1
|
Gramuglia V, Makowka S, Tanberg W, Zhou A, Sharma A, Al-Jewair T. Effect of Quaternary Ammonium-Based Antimicrobial Coating on the Mechanical Properties and Bacterial Adhesion to Gummetal Archwire. Int J Dent 2025; 2025:8157347. [PMID: 40223861 PMCID: PMC11986930 DOI: 10.1155/ijod/8157347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
Objectives: This in vitro study investigated the mechanical and bacterial adhesion properties of Gummetal (GM) orthodontic archwire after application of quaternary ammonium compounds (QACs)-based antimicrobial coating. Methods: Sixty orthodontic archwires were divided into three groups: coated GM (C-GM) group, consisting of a 0.016 × 0.022-inch GM core wire coated with QACs, and two control groups-one with a 0.016 × 0.022-inch uncoated GM wire and the other with a 0.016 × 0.022-inch stainless steel (SS) wire. The elastic modulus, yield strength, and static friction forces were compared between the C-GM and control groups. Measurements were conducted using a Dillon Quantrol TC2i universal testing machine. Surface roughness was evaluated using confocal profilometry, and bacterial adhesion was quantified through crystal violet dye staining. Results: The mean elastic modulus for the C-GM, GM, and SS groups was 6.68 ± 0.1, 6.71 ± 0.2, and 19.7 ± 0.4 GPa, respectively, with significant differences observed between the C-GM vs. SS and GM vs. SS groups (p < 0.001). The mean yield strength for the C-GM, GM, and SS groups was 7.5 ± 0.1, 7.6 ± 0.1, and 19.5 ± 0.2 N, with yield strength being significantly lower in the C-GM group compared to the GM (p=0.036) and SS (p < 0.001) groups. For friction forces measured within metal brackets, the C-GM group exhibited a mean friction force of 1.0 ± 0.1 N, which was significantly lower than both the GM (1.1 ± 0.1 N, p=0.017) and SS (1.2 ± 0.1 N, p < 0.001) groups. Confocal profilometry analysis indicated that the SS group had the lowest surface roughness, followed by GM and then C-GM. The mean bacterial count for the C-GM, GM, and SS groups was 0.605, 1.066, and 0.882 AU cm⁻1, respectively, with significant differences observed between each wire pair (adj. p < 0.001). Conclusions: The application of antimicrobial QACs to GM wires effectively reduced friction while preserving their strength and rigidity. Furthermore, the QAC coating demonstrated a significant reduction in bacterial adherence.
Collapse
Affiliation(s)
- Vincenzo Gramuglia
- School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Steven Makowka
- Materials Testing Facility, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - William Tanberg
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York, USA
| | - Alan Zhou
- Private Practice, Brooklyn, New York, USA
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Thikriat Al-Jewair
- Department of Orthodontics, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Mohan MK, Thorat K, Puthiyapurayil TP, Sunnapu O, Chandrashekharappa S, Ravula V, Khader R, Sankaranarayanan A, Muhammad H, Vemula PK. Oxime-functionalized anti-insecticide fabric reduces insecticide exposure through dermal and nasal routes, and prevents insecticide-induced neuromuscular-dysfunction and mortality. Nat Commun 2024; 15:4844. [PMID: 38844466 PMCID: PMC11156901 DOI: 10.1038/s41467-024-49167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Farmers from South Asian countries spray insecticides without protective gear, which leads to insecticide exposure through dermal and nasal routes. Acetylcholinesterase plays a crucial role in controlling neuromuscular function. Organophosphate and carbamate insecticides inhibit acetylcholinesterase, which leads to severe neuronal/cognitive dysfunction, breathing disorders, loss of endurance, and death. To address this issue, an Oxime-fabric is developed by covalently attaching silyl-pralidoxime to the cellulose of the fabric. The Oxime-fabric, when stitched as a bodysuit and facemask, efficiently deactivates insecticides (organophosphates and carbamates) upon contact, preventing exposure. The Oxime-fabric prevents insecticide-induced neuronal damage, neuro-muscular dysfunction, and loss of endurance. Furthermore, we observe a 100% survival rate in rats when repeatedly exposed to organophosphate-insecticide through the Oxime-fabric, while no survival is seen when organophosphate-insecticide applied directly or through normal fabric. The Oxime-fabric is washable and reusable for at least 50 cycles, providing an affordable solution to prevent insecticide-induced toxicity and lethality among farmers.
Collapse
Affiliation(s)
- Mahendra K Mohan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Ketan Thorat
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Theja Parassini Puthiyapurayil
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | | | - Sandeep Chandrashekharappa
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Venkatesh Ravula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Rajamohammed Khader
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Aravind Sankaranarayanan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
- Tata Institute for Genetics and Society (TIGS), inStem, GKVK Post, Bellary Road, Bangalore, 560065, India
| | - Hadi Muhammad
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India.
| |
Collapse
|
3
|
Cadnum JL, Memic S, Jencson AL, Donskey CJ. Why is there a discrepancy between laboratory test results and real-world efficacy of continuously active quaternary ammonium disinfectants? Infect Control Hosp Epidemiol 2024; 45:796-798. [PMID: 38343341 DOI: 10.1017/ice.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Affiliation(s)
- Jennifer L Cadnum
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Samir Memic
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Annette L Jencson
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Curtis J Donskey
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
4
|
Omardien S, Pingulkar S, Thayagan M, Buniotto L, de Oliveira Negreiros M. The antibacterial performance of a residual disinfectant against Staphylococcus aureus on environmental surfaces. Front Microbiol 2024; 15:1338238. [PMID: 38351915 PMCID: PMC10861741 DOI: 10.3389/fmicb.2024.1338238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Environmental surfaces play a key role in transmitting pathogens that can survive on surfaces for long durations. The interest in long-lasting or residual disinfectants are, therefore, growing as it might protect surfaces for longer than traditional disinfectants. In this study, a quat-based product claiming residual disinfecting performance against bacteria, among other microorganisms, was tested using an approved standardized method, in a controlled laboratory study and on environmental surfaces in an office building. The results obtained showed that the residual disinfectant can reduce the bacterial counts significantly compared to a traditional quat-based disinfectant when used on horizontal surfaces, twenty-four hours after application. During the standardized test method, the residual disinfectant provided a 6-log reduction, whereas the traditional disinfectant provided only a 1.9-log reduction. Similarly, the residual disinfectant provided a 2.5 log reduction in the laboratory study, whereas the traditional disinfectant had too-numerous-to-count colonies. When tested on environmental surfaces, an ANOVA statistical analysis indicated that surfaces treated with the residual disinfectant had significantly less bacteria present twenty-four hours after application. The antibacterial performance of the residual disinfectant showed to be limited by the orientation of the treated surface, and the thickness of the product film dried on the surface. This study showed the potential of residual disinfectants that warrants further investigation and could potentially aid the further development of the technology.
Collapse
|
5
|
Du C, Woolcott S, Wahba AS, Hamry SR, Odette WL, Thibodeaux CJ, Marchand P, Mauzeroll J. Evaluation of Quatsome Morphology, Composition, and Stability for Pseudomonas aeruginosa Biofilm Eradication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1623-1632. [PMID: 38194503 DOI: 10.1021/acs.langmuir.3c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Biofilm infections are a major cause of food poisoning and hospital-acquired infections. Quaternary ammonium compounds are a group of effective disinfectants widely used in industry and households, yet their efficacy is lessened when used as antibiofilm agents compared to that against planktonic bacteria. It is therefore necessary to identify alternative formulations of quaternary ammonium compounds to achieve an effective biofilm dispersal. Quaternary ammonium amphiphiles can form vesicular structures termed "quatsomes" in the presence of cholesterol. In addition to their intrinsic antimicrobial properties, quatsomes can also be used for the delivery of other types of antibiotics or biomarkers. In this study, quatsomes were prepared from binary mixtures of cholesterol and mono- or dialkyl-quaternary ammonium compounds; then, the integrity and stability of their vesicular structure were assessed and related to monomer chain number and chain length. The quatsomes were used to treat Pseudomonas aeruginosa biofilms, showing effective antibiofilm abilities comparable to those of their monomers. A systematic liquid chromatography-mass spectrometry method for quantifying quatsome vesicle components was also developed and used to establish the significance of cholesterol in the quatsome self-assembly processes.
Collapse
Affiliation(s)
- Changyue Du
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Sascha Woolcott
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Sally R Hamry
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - William L Odette
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Patrick Marchand
- Sani-Marc Group, 42 Rue De L'Artisan, Victoriaville, Quebec G6P 7E3, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
6
|
Donskey CJ. Continuous surface and air decontamination technologies: Current concepts and controversies. Am J Infect Control 2023; 51:A144-A150. [PMID: 37890945 DOI: 10.1016/j.ajic.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 10/29/2023]
Abstract
Effective and safe continuous surface and air decontamination technologies could be a useful adjunct to routine cleaning and disinfection in health care settings. Continuously active quaternary ammonium disinfectants that provide residual antimicrobial activity on undisturbed surfaces for up to 24.ßhours have been shown to reduce the recovery of clinically important pathogens in some but not all real-world studies. Although quaternary ammonium-based supplemental coatings have been reported to provide prolonged residual efficacy in patient care settings, there is concern that some of these products may be removed by routine cleaning and disinfection. To address this concern, the Environmental Protection Agency has recently issued updated guidance requiring demonstration of efficacy after multiple abrasion and chemical exposures for registration of supplemental residual antimicrobial coatings. Far-ultraviolet-C and direct irradiation below exposure limits are promising technologies for continuous air and surface decontamination in occupied spaces, but additional studies are needed to evaluate their long-term safety and efficacy. Given the increasing use of electronic air cleaning technologies in community and health care settings, there is a need for studies to assess real-world efficacy and safety.
Collapse
Affiliation(s)
- Curtis J Donskey
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH.
| |
Collapse
|
7
|
Levana O, Hoon Jeong J, Sik Hur S, Seo W, Lee M, Mu Noh K, Hong S, Hong Park J, Hun Lee J, Choi C, Hwang Y. Development of nanoclay-based nanocomposite surfaces with antibacterial properties for potential biomedical applications. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Pascoe M, Mandal S, Williams O, Maillard JY. Impact of material properties in determining quaternary ammonium compound adsorption and wipe product efficacy against biofilms. J Hosp Infect 2022; 126:37-43. [DOI: 10.1016/j.jhin.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
|
9
|
Burel C, Dreyfus R, Purevdorj-Gage L. Physical mechanisms driving the reversible aggregation of Staphylococcus aureus and response to antimicrobials. Sci Rep 2021; 11:15048. [PMID: 34294832 PMCID: PMC8298462 DOI: 10.1038/s41598-021-94457-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Formation of non-sessile, auto-aggregated cells of Staphylococcus aureus contributes to surface colonization and biofilm formation, hence play a major role in the early establishment of infection and in tolerance to antimicrobials. Understanding the mechanism of aggregation and the impact of aggregation on the activity of antimicrobials is crucial in achieving a better control of this important pathogen. Previously linked to biological phenomena, physical interactions leading to S. aureus cellular aggregation and its protective features against antimicrobials remain unraveled. Herein, in-vitro experiments coupled with XDLVO simulations reveal that suspensions of S. aureus cells exhibit rapid, reversible aggregation (> 70%) in part controlled by the interplay between cellular hydrophobicity, surface potential and extracellular proteins. Changing pH and salt concentration in the extracellular media modulated the cellular surface potential but not the hydrophobicity which remained consistent despite these variations. A decrease in net cellular negative surface potential achieved by decreasing pH or increasing salt concentrations, caused attractive forces such as the hydrophobic and cell-protein interactions to prevail, favoring immediate aggregation. The aggregation significantly increased the tolerance of S. aureus cells to quaternary ammonium compounds (QAC). The well-dispersed cell population was completely inactivated within 30 s whereas its aggregated counterpart required more than 10 min.
Collapse
Affiliation(s)
- Céline Burel
- Complex Assemblies of Soft Matter Laboratory (COMPASS), IRL 3254, CNRS-Solvay-University of Pennsylvania, CRTB, 350 George Patterson Boulevard, Bristol, PA, 19007, USA.
| | - Rémi Dreyfus
- Complex Assemblies of Soft Matter Laboratory (COMPASS), IRL 3254, CNRS-Solvay-University of Pennsylvania, CRTB, 350 George Patterson Boulevard, Bristol, PA, 19007, USA
| | | |
Collapse
|