1
|
Muller G, de Godoy VR, Dário MG, Duval EH, Alves-Jr SL, Bücker A, Rosa CA, Dunn B, Sherlock G, Stambuk BU. Improved Sugarcane-Based Fermentation Processes by an Industrial Fuel-Ethanol Yeast Strain. J Fungi (Basel) 2023; 9:803. [PMID: 37623574 PMCID: PMC10456111 DOI: 10.3390/jof9080803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
In Brazil, sucrose-rich broths (cane juice and/or molasses) are used to produce billions of liters of both fuel ethanol and cachaça per year using selected Saccharomyces cerevisiae industrial strains. Considering the important role of feedstock (sugar) prices in the overall process economics, to improve sucrose fermentation the genetic characteristics of a group of eight fuel-ethanol and five cachaça industrial yeasts that tend to dominate the fermentors during the production season were determined by array comparative genomic hybridization. The widespread presence of genes encoding invertase at multiple telomeres has been shown to be a common feature of both baker's and distillers' yeast strains, and is postulated to be an adaptation to sucrose-rich broths. Our results show that only two strains (one fuel-ethanol and one cachaça yeast) have amplification of genes encoding invertase, with high specific activity. The other industrial yeast strains had a single locus (SUC2) in their genome, with different patterns of invertase activity. These results indicate that invertase activity probably does not limit sucrose fermentation during fuel-ethanol and cachaça production by these industrial strains. Using this knowledge, we changed the mode of sucrose metabolism of an industrial strain by avoiding extracellular invertase activity, overexpressing the intracellular invertase, and increasing its transport through the AGT1 permease. This approach allowed the direct consumption of the disaccharide by the cells, without releasing glucose or fructose into the medium, and a 11% higher ethanol production from sucrose by the modified industrial yeast, when compared to its parental strain.
Collapse
Affiliation(s)
- Gabriela Muller
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Victor R. de Godoy
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Marcelo G. Dário
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Eduarda H. Duval
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Sergio L. Alves-Jr
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Augusto Bücker
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Carlos A. Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Barbara Dunn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Boris U. Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| |
Collapse
|
2
|
Gyurchev NY, Coral-Medina Á, Weening SM, Almayouf S, Kuijpers NGA, Nevoigt E, Louis EJ. Beyond Saccharomyces pastorianus for modern lager brews: Exploring non- cerevisiae Saccharomyces hybrids with heterotic maltotriose consumption and novel aroma profile. Front Microbiol 2022; 13:1025132. [PMID: 36439845 PMCID: PMC9687090 DOI: 10.3389/fmicb.2022.1025132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 09/11/2024] Open
Abstract
Non-domesticated, wild Saccharomyces yeasts have promising characteristics for beer diversification, particularly when used in the generation of de novo interspecific hybrids. A major motivation for the current work was the question whether attractive novel Saccharomyces interspecific hybrids can be created for the production of exotic lager beers without using the genomic resources of the ale yeast Saccharomyces cerevisiae. Importantly, maltotriose utilization is an essential characteristic typically associated with domesticated ale/lager brewing strains. A high-throughput screening on nearly 200 strains representing all eight species of the Saccharomyces genus was conducted. Three Saccharomyces mikatae strains were able to aerobically grow on maltotriose as the sole carbon source, a trait until recently unidentified for this species. Our screening also confirmed the recently reported maltotriose utilization of the S. jurei strain D5095T. Remarkably, de novo hybrids between a maltotriose-utilizing S. mikatae or S. jurei strain and the maltotriose-negative Saccharomyces eubayanus strain CBS 12357T displayed heterosis and outperformed both parents with regard to aerobically utilizing maltotriose as the sole source of carbon. Indeed, the maximum specific growth rates on this sugar were comparable to the well-known industrial strain, Saccharomyces pastorianus CBS 1513. In lager brewing settings (oxygen-limited), the new hybrids were able to ferment maltose, while maltotriose was not metabolized. Favorable fruity esters were produced, demonstrating that the novel hybrids have the potential to add to the diversity of lager brewing.
Collapse
Affiliation(s)
- Nikola Y. Gyurchev
- Centre of Genetic Architecture of Complex Traits, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- School of Science, Jacobs University Bremen, Bremen, Germany
| | - Ángela Coral-Medina
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
- School of Microbiology, University College Cork, Cork, Ireland
| | - Susan M. Weening
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Salwa Almayouf
- Centre of Genetic Architecture of Complex Traits, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Elke Nevoigt
- School of Science, Jacobs University Bremen, Bremen, Germany
| | - Edward J. Louis
- Centre of Genetic Architecture of Complex Traits, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
3
|
Knychala MM, dos Santos AA, Kretzer LG, Gelsleichter F, Leandro MJ, Fonseca C, Stambuk BU. Strategies for Efficient Expression of Heterologous Monosaccharide Transporters in Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8010084. [PMID: 35050024 PMCID: PMC8778384 DOI: 10.3390/jof8010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
In previous work, we developed a Saccharomyces cerevisiae strain (DLG-K1) lacking the main monosaccharide transporters (hxt-null) and displaying high xylose reductase, xylitol dehydrogenase and xylulokinase activities. This strain proved to be a useful chassis strain to study new glucose/xylose transporters, as SsXUT1 from Scheffersomyces stipitis. Proteins with high amino acid sequence similarity (78–80%) to SsXUT1 were identified from Spathaspora passalidarum and Spathaspora arborariae genomes. The characterization of these putative transporter genes (SpXUT1 and SaXUT1, respectively) was performed in the same chassis strain. Surprisingly, the cloned genes could not restore the ability to grow in several monosaccharides tested (including glucose and xylose), but after being grown in maltose, the uptake of 14C-glucose and 14C-xylose was detected. While SsXUT1 lacks lysine residues with high ubiquitinylation potential in its N-terminal domain and displays only one in its C-terminal domain, both SpXUT1 and SaXUT1 transporters have several such residues in their C-terminal domains. A truncated version of SpXUT1 gene, deprived of the respective 3′-end, was cloned in DLG-K1 and allowed growth and fermentation in glucose or xylose. In another approach, two arrestins known to be involved in the ubiquitinylation and endocytosis of sugar transporters (ROD1 and ROG3) were knocked out, but only the rog3 mutant allowed a significant improvement of growth and fermentation in glucose when either of the XUT permeases were expressed. Therefore, for the efficient heterologous expression of monosaccharide (e.g., glucose/xylose) transporters in S. cerevisiae, we propose either the removal of lysines involved in ubiquitinylation and endocytosis or the use of chassis strains hampered in the specific mechanism of membrane protein turnover.
Collapse
Affiliation(s)
- Marilia M. Knychala
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal
| | - Angela A. dos Santos
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Leonardo G. Kretzer
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Fernanda Gelsleichter
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Maria José Leandro
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal
| | - César Fonseca
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- Discovery, R&D, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Boris U. Stambuk
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
- Correspondence: ; Tel.: +55-48-3721-4449
| |
Collapse
|
4
|
Eliodório KP, Cunha GCDGE, Müller C, Lucaroni AC, Giudici R, Walker GM, Alves SL, Basso TO. Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. ADVANCES IN APPLIED MICROBIOLOGY 2019; 109:61-119. [PMID: 31677647 DOI: 10.1016/bs.aambs.2019.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts have a long-standing relationship with humankind that has widened in recent years to encompass production of diverse foods, beverages, fuels and medicines. Here, key advances in the field of yeast fermentation applied to alcohol production, which represents the predominant product of industrial biotechnology, will be presented. More specifically, we have selected industries focused in producing bioethanol, beer and wine. In these bioprocesses, yeasts from the genus Saccharomyces are still the main players, with Saccharomyces cerevisiae recognized as the preeminent industrial ethanologen. However, the growing demand for new products has opened the door to diverse yeasts, including non-Saccharomyces strains. Furthermore, the development of synthetic media that successfully simulate industrial fermentation medium will be discussed along with a general overview of yeast fermentation modeling.
Collapse
Affiliation(s)
| | | | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Ana Carolina Lucaroni
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Reinaldo Giudici
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | | | - Sérgio Luiz Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Thiago Olitta Basso
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Krogerus K, Magalhães F, Kuivanen J, Gibson B. A deletion in the STA1 promoter determines maltotriose and starch utilization in STA1+ Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 2019; 103:7597-7615. [PMID: 31346683 PMCID: PMC6719335 DOI: 10.1007/s00253-019-10021-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022]
Abstract
Diastatic strains of Saccharomyces cerevisiae are common contaminants in beer fermentations and are capable of producing an extracellular STA1-encoded glucoamylase. Recent studies have revealed variable diastatic ability in strains tested positive for STA1, and here, we elucidate genetic determinants behind this variation. We show that poorly diastatic strains have a 1162-bp deletion in the promoter of STA1. With CRISPR/Cas9-aided reverse engineering, we show that this deletion greatly decreases the ability to grow in beer and consume dextrin, and the expression of STA1. New PCR primers were designed for differentiation of highly and poorly diastatic strains based on the presence of the deletion in the STA1 promoter. In addition, using publically available whole genome sequence data, we show that the STA1 gene is prevalent among the 'Beer 2'/'Mosaic Beer' brewing strains. These strains utilize maltotriose efficiently, but the mechanisms for this have been unknown. By deleting STA1 from a number of highly diastatic strains, we show here that extracellular hydrolysis of maltotriose through STA1 appears to be the dominant mechanism enabling maltotriose use during wort fermentation in STA1+ strains. The formation and retention of STA1 seems to be an alternative evolutionary strategy for efficient utilization of sugars present in brewer's wort. The results of this study allow for the improved reliability of molecular detection methods for diastatic contaminants in beer and can be exploited for strain development where maltotriose use is desired.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, FI-00076, Espoo, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Joosu Kuivanen
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
- Tampere University, Tampere, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
6
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|