of Agrobacterium and E. coli was 5.6 × 103 μg/mL and 6.0 × 103 μg/mL, respectively.
Collapse
Affiliation(s)
- Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China.,Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Jiangqin Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China.,Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China.,Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China.,Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Alnoor Bagadi
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Characterization, stability improvement, and bread baking applications of a novel cold-adapted glucose oxidase from Cladosporium neopsychrotolerans SL16. Food Chem 2020; 310:125970. [DOI: 10.1016/j.foodchem.2019.125970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 11/20/2022]
|
11
|
Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 2019; 128:218-240. [DOI: 10.1016/j.bioelechem.2019.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/18/2023]
|
12
|
Improving the thermostability and catalytic efficiency of glucose oxidase from Aspergillus niger by molecular evolution. Food Chem 2019; 281:163-170. [DOI: 10.1016/j.foodchem.2018.12.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 01/29/2023]
|
13
|
Belyad F, Karkhanei AA, Raheb J. Expression, characterization and one step purification of heterologous glucose oxidase gene from Aspergillus niger ATCC 9029 in Pichia pastoris. EUPA OPEN PROTEOMICS 2018; 19:1-5. [PMID: 30197862 PMCID: PMC6126455 DOI: 10.1016/j.euprot.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/03/2018] [Indexed: 11/20/2022]
Abstract
Glucose Oxidase (GOD), is a common flavoprotein from Aspergillus niger ATCC 9029 with a broad application in biotechnology, food and medical industries. In this study, GOD gene was cloned into the expression vector, pPIC9 and screened by the alcohol oxidase promoter. The enzyme production increased at 28 °C. GOD activity induced by 1.0% methanol and the highest level of GOD production was the result of shaking rate at 225 rpm. The highest enzyme activity obtained at a pH value ranged from 5 to 7 at 50 °C. The enzyme was stable at a broad pH range and temperature.
Collapse
Affiliation(s)
- Fakhry Belyad
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Asghar Karkhanei
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Jamshid Raheb
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Corresponding author at: Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (Nigeb), Shahrak-e Pajoohesh, km 15, Tehran – Karaj Highway, P.O. Box 14965/161, Tehran, Iran.
| |
Collapse
|
14
|
Darvishi F, Zarei A, Madzak C. In silico and in vivo analysis of signal peptides effect on recombinant glucose oxidase production in nonconventional yeast Yarrowia lipolytica. World J Microbiol Biotechnol 2018; 34:128. [PMID: 30083963 DOI: 10.1007/s11274-018-2512-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Signal peptide (SP) is an important factor and biobrick in the production and secretion of recombinant proteins. The aim of this study was in silico and in vivo analysis of SPs effect on the production of recombinant glucose oxidase (GOX) in Yarrowia lipolytica. Several in silico softwares, namely SignalP4, Signal-CF, Phobius, WolfPsort 0.2, SOLpro and ProtParam, were used to analyse the potential of 15 endogenous and exogenous SPs for the secretion of recombinant GOX in Y. lipolytica. According to in silico results, the SP of GOX was predicted as suitable in terms of high secretory potential and of protein solubility and stability which is chosen for in vivo analysis. The recombinant Y. lipolytica strain produced 280 U/L of extracellular GOX after 7 days in YPD medium. The results show that the SP of GOX can be applied to efficient production of extracellular heterologous proteins and metabolic engineering in Y. lipolytica.
Collapse
Affiliation(s)
- Farshad Darvishi
- Microbial Biotechnology and Bioprocess Engineering (MBBE) Group, Department of Microbiology, Faculty of Science, University of Maragheh, Maragheh, 55181-83111, Iran.
| | - Amin Zarei
- Microbial Biotechnology and Bioprocess Engineering (MBBE) Group, Department of Microbiology, Faculty of Science, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Catherine Madzak
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
15
|
Maitan-Alfenas GP, Casarotti SN. Enzymes and Dairy Products. MICROBIAL CULTURES AND ENZYMES IN DAIRY TECHNOLOGY 2018. [DOI: 10.4018/978-1-5225-5363-2.ch001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of enzymes in food production, including dairy products, is below expected due the high costs associated with their production and purification. Microbial enzymes have great potential for industrial applications since they can be produced via large-scale fermentation and they are easily expressed by cloning in well-known cultivated microorganisms. The combination of different procedures such as over-expression techniques and the use of low costs induction sources has resulted in the production of enzymes to be used in high added-value dairy products. The addition of glucose oxidase to probiotic yogurts has been indicated as an alternative to the maintenance of probiotic functionality. Bile salt hydrolase contributes to prevention of hypercholesterolemia which is interesting to produce new functional dairy products. This chapter discusses enzyme sources and their relevance in dairy products, the production of enzymes using cloning and super-expression techniques, as well as enzymes related to functional dairy products.
Collapse
|
16
|
Chen Q, Yu S, Myung N, Chen W. DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and H 2 O 2. J Biotechnol 2017; 263:30-35. [DOI: 10.1016/j.jbiotec.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 01/17/2023]
|
17
|
Khadivi Derakshan F, Darvishi F, Dezfulian M, Madzak C. Expression and Characterization of Glucose Oxidase from Aspergillus niger in Yarrowia lipolytica. Mol Biotechnol 2017. [DOI: 10.1007/s12033-017-0017-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Dubey MK, Zehra A, Aamir M, Meena M, Ahirwal L, Singh S, Shukla S, Upadhyay RS, Bueno-Mari R, Bajpai VK. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Front Microbiol 2017; 8:1032. [PMID: 28659876 PMCID: PMC5468390 DOI: 10.3389/fmicb.2017.01032] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 01/15/2023] Open
Abstract
Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.
Collapse
Affiliation(s)
- Manish K. Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Laxmi Ahirwal
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Siddhartha Singh
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk UniversitySeoul, South Korea
| | - Ram S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ruben Bueno-Mari
- Research and Development (R+D) Department, Laboratorios LokímicaValencia, Spain
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
19
|
Khan I, Qayyum S, Ahmed S, Niaz Z, Fatima N, Chi ZM. Molecular cloning and sequence analysis of a PVGOX gene encoding glucose oxidase in Penicillium viticola F1 strain and it's expression quantitation. Gene 2016; 592:291-302. [PMID: 27425865 DOI: 10.1016/j.gene.2016.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/25/2016] [Accepted: 07/12/2016] [Indexed: 01/03/2023]
Abstract
The PVGOX gene (accession number: KT452630) was isolated from genomic DNA of the marine fungi Penicillium viticola F1 by Genome Walking and their expression analysis was done by Fluorescent RT-PCR. An open reading frame of 1806bp encoding a 601 amino acid protein (isoelectric point: 5.01) with a calculated molecular weight of 65,535.4 was characterized. The deduced protein showed 75%, 71%, 69% and 64% identity to those deduced from the glucose oxidase (GOX) genes from different fungal strains including; Talaromyces variabilis, Beauveria bassiana, Aspergillus terreus, and Aspergillus niger, respectively. The promoter of the gene (intronless) had two TATA boxes around the base pair number -88 and -94 and as well as a CAAT box at -100. However, the terminator of the PVGOX gene does not contain any polyadenylation site (AATAAA). The protein deduced from the PVGOX gene had a signal peptide containing 17 amino acids, three cysteine residues and six potential N-linked glycosylation sites, among them, -N-K-T-Y- at 41 amino acid, -N-R-S-L- at 113 amino acid, -N-G-T-I- at 192 amino acid, -N-T-T-A at 215 amino acid, -N-F-T-E at 373 amino acid and -N-V-T-A- at 408 amino acid were the most possible N-glycosylation sites. Furthermore, the relative transcription level of the PVGOX gene was also stimulated in the presence of 4% (w/v) of calcium carbonate and 0.5 % (v/v) of CSL in the production medium compared with that of the PVGOX gene when the fungal strain F1 was grown in the absence of calcium carbonate and CSL in the production medium, suggesting that under the optimal conditions, the expression of the PVGOX gene responsible for gluconic acid biosynthesis was enhanced, leading to increased gluconic acid production. Therefore, the highly glycosylated oxidase enzyme produced by P. viticola F1 strain might be a good producer in the fermentation process for the industrial level production of gluconic acid.
Collapse
Affiliation(s)
- Ibrar Khan
- UNESCO Chinese Center of Marine Biotechnology, Ocean University of China, Qingdao 266003, China; Department of Microbiology, Hazara University, 21300 Mansehra, Pakistan
| | - Sadia Qayyum
- Department of Microbiology, Hazara University, 21300 Mansehra, Pakistan
| | - Shehzad Ahmed
- Department of Microbiology, Hazara University, 21300 Mansehra, Pakistan
| | - Zeeshan Niaz
- Department of Microbiology, Hazara University, 21300 Mansehra, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS Institute of Information Technology (CIIT), Islamabad 44000, Pakistan
| | - Zhen-Ming Chi
- UNESCO Chinese Center of Marine Biotechnology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Qiu Z, Guo Y, Bao X, Hao J, Sun G, Peng B, Bi W. Expression of Aspergillus niger glucose oxidase in yeast Pichia pastoris SMD1168. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1193442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Zhanjun Qiu
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Yuanfang Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, PR China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan, PR China
| | - Jianrong Hao
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, PR China
| | - Gaoying Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, PR China
| | - Bingyin Peng
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan, PR China
| | - Wenxiang Bi
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
21
|
Zaslona H, Trusek-Holownia A, Radosinski L, Hennig J. Optimization and kinetic characterization of recombinant 1,3-β-glucanase production in Escherichia coli
K-12 strain BL21/pETSD10 - a bioreactor scale study. Lett Appl Microbiol 2015; 61:36-43. [DOI: 10.1111/lam.12419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Affiliation(s)
- H. Zaslona
- Department of Chemistry; Wroclaw University of Technology; Wroclaw Poland
| | - A. Trusek-Holownia
- Department of Chemistry; Wroclaw University of Technology; Wroclaw Poland
| | - L. Radosinski
- Department of Chemistry; Wroclaw University of Technology; Wroclaw Poland
| | | |
Collapse
|
22
|
Spohner SC, Müller H, Quitmann H, Czermak P. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol 2015; 202:118-34. [DOI: 10.1016/j.jbiotec.2015.01.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/28/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
|