1
|
Deng WQ, Ye ZH, Tang Z, Zhang XL, Lu JJ. Beyond cancer: The potential application of CD47-based therapy in non-cancer diseases. Acta Pharm Sin B 2025; 15:757-791. [PMID: 40177549 PMCID: PMC11959971 DOI: 10.1016/j.apsb.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 04/05/2025] Open
Abstract
CD47 is an immune checkpoint widely regarded as a 'don't eat me' signal. CD47-based anti-cancer therapy has received considerable attention, with a significant number of clinical trials conducted. While anti-cancer therapies based on CD47 remain a focal point of interest among researchers, it is noteworthy that an increasing number of studies have found that CD47-based therapy ameliorated the pathological status of non-cancer diseases. This review aims to provide an overview of the recent progress in comprehending the role of CD47-based therapy in non-cancer diseases, including diseases of the circulatory system, nervous system, digestive system, and so on. Furthermore, we sought to delineate the promising mechanisms of CD47-based therapy in treating non-cancer diseases. Our findings suggest that CD47-based agents may exert their effect by regulating phagocytosis, regulating T cells, dendritic cells, and neutrophils, and regulating the secretion of cytokines and chemokines. Additionally, we put forward the orientation of further research to bring to light the potential of CD47 and its binding partners as a target in non-cancer diseases.
Collapse
Affiliation(s)
- Wei-Qing Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Zi-Han Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Zhenghai Tang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China
| | - Xiao-Lei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao 999078, China
| |
Collapse
|
2
|
Czyzynska-Cichon I, Kotlinowski J, Blacharczyk O, Giergiel M, Szymanowski K, Metwally S, Wojnar-Lason K, Dobosz E, Koziel J, Lekka M, Chlopicki S, Zapotoczny B. Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation. Cell Mol Biol Lett 2024; 29:139. [PMID: 39528938 PMCID: PMC11556108 DOI: 10.1186/s11658-024-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Liver sinusoidal endothelial cells (LSECs) have transcellular pores, called fenestrations, participating in the bidirectional transport between the vascular system and liver parenchyma. Fenestrated LSECs indicate a healthy phenotype of liver while loss of fenestrations (defenestration) in LSECs is associated with liver pathologies. METHODS We introduce a unique model of systemic inflammation triggered by the deletion of Mcpip1 in myeloid leukocytes (Mcpip1fl/flLysMCre) characterised by progressive alterations in LSEC phenotype. We implement multiparametric characterisation of LSECs by using novel real-time atomic force microscopy supported with scanning electron microscopy and quantitative fluorescence microscopy. In addition, we provide genetic profiling, searching for characteristic genes encoding proteins that might be connected with the structure of fenestrations. RESULTS We demonstrate that LSECs in Mcpip1fl/flLysMCre display two phases of defenestration: the early phase, with modest defenestration that was fully reversible using cytochalasin B and the late phase, with severe defenestration that is mostly irreversible. By thorough analysis of LSEC porosity, elastic modulus and actin abundance in Mcpip1fl/flLysMCre and in response to cytochalasin B, we demonstrate that proteins other than actin must be additionally responsible for inducing open fenestrations. We highlight several genes that were severely affected in the late but not in the early phase of LSEC defenestration shedding a light on complex structure of individual fenestrations. CONCLUSIONS The presented model of LSEC derived from Mcpip1fl/flLysMCre provides a valuable reference for developing novel strategies for LSEC refenestration in the early and late phases of liver pathology.
Collapse
Affiliation(s)
- Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Jerzy Kotlinowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Oliwia Blacharczyk
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Magdalena Giergiel
- Centre for Nanometer-Scale Science and Advanced Materials (NANOSAM), Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Konrad Szymanowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Sara Metwally
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Malgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | | |
Collapse
|
3
|
Liu P, Liang WL, Huang RT, Chen XX, Zou DH, Kurihara H, Li YF, Xu YH, Ouyang SH, He RR. Hepatic microcirculatory disturbance in liver diseases: intervention with traditional Chinese medicine. Front Pharmacol 2024; 15:1399598. [PMID: 39108760 PMCID: PMC11300221 DOI: 10.3389/fphar.2024.1399598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 04/18/2025] Open
Abstract
The liver, a complex parenchymal organ, possesses a distinctive microcirculatory system crucial for its physiological functions. An intricate interplay exists between hepatic microcirculatory disturbance and the manifestation of pathological features in diverse liver diseases. This review updates the main characteristics of hepatic microcirculatory disturbance, including hepatic sinusoidal capillarization, narrowing of sinusoidal space, portal hypertension, and pathological angiogenesis, as well as their formation mechanisms. It also summarized the detection methods for hepatic microcirculation. Simultaneously, we have also reviewed the characteristics of microcirculatory disturbance in diverse liver diseases such as acute liver failure, hepatic ischemia-reperfusion injury, viral hepatitis, non-alcoholic fatty liver disease, hepatic fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Finally, this review also summarizes the advancement in hepatic microcirculation attributed to traditional Chinese medicine (TCM) and its active metabolites, providing novel insights into the application of TCM in treating liver diseases.
Collapse
Affiliation(s)
- Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Wan-Li Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Rui-Ting Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xin-Xing Chen
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - De-Hua Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Rong-Rong He
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Wang L, He L, Yi W, Wang M, Xu F, Liu H, Nie J, Pan YH, Dang S, Zhang W. ADAMTS18-fibronectin interaction regulates the morphology of liver sinusoidal endothelial cells. iScience 2024; 27:110273. [PMID: 39040056 PMCID: PMC11261151 DOI: 10.1016/j.isci.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/12/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) have a unique morphological structure known as "fenestra" that plays a crucial role in liver substance exchange and homeostasis maintenance. In this study, we demonstrate that ADAMTS18 protease is primarily secreted by fetal liver endothelial cells. ADAMTS18 deficiency leads to enlarged fenestrae and increased porosity of LSECs, microthrombus formation in liver vessels, and an imbalance of liver oxidative stress. These defects worsen carbon tetrachloride (CCl4)-induced liver fibrosis and diethylnitrosamine (DEN)/high-fat-induced hepatocellular carcinoma (HCC) in adult Adamts18-deficient mice. Mechanically, ADAMTS18 functions as a modifier of fibronectin (FN) to regulate the morphological acquisition of LSECs via the vascular endothelial growth factor A (VEGFA) signaling pathways. Collectively, a mechanism is proposed for LSEC morphogenesis and liver homeostasis maintenance via ADAMTS18-FN-VEGFA niches.
Collapse
Affiliation(s)
- Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li He
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Weijia Yi
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fangmin Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanlin Liu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiahui Nie
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
5
|
Yap KK, Schröder J, Gerrand YW, Dobric A, Kong AM, Fox AM, Knowles B, Banting SW, Elefanty AG, Stanley EG, Yeoh GC, Lockwood GP, Cogger VC, Morrison WA, Polo JM, Mitchell GM. Liver specification of human iPSC-derived endothelial cells transplanted into mouse liver. JHEP Rep 2024; 6:101023. [PMID: 38681862 PMCID: PMC11046210 DOI: 10.1016/j.jhepr.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 05/01/2024] Open
Abstract
Background & Aims Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs. Methods hiPSC-derived endothelial cells (iECs) were transplanted into the livers of Fah-/-/Rag2-/-/Il2rg-/- mice and assessed over a 12-week period. Lineage tracing, immunofluorescence, flow cytometry, plasma human factor VIII measurement, and bulk and single cell transcriptomic analysis were used to assess the molecular and functional changes that occurred following transplantation. Results Progressive and long-term repopulation of the liver vasculature occurred as iECs expanded along the sinusoids between hepatocytes and increasingly produced human factor VIII, indicating differentiation into LSEC-like cells. To chart the developmental profile associated with LSEC specification, the bulk transcriptomes of transplanted cells between 1 and 12 weeks after transplantation were compared against primary human adult LSECs. This demonstrated a chronological increase in LSEC markers, LSEC differentiation pathways, and zonation. Bulk transcriptome analysis suggested that the transcription factors NOTCH1, GATA4, and FOS have a central role in LSEC specification, interacting with a network of 27 transcription factors. Novel markers associated with this process included EMCN and CLEC14A. Additionally, single cell transcriptomic analysis demonstrated that transplanted iECs at 4 weeks contained zonal subpopulations with a region-specific phenotype. Conclusions Collectively, this study confirms that hiPSCs can adopt LSEC-like features and provides insight into LSEC specification. This humanised xenograft system can be applied to further interrogate LSEC developmental biology and pathophysiology, bypassing current logistical obstacles associated with primary human LSECs. Impact and implications Liver sinusoidal endothelial cells (LSECs) are important cells for liver biology, but better model systems are required to study them. We present a pluripotent stem cell xenografting model that produces human LSEC-like cells. A detailed and longitudinal transcriptomic analysis of the development of LSEC-like cells is included, which will guide future studies to interrogate LSEC biology and produce LSEC-like cells that could be used for regenerative medicine.
Collapse
Affiliation(s)
- Kiryu K. Yap
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Jan Schröder
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Clayton, VIC, Australia
- Doherty Institute & University of Melbourne Department of Microbiology and Immunology, Parkville, VIC, Australia
| | - Yi-Wen Gerrand
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Aleksandar Dobric
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Anne M. Kong
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Adrian M. Fox
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Hepatobiliary Surgery Unit, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Brett Knowles
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Hepatobiliary Surgery Unit, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Simon W. Banting
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Hepatobiliary Surgery Unit, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Andrew G. Elefanty
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Eduoard G. Stanley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - George C. Yeoh
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Glen P. Lockwood
- ANZAC Research Institute and University of Sydney, Concord, NSW, Australia
| | - Victoria C. Cogger
- ANZAC Research Institute and University of Sydney, Concord, NSW, Australia
| | - Wayne A. Morrison
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Australian Catholic University, Fitzroy, VIC, Australia
| | - Jose M. Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Clayton, VIC, Australia
- Adelaide Centre for Epigenetics, South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Geraldine M. Mitchell
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Australian Catholic University, Fitzroy, VIC, Australia
| |
Collapse
|
6
|
Zhang X, Li P, Zhou J, Zhang Z, Wu H, Shu X, Li W, Wu Y, Du Y, Lü D, Lü S, Li N, Long M. FAK-p38 signaling serves as a potential target for reverting matrix stiffness-modulated liver sinusoidal endothelial cell defenestration. Biomaterials 2024; 305:122462. [PMID: 38171118 DOI: 10.1016/j.biomaterials.2023.122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specific endothelial cells which play an essential role in the maintenance of liver homeostasis. During the progression of liver fibrosis, matrix stiffening promotes LSEC defenestration, however, the underlying mechanotransduction mechanism remains poorly understood. Here, we applied stiffness-tunable hydrogels to assess the matrix stiffening-induced phenotypic changes in primary mouse LSECs. Results indicated that increased stiffness promoted LSEC defenestration through cytoskeletal reorganization. LSECs sensed the increased matrix stiffness via focal adhesion kinase (FAK), leading to the activation of p38-mitogen activated protein kinase activated protein kinase 2 (MK2) pathway, thereby inducing actin remodeling via LIM Kinase 1 (LIMK1) and Cofilin. Interestingly, inhibition of FAK or p38-MK2 pathway was able to effectively restore the fenestrae to a certain degree in LSECs isolated from early to late stages of liver fibrosis mice. Thus, this study highlights the impact of mechanotransduction in LSEC defenestration, and provides novel insights for potential therapeutic interventions for liver fibrosis.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiwen Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziliang Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huan Wu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Du
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Gao J, Zuo B, He Y. Liver sinusoidal endothelial cells as potential drivers of liver fibrosis (Review). Mol Med Rep 2024; 29:40. [PMID: 38240102 PMCID: PMC10828992 DOI: 10.3892/mmr.2024.13164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. It is a critical pre‑stage condition of severe hepatopathy, characterized by excessive accumulation of extracellular matrix components and ongoing chronic inflammation. To date, early prevention of liver fibrosis remains challenging. As the most abundant non‑parenchymal hepatic cell population, liver sinusoidal endothelial cells (LSECs) are stabilizers that maintain the intrahepatic environment. Notably, LSECs dysfunction appears to be implicated in the progression of liver fibrosis via numerous mechanisms. Following sustained liver injury, they lose their fenestrae (cytoplasmic pores) and change their crosstalk with other cellular interactions in the hepatic blood environment. LSEC‑targeted therapy has shown promising effects on fibrosis resolution, opening up new opportunities for anti‑fibrotic therapy. In light of this, the present study summarized changes in LSECs during liver fibrosis and their interactions with hepatic milieu, as well as possible therapeutic approaches that specially target LSECs.
Collapse
Affiliation(s)
- Jiaqin Gao
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Zuo
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yang He
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
8
|
Xu FF, Zheng F, Chen Y, Wang Y, Ma SB, Ding W, Zhang LS, Guo JZ, Zheng CB, Shen B. Role of thrombospondin-1 in high-salt-induced mesenteric artery endothelial impairment in rats. Acta Pharmacol Sin 2024; 45:545-557. [PMID: 37932403 PMCID: PMC10834453 DOI: 10.1038/s41401-023-01181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023]
Abstract
The matrix glycoprotein thrombospondin-1 (THBS1) modulates nitric oxide (NO) signaling in endothelial cells. A high-salt diet induces deficiencies of NO production and bioavailability, thereby leading to endothelial dysfunction. In this study we investigated the changes of THBS1 expression and its pathological role in the dysfunction of mesenteric artery endothelial cells (MAECs) induced by a high-salt diet. Wild-type rats, and wild-type and Thbs1-/- mice were fed chow containing 8% w/w NaCl for 4 weeks. We showed that a high salt diet significantly increased THBS1 expression and secretion in plasma and MAECs, and damaged endothelium-dependent vasodilation of mesenteric resistance arteries in wild-type animals, but not in Thbs1-/- mice. In rat MAECs, we demonstrated that a high salt environment (10-40 mM) dose-dependently increased THBS1 expression accompanied by suppressed endothelial nitric oxide synthase (eNOS) and phospho-eNOS S1177 production as well as NO release. Blockade of transforming growth factor-β1 (TGF-β1) activity by a TGF-β1 inhibitor SB 431542 reversed THBS1 up-regulation, rescued the eNOS decrease, enhanced phospho-eNOS S1177 expression, and inhibited Smad4 translocation to the nucleus. By conducting dual-luciferase reporter experiments in HEK293T cells, we demonstrated that Smad4, a transcription promoter, upregulated Thbs1 transcription. We conclude that THBS1 contributes to endothelial dysfunction in a high-salt environment and may be a potential target for treatment of high-salt-induced endothelium dysfunction.
Collapse
Affiliation(s)
- Fang-Fang Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Fan Zheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ye Chen
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yang Wang
- Department of Otolaryngology-Head and Neck Surgery, Lu'an People's Hospital, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, 237000, China
| | - Shao-Bo Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weng Ding
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Le-Sha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ji-Zheng Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science, Kunming Medical University, Kunming, 650500, China.
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
9
|
Li B, Chen H, Huang J, He B. CD47Binder: Identify CD47 Binding Peptides by Combining Next-Generation Phage Display Data and Multiple Peptide Descriptors. Interdiscip Sci 2023; 15:578-589. [PMID: 37389722 DOI: 10.1007/s12539-023-00575-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
CD47/SIRPα pathway is a new breakthrough in the field of tumor immunity after PD-1/PD-L1. While current monoclonal antibody therapies targeting CD47/SIRPα have demonstrated some anti-tumor effectiveness, there are several inherent limitations associated with these formulations. In the paper, we developed a predictive model that combines next-generation phage display (NGPD) and traditional machine learning methods to distinguish CD47 binding peptides. First, we utilized NGPD biopanning technology to screen CD47 binding peptides. Second, ten traditional machine learning methods based on multiple peptide descriptors and three deep learning methods were used to build computational models for identifying CD47 binding peptides. Finally, we proposed an integrated model based on support vector machine. During the five-fold cross-validation, the integrated predictor demonstrated specificity, accuracy, and sensitivity of 0.755, 0.764, and 0.772, respectively. Furthermore, an online bioinformatics tool called CD47Binder has been developed for the integrated predictor. This tool is readily accessible on http://i.uestc.edu.cn/CD47Binder/cgi-bin/CD47Binder.pl .
Collapse
Affiliation(s)
- Bowen Li
- Medical College, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Heng Chen
- Medical College, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 6173001, Sichuan, China.
| | - Bifang He
- Medical College, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
- State Key Laboratory of Public Big Data, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
10
|
Zhan JH, Wei J, Liu L, Xu YT, Ji H, Wang CN, Liu YJ, Zhu XY. Investigation of a UPR-Related Gene Signature Identifies the Pro-Fibrotic Effects of Thrombospondin-1 by Activating CD47/ROS/Endoplasmic Reticulum Stress Pathway in Lung Fibroblasts. Antioxidants (Basel) 2023; 12:2024. [PMID: 38136144 PMCID: PMC10740656 DOI: 10.3390/antiox12122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Unfolded protein response (UPR) signaling and endoplasmic reticulum (ER) stress have been linked to pulmonary fibrosis. However, the relationship between UPR status and pulmonary function and prognosis in idiopathic pulmonary fibrosis (IPF) patients remains largely unknown. Through a series of bioinformatics analyses, we established a correlation between UPR status and pulmonary function in IPF patients. Furthermore, thrombospondin-1 (TSP-1) was identified as a potential biomarker for prognostic evaluation in IPF patients. By utilizing both bulk RNA profiling and single-cell RNA sequencing data, we demonstrated the upregulation of TSP-1 in lung fibroblasts during pulmonary fibrosis. Gene set enrichment analysis (GSEA) results indicated a positive association between TSP-1 expression and gene sets related to the reactive oxygen species (ROS) pathway in lung fibroblasts. TSP-1 overexpression alone induced mild ER stress and pulmonary fibrosis, and it even exacerbated bleomycin-induced ER stress and pulmonary fibrosis. Mechanistically, TSP-1 promoted ER stress and fibroblast activation through CD47-dependent ROS production. Treatment with either TSP-1 inhibitor or CD47 inhibitor significantly attenuated BLM-induced ER stress and pulmonary fibrosis. Collectively, these findings suggest that the elevation of TSP-1 during pulmonary fibrosis is not merely a biomarker but likely plays a pathogenic role in the fibrotic changes in the lung.
Collapse
Affiliation(s)
- Jun-Hui Zhan
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.-H.Z.); (J.W.); (Y.-T.X.); (H.J.)
| | - Juan Wei
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.-H.Z.); (J.W.); (Y.-T.X.); (H.J.)
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China;
| | - Lin Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China;
| | - Yi-Tong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.-H.Z.); (J.W.); (Y.-T.X.); (H.J.)
| | - Hui Ji
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.-H.Z.); (J.W.); (Y.-T.X.); (H.J.)
| | - Chang-Nan Wang
- Department of Physiology, Navy Medical University, Shanghai 200433, China;
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.-H.Z.); (J.W.); (Y.-T.X.); (H.J.)
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China;
| |
Collapse
|
11
|
Gao L, He Z, Wu Y. Advances in Anti-metabolic Disease Treatments Targeting CD47. Curr Pharm Des 2022; 28:3720-3728. [PMID: 36201266 DOI: 10.2174/1381612828666221006123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Metabolic disorders include a cluster of conditions that result from hyperglycemia, hyperlipidemia, insulin resistance, obesity, and hepatic steatosis, which cause the dysfunction of immune cells and innate cells, such as macrophages, natural killer cells, vascular endothelial cells, hepatocytes, and human kidney tubular epithelial cells. Besides targeting the derangements in lipid metabolism, therapeutic modulations to regulate abnormal responses in the immune system and innate cell dysfunctions may prove to be promising strategies in the management of metabolic diseases. In recent years, several targets have been explored for the CD47 molecule (CD47), a glycosylated protein, which was originally reported to transmit an anti-phagocytic signal known as "don't eat me" in the atherosclerotic environment, hindering the efferocytosis of immune cells and promoting arterial plaque accumulation. Subsequently, the role of CD47 has been explored in obesity, fatty liver, and lipotoxic nephropathy, and its utility as a therapeutic target has been investigated using anti-CD47 antibodies or inhibitors of the THBS1/CD47 axis and the CD47/SIRPα signaling pathway. This review summarizes the mechanisms of action of CD47 in different cell types during metabolic diseases and the clinical research progress to date, providing a reference for the comprehensive targeting of CD47 to treat metabolic diseases and the devising of potential improvements to possible side effects.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Zhe He
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
12
|
Tuning of Liver Sieve: The Interplay between Actin and Myosin Regulatory Light Chain Regulates Fenestration Size and Number in Murine Liver Sinusoidal Endothelial Cells. Int J Mol Sci 2022; 23:ijms23179850. [PMID: 36077249 PMCID: PMC9456121 DOI: 10.3390/ijms23179850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) facilitate the efficient transport of macromolecules and solutes between the blood and hepatocytes. The efficiency of this transport is realized via transcellular nanopores, called fenestrations. The mean fenestration size is 140 ± 20 nm, with the range from 50 nm to 350 nm being mostly below the limits of diffraction of visible light. The cellular mechanisms controlling fenestrations are still poorly understood. In this study, we tested a hypothesis that both Rho kinase (ROCK) and myosin light chain (MLC) kinase (MLCK)-dependent phosphorylation of MLC regulates fenestrations. We verified the hypothesis using a combination of several molecular inhibitors and by applying two high-resolution microscopy modalities: structured illumination microscopy (SIM) and scanning electron microscopy (SEM). We demonstrated precise, dose-dependent, and reversible regulation of the mean fenestration diameter within a wide range from 120 nm to 220 nm and the fine-tuning of the porosity in a range from ~0% up to 12% using the ROCK pathway. Moreover, our findings indicate that MLCK is involved in the formation of new fenestrations—after inhibiting MLCK, closed fenestrations cannot be reopened with other agents. We, therefore, conclude that the Rho-ROCK pathway is responsible for the control of the fenestration diameter, while the inhibition of MLCK prevents the formation of new fenestrations.
Collapse
|
13
|
Wang W, Chen Y, Yin Y, Wang X, Ye X, Jiang K, Zhang Y, Zhang J, Zhang W, Zhuge Y, Chen L, Peng C, Xiong A, Yang L, Wang Z. A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch Toxicol 2022; 96:2003-2019. [PMID: 35357534 PMCID: PMC9151551 DOI: 10.1007/s00204-022-03281-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Hepatic sinusoidal obstruction disease (HSOS) is a rare but life-threatening vascular liver disease. However, its underlying mechanism and molecular changes in HSOS are largely unknown, thus greatly hindering the development of its effective treatment. Hepatic sinusoidal endothelial cells (HSECs) are the primary and essential target for HSOS. A tandem mass tag-based shotgun proteomics study was performed using primary cultured HSECs from mice with HSOS induced by senecionine, a representative toxic pyrrolizidine alkaloid (PA). Dynamic changes in proteome were found at the initial period of damage and the essential role of thrombospondin 1 (TSP1) was highlighted in PA-induced HSOS. TSP1 over-expression was further confirmed in human HSECs and liver samples from patients with PA-induced HSOS. LSKL peptide, a known TSP1 inhibitor, protected mice from senecionine-induced HSOS. In addition, TSP1 was found to be covalently modified by dehydropyrrolizidine alkaloids in human HSECs and mouse livers upon senecionine treatment, thus to form the pyrrole-protein adduct. These findings provide useful information on early changes in HSECs upon PA treatment and uncover TSP1 overexpression as a contributor in PA-induced HSOS.
Collapse
Affiliation(s)
- Weiqian Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Yan Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Xunjiang Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xuanling Ye
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Kaiyuan Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yi Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Jiwei Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wei Zhang
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Li Chen
- Department of Gastroenterology, School of Medicine, Ruijin Hospital, Shanghai JiaoTong University, Shanghai, 201801, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China.
| | - Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| |
Collapse
|
14
|
Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. The wHole Story About Fenestrations in LSEC. Front Physiol 2021; 12:735573. [PMID: 34588998 PMCID: PMC8473804 DOI: 10.3389/fphys.2021.735573] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.
Collapse
Affiliation(s)
- Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Larissa D Kruse
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Christopher Florian Holte
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Bartlomiej Zapotoczny
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
15
|
Ma H, Liu X, Zhang M, Niu J. Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms. Mol Biol Rep 2021; 48:2803-2815. [PMID: 33730288 DOI: 10.1007/s11033-021-06269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases are attributed to liver injury. Development of fibrosis from chronic liver diseases is a dynamic process that involves multiple molecular and cellular processes. As the first to be impacted by injury, liver sinusoidal endothelial cells (LSECs) are involved in the pathogenesis of liver diseases caused by a variety of etiologies. Moreover, capillarization of LSECs has been recognized as an important event in the development of chronic liver diseases and fibrosis. Studies have reported that various cytokines (such as vascular endothelial growth factor, transforming growth factor-β), and pathways (such as hedgehog, and Notch), as well as epigenetic and metabolic factors are involved in the development of LSEC-mediated liver fibrosis. This review describes the complexity and plasticity of LSECs in fibrotic liver diseases from several perspectives, including the cross-talk between LSECs and other intra-hepatic cells. Moreover, it summarizes the mechanisms of several kinds of LSECs-targeting anti-fibrosis chemicals, and provides a theoretical basis for future studies.
Collapse
Affiliation(s)
- Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Xu Liu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Mingyuan Zhang
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
16
|
Zhong Y, Xu M, Hu J, Huang X, Lin N, Deng M. Inhibiting Th1/2 cells influences hepatic capillarization by adjusting sinusoidal endothelial fenestrae through Rho-ROCK-myosin pathway. Aging (Albany NY) 2021; 13:5069-5086. [PMID: 33535174 PMCID: PMC7950229 DOI: 10.18632/aging.202425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
CD4+ T cells are considered to be vital in chronic liver diseases, but their exact roles in hepatic capillarization, the typical characteristic of liver fibrosis, are poorly understood. This study aimed to assess the roles of typical subtype of CD4+ T cells, named T helper 1 (Th1) and Th2 cells in liver fibrosis. Taking advantage of well established fibrotic rat model, we conducted in vitro and in vivo experiments to explore the interactions between liver sinusoidal endothelial cells (LSECs) and Th1/2 cells; meanwhile we evaluated the degree of hepatic capillarization when inhibiting these interactions with inhibitory antibodies. Our results showed that prohibiting interactions between Th2 cells and LSECs caused the restoration of fenestrae, increased cytokine level of Th1 cells and reduction of hepatic capillarization; inhibiting the interaction between Th1 cells and LSECs produced the opposite effects. Moreover, increased Rho and myosin light chain phosphorylation were observed when Th1 cells were inhibited with the corresponding inhibitory antibody; Th2 cell inhibition yielded the opposite results. This study indicated that Th1/2 cells steer the capillarization process in different directions and this effect is probably mediated by the Rho-Rho kinase (ROCK)-myosin signaling pathway.
Collapse
Affiliation(s)
- Yuesi Zhong
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Jingxiong Hu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Xi Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
17
|
Gwag T, Reddy Mooli RG, Li D, Lee S, Lee EY, Wang S. Macrophage-derived thrombospondin 1 promotes obesity-associated non-alcoholic fatty liver disease. JHEP Rep 2020; 3:100193. [PMID: 33294831 PMCID: PMC7689554 DOI: 10.1016/j.jhepr.2020.100193] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background & Aims Thrombospondin 1 (TSP1) is a multifunctional matricellular protein. We previously showed that TSP1 has an important role in obesity-associated metabolic complications, including inflammation, insulin resistance, cardiovascular, and renal disease. However, its contribution to obesity-associated non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD or NASH) remains largely unknown; thus, we aimed to determine its role. Methods High-fat diet or AMLN (amylin liver NASH) diet-induced obese and insulin-resistant NAFLD/NASH mouse models were utilised, in addition to tissue-specific Tsp1-knockout mice, to determine the contribution of different cellular sources of obesity-induced TSP1 to NAFLD/NASH development. Results Liver TSP1 levels were increased in experimental obese and insulin-resistant NAFLD/NASH mouse models as well as in obese patients with NASH. Moreover, TSP1 deletion in adipocytes did not protect mice from diet-induced NAFLD/NASH. However, myeloid/macrophage-specific TSP1 deletion protected mice against obesity-associated liver injury, accompanied by reduced liver inflammation and fibrosis. Importantly, this protection was independent of the levels of obesity and hepatic steatosis. Mechanistically, through an autocrine effect, macrophage-derived TSP1 suppressed Smpdl3b expression in liver, which amplified liver proinflammatory signalling (Toll-like receptor 4 signal pathway) and promoted NAFLD progression. Conclusions Macrophage-derived TSP1 is a significant contributor to obesity-associated NAFLD/NASH development and progression and could serve as a therapeutic target for this disease. Lay summary Obesity-associated non-alcoholic fatty liver disease is a most common chronic liver disease in the Western world and can progress to liver cirrhosis and cancer. No treatment is currently available for this disease. The present study reveals an important factor (macrophage-derived TSP1) that drives macrophage activation and non-alcoholic fatty liver disease development and progression and that could serve as a therapeutic target for non-alcoholic fatty liver disease/steatohepatitis.
Collapse
Key Words
- ALT, alanine aminotransferase
- AMLN, amylin liver NASH
- ASMase, acid sphingomyelinase
- AST, aspartate aminotransferase
- BMDM, bone marrow-derived macrophage
- DEG, differentially expressed gene
- EC, endothelial cell
- ECM, extracellular matrix
- GPI, glycosylphosphatidylinositol
- HFD, high-fat diet
- HSC, hepatic stellate cell
- IL-, interleukin-
- KC, Kupffer cell
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LFD, low-fat diet
- LPS, lipopolysaccharide
- MDM, monocyte-derived macrophage
- MP, mononuclear phagocyte
- Macrophage
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- NF-κB, nuclear factor-κB
- Obesity
- SMPDL3B
- SMPDL3B, sphingomyelin phosphodiesterase acid-like 3B
- SREBP1c, sterol regulatory element-binding protein-1 c
- TGF, transforming growth factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- TSP1
- TSP1, thrombospondin 1
- Th, T helper type
- Tsp1fl/fl, TSP1 floxed mice
- Tsp1Δadipo, adipocyte-specific TSP1-knockout mice
- Tsp1Δmɸ, macrophage-specific TSP1-knockout mice
- qPCR, quantitative PCR
- scRNA-seq, single-cell RNA sequencing
- α-SMA, smooth muscle actin
Collapse
Affiliation(s)
- Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Raja Gopal Reddy Mooli
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dong Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Sangderk Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
18
|
Yu P, Wu R, Zhou Z, Zhang X, Wang R, Wang X, Lin S, Wang J, Lv L. rAj-Tspin, a novel recombinant peptide from Apostichopus japonicus, suppresses the proliferation, migration, and invasion of BEL-7402 cells via a mechanism associated with the ITGB1-FAK-AKT pathway. Invest New Drugs 2020; 39:377-385. [DOI: 10.1007/s10637-020-01008-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022]
|
19
|
Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells 2020; 9:E929. [PMID: 32290100 PMCID: PMC7226820 DOI: 10.3390/cells9040929] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a common feature of sustained liver injury and represents a major public health problem worldwide. Fibrosis is an active research field and discoveries in the last years have contributed to the development of new antifibrotic drugs, although none of them have been approved yet. Liver sinusoidal endothelial cells (LSEC) are highly specialized endothelial cells localized at the interface between the blood and other liver cell types. They lack a basement membrane and display open channels (fenestrae), making them exceptionally permeable. LSEC are the first cells affected by any kind of liver injury orchestrating the liver response to damage. LSEC govern the regenerative process initiation, but aberrant LSEC activation in chronic liver injury induces fibrosis. LSEC are also main players in fibrosis resolution. They maintain liver homeostasis and keep hepatic stellate cell and Kupffer cell quiescence. After sustained hepatic injury, they lose their phenotype and protective properties, promoting angiogenesis and vasoconstriction and contributing to inflammation and fibrosis. Therefore, improving LSEC phenotype is a promising strategy to prevent liver injury progression and complications. This review focuses on changes occurring in LSEC after liver injury and their consequences on fibrosis progression, liver regeneration, and resolution. Finally, a synopsis of the available strategies for LSEC-specific targeting is provided.
Collapse
Affiliation(s)
- Erica Lafoz
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Maria Ruart
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Aina Anton
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Anna Oncins
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Virginia Hernández-Gea
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Soydemir S, Comella O, Abdelmottaleb D, Pritchett J. Does Mechanocrine Signaling by Liver Sinusoidal Endothelial Cells Offer New Opportunities for the Development of Anti-fibrotics? Front Med (Lausanne) 2020; 6:312. [PMID: 31998732 PMCID: PMC6962108 DOI: 10.3389/fmed.2019.00312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Sumeyye Soydemir
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Olivia Comella
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Dina Abdelmottaleb
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - James Pritchett
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
21
|
Xu L, Zhang Y, Chen J, Xu Y. Thrombospondin-1: A Key Protein That Induces Fibrosis in Diabetic Complications. J Diabetes Res 2020; 2020:8043135. [PMID: 32626782 PMCID: PMC7306092 DOI: 10.1155/2020/8043135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Fibrosis accompanies most common pathophysiological features of diabetes complications in different organs. It is characterized by an excessive accumulation of extracellular matrix (ECM) components, the response to which contributes to inevitable organ injury. The extracellular protein thrombospondin-1 (TSP-1), a kind of extracellular glycoprotein, is upregulated by the increased activity of some transcription factors and results in fibrosis by activating multiple pathways in diabetes. The results of studies from our team and other colleagues indicate that TSP-1 is associated with the pathological process leading to diabetic complications and is considered to be the most important factor in fibrosis. This review summarizes the molecular mechanism of increased TSP-1 induced by hyperglycemia and the role of TSP-1 in fibrosis during the development of diabetes complications.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Yong Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang, China
| | - Jian Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
| |
Collapse
|
22
|
Maretti-Mira AC, Wang X, Wang L, DeLeve LD. Incomplete Differentiation of Engrafted Bone Marrow Endothelial Progenitor Cells Initiates Hepatic Fibrosis in the Rat. Hepatology 2019; 69:1259-1272. [PMID: 30141211 PMCID: PMC6387651 DOI: 10.1002/hep.30227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
Normal liver sinusoidal endothelial cells (LSECs) promote quiescence of hepatic stellate cells (HSCs). Prior to fibrosis, LSECs undergo capillarization, which is permissive for HSC activation, the proximate event in hepatic fibrosis. The aims of this study were to elucidate the nature of and mechanisms leading to capillarization and to determine how LSECs promote HSC quiescence and why "capillarized LSECs" lose control of HSC activation. The contribution of bone marrow (BM) endothelial progenitor cells to capillarization was identified using rats transplanted with transgenic enhanced green fluorescent protein-positive BM. Shotgun proteomics and informatics were used to identify the LSEC mediator that maintains HSC quiescence. The study shows that capillarization is due to repair of injured LSECs by BM endothelial progenitors that engraft but fail to fully mature. Lack of maturation of BM-derived LSECs is due to cell autonomous pathways that inhibit the nitric oxide pathway. We identify heparin binding epidermal growth factor-like growth factor (HB-EGF) as the signal that maintains HSC quiescence and show that immature LSECs are unable to shed HB-EGF from the cytosolic membrane. Conclusion: Chronic liver injury can recruit BM progenitors of LSECs that engraft and fail to fully differentiate, which creates an environment that is permissive for hepatic fibrosis; elucidation of these early events in the fibrotic process will provide targets for treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Ana C Maretti-Mira
- Division of Gastrointestinal and Liver Disease and the Research Center for Liver Disease, Keck Medicine of USC, Los Angeles, CA
| | - Xiangdong Wang
- Division of Gastrointestinal and Liver Disease and the Research Center for Liver Disease, Keck Medicine of USC, Los Angeles, CA
| | - Lei Wang
- Division of Gastrointestinal and Liver Disease and the Research Center for Liver Disease, Keck Medicine of USC, Los Angeles, CA
| | - Laurie D DeLeve
- Division of Gastrointestinal and Liver Disease and the Research Center for Liver Disease, Keck Medicine of USC, Los Angeles, CA
| |
Collapse
|
23
|
Kus E, Kaczara P, Czyzynska-Cichon I, Szafranska K, Zapotoczny B, Kij A, Sowinska A, Kotlinowski J, Mateuszuk L, Czarnowska E, Szymonski M, Chlopicki S. LSEC Fenestrae Are Preserved Despite Pro-inflammatory Phenotype of Liver Sinusoidal Endothelial Cells in Mice on High Fat Diet. Front Physiol 2019; 10:6. [PMID: 30809151 PMCID: PMC6379824 DOI: 10.3389/fphys.2019.00006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023] Open
Abstract
Healthy liver sinusoidal endothelial cells (LSECs) maintain liver homeostasis, while LSEC dysfunction was suggested to coincide with defenestration. Here, we have revisited the relationship between LSEC pro-inflammatory response, defenestration, and impairment of LSEC bioenergetics in non-alcoholic fatty liver disease (NAFLD) in mice. We characterized inflammatory response, morphology as well as bioenergetics of LSECs in early and late phases of high fat diet (HFD)-induced NAFLD. LSEC phenotype was evaluated at early (2-8 week) and late (15-20 week) stages of NAFLD progression induced by HFD in male C57Bl/6 mice. NAFLD progression was monitored by insulin resistance, liver steatosis and obesity. LSEC phenotype was determined in isolated, primary LSECs by immunocytochemistry, mRNA gene expression (qRT-PCR), secreted prostanoids (LC/MS/MS) and bioenergetics (Seahorse FX Analyzer). LSEC morphology was examined using SEM and AFM techniques. Early phase of NAFLD, characterized by significant liver steatosis and prominent insulin resistance, was related with LSEC pro-inflammatory phenotype as evidenced by elevated ICAM-1, E-selectin and PECAM-1 expression. Transiently impaired mitochondrial phosphorylation in LSECs was compensated by increased glycolysis. Late stage of NAFLD was featured by prominent activation of pro-inflammatory LSEC phenotype (ICAM-1, E-selectin, PECAM-1 expression, increased COX-2, IL-6, and NOX-2 mRNA expression), activation of pro-inflammatory prostaglandins release (PGE2 and PGF2α) and preserved LSEC bioenergetics. Neither in the early nor in the late phase of NAFLD, were LSEC fenestrae compromised. In the early and late phases of NAFLD, despite metabolic and pro-inflammatory burden linked to HFD, LSEC fenestrae and bioenergetics are functionally preserved. These results suggest prominent adaptive capacity of LSECs that might mitigate NAFLD progression.
Collapse
Affiliation(s)
- Edyta Kus
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Kraków, Poland
| | - Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Kraków, Poland
| | | | - Karolina Szafranska
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, Centre for Nanometer-Scale Science and Advanced Materials, Kraków, Poland
| | - Bartlomiej Zapotoczny
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, Centre for Nanometer-Scale Science and Advanced Materials, Kraków, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Kraków, Poland
- Jagiellonian University Medical College, Chair and Department of Toxicology, Kraków, Poland
| | | | - Jerzy Kotlinowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Kraków, Poland
| | - Lukasz Mateuszuk
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Kraków, Poland
| | | | - Marek Szymonski
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, Centre for Nanometer-Scale Science and Advanced Materials, Kraków, Poland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Kraków, Poland
- Jagiellonian University Medical College, Chair of Pharmacology, Kraków, Poland
| |
Collapse
|
24
|
Falero-Perez J, Song YS, Zhao Y, Teixeira L, Sorenson CM, Sheibani N. Cyp1b1 expression impacts the angiogenic and inflammatory properties of liver sinusoidal endothelial cells. PLoS One 2018; 13:e0206756. [PMID: 30372497 PMCID: PMC6205649 DOI: 10.1371/journal.pone.0206756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450 1B1 (CYP1B1) is a member of the cytochrome p450 family of enzymes that catalyze mono-oxygenase reactions. Although constitutive Cyp1b1 expression is limited in hepatocytes, its expression and function in liver sinusoidal endothelial cells (LSEC) remains unknown. Here we determined the impact of Cyp1b1 expression on LSEC properties prepared from Cyp1b1+/+ and Cyp1b1-/- mice. LSEC expressed PECAM-1, VE-cadherin, and B4 lectin similar to EC from other mouse tissues. Cyp1b1 +/+ LSEC constitutively expressed significant levels of Cyp1b1, while Cyp1b1-/- LSEC lacked Cyp1b1 expression. LSEC also expressed VEGFR3, PROX-1, and LYVE-1, VEGFR1 and VEGFR2, as well as other cell adhesion molecules including ICAM-1, ICAM-2, VCAM-1, and thrombospondin-1 (TSP1) receptors, CD36 and CD47. However, the expression of PV-1 and stabilin (fenestration markers), and endoglin were limited in these cells. The Cyp1b1-/- LSEC showed limited fenestration, and decreased levels of VEGF and BMP6. Cyp1b1-/- LSEC also showed a decrease in the levels of VE-cadherin and ZO-1 impacting adherens and gap junction formation. Cyp1b1-/- LSEC were significantly more apoptotic, proliferated at a faster rate, and were less adherent and more migratory. These changes were attributed, in part, to decreased amounts of TSP1 and increased AKT and ERK activation. The expressions of integrins were also altered by the lack of Cyp1b1, but the ability of these cells to undergo capillary morphogenesis was minimally affected. Furthermore, Cyp1b1-/- LSEC expressed lower levels of inflammatory mediators MCP-1 and TNF-α. Thus, Cyp1b1 expression has a significant impact on LSEC angiogenic and inflammatory functions.
Collapse
Affiliation(s)
- Juliana Falero-Perez
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison WI, United States of America
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison WI, United States of America
| | - Yun Zhao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison WI, United States of America
| | - Leandro Teixeira
- Deaprtment of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States of America
| | - Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison WI, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| |
Collapse
|
25
|
Tegge AN, Rodrigues RR, Larkin AL, Vu L, Murali TM, Rajagopalan P. Transcriptomic Analysis of Hepatic Cells in Multicellular Organotypic Liver Models. Sci Rep 2018; 8:11306. [PMID: 30054499 PMCID: PMC6063915 DOI: 10.1038/s41598-018-29455-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
Liver homeostasis requires the presence of both parenchymal and non-parenchymal cells (NPCs). However, systems biology studies of the liver have primarily focused on hepatocytes. Using an organotypic three-dimensional (3D) hepatic culture, we report the first transcriptomic study of liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) cultured with hepatocytes. Through computational pathway and interaction network analyses, we demonstrate that hepatocytes, LSECs and KCs have distinct expression profiles and functional characteristics. Our results show that LSECs in the presence of KCs exhibit decreased expression of focal adhesion kinase (FAK) signaling, a pathway linked to LSEC dedifferentiation. We report the novel result that peroxisome proliferator-activated receptor alpha (PPARα) is transcribed in LSECs. The expression of downstream processes corroborates active PPARα signaling in LSECs. We uncover transcriptional evidence in LSECs for a feedback mechanism between PPARα and farnesoid X-activated receptor (FXR) that maintains bile acid homeostasis; previously, this feedback was known occur only in HepG2 cells. We demonstrate that KCs in 3D liver models display expression patterns consistent with an anti-inflammatory phenotype when compared to monocultures. These results highlight the distinct roles of LSECs and KCs in maintaining liver function and emphasize the need for additional mechanistic studies of NPCs in addition to hepatocytes in liver-mimetic microenvironments.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Virginia Tech, Blacksburg, USA
- Department of Statistics, Virginia Tech, Blacksburg, USA
| | - Richard R Rodrigues
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, USA
| | - Adam L Larkin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA
| | - Lucas Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, USA.
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, USA.
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA.
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
26
|
Xu M, Wang X, Zou Y, Zhong Y. Key role of liver sinusoidal endothelial cells in liver fibrosis. Biosci Trends 2017; 11:163-168. [PMID: 28250338 DOI: 10.5582/bst.2017.01007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because of the prevalence of viral hepatitis and nonalcoholic fatty liver disease (NAFLD), liver fibrosis has become a very common disease in Asia and elsewhere in the world, constantly increasing the burden of care borne by society. Hepatic sinusoidal capillarization, characterized by gradually shrinking fenestrae on the surface of liver sinusoidal endothelial cells (LSECs) and the formation of an organized basement membrane, is an initial pathologic change associated with liver fibrosis. Basic and clinical studies have indicated that LSECs play a key role in hepatic sinusoidal capillarization by affecting various aspects of the development and progression of liver fibrosis. Reviewing studies on the effect of LSECs on liver fibrosis is essential to better understanding the pathogenesis of liver fibrosis and its mechanism of progression. Moreover, such a review will provide a theoretical basis for identifying new methods to promote the regression or even inhibition of fibrosis. This review will focus on structural and functional changes in LSECs during hepatic sinusoidal capillarization and the interaction between the micro-environment of the liver and the body's immune system.
Collapse
Affiliation(s)
- Mingxing Xu
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-Sen University
| | - Xuehua Wang
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-Sen University
| | - Yong Zou
- Department of Blood Transfusion, Third Affiliated Hospital of Sun Yat-Sen University
| | - Yuesi Zhong
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-Sen University
| |
Collapse
|
27
|
Li Y, Turpin CP, Wang S. Role of thrombospondin 1 in liver diseases. Hepatol Res 2017; 47:186-193. [PMID: 27492250 PMCID: PMC5292098 DOI: 10.1111/hepr.12787] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Thrombospondin 1 (TSP1) is a matricellular glycoprotein that can be secreted by many cell types. Through binding to extracellular proteins and/or cell surface receptors, TSP1 modulates a variety of cellular functions. Since its discovery in 1971, TSP1 has been found to play important roles in multiple biological processes including angiogenesis, apoptosis, latent transforming growth factor-β activation, and immune regulation. Thrombospondin 1 is also involved in regulating many organ functions. However, the role of TSP1 in liver diseases has not been extensively addressed. In this review, we summarize the findings about the possible role that TSP1 plays in chronic liver diseases focusing on non-alcoholic fatty liver diseases, liver fibrosis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanzhang Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Medical College of Henan University, Kaifeng, Henan 475004, China
| | - Courtney P Turpin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
28
|
Maslak E, Gregorius A, Chlopicki S. Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep 2015; 67:689-94. [PMID: 26321269 DOI: 10.1016/j.pharep.2015.04.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) present unique, highly specialised endothelial cells in the body. Unlike the structure and function of typical, vascular endothelial cells, LSECs are comprised of fenestrations, display high endocytic capacity and play a prominent role in maintaining overall liver homeostasis. LSEC dysfunction has been regarded as a key event in multiple liver disorders; however, its role and diagnostic, prognostic and therapeutic significance in nonalcoholic fatty liver disease (NAFLD) is still neglected. The purpose of this review is to provide an overview of the importance of LSECs in NAFLD. Attention is focused on the LSECs-mediated NO-dependent mechanisms in NAFLD development. We briefly describe the unique, highly specialised phenotype of LSECs and consequences of LSEC dysfunction on function of hepatic stellate cells (HSC) and hepatocytes. The potential efficacy of liver selective NO donors against liver steatosis and novel treatment approaches to modulate LSECs-driven liver pathology including NAFLD are also highlighted.
Collapse
Affiliation(s)
- Edyta Maslak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Aleksandra Gregorius
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland; Department of Experimental Pharmacology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
29
|
Cogger VC, O'Reilly JN, Warren A, Le Couteur DG. A standardized method for the analysis of liver sinusoidal endothelial cells and their fenestrations by scanning electron microscopy. J Vis Exp 2015:e52698. [PMID: 25993325 PMCID: PMC4650683 DOI: 10.3791/52698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Liver sinusoidal endothelial cells are the gateway to the liver, their transcellular fenestrations allow the unimpeded transfer of small and dissolved substances from the blood into the liver parenchyma for metabolism and processing. Fenestrations are dynamic structures--both their size and/or number can be altered in response to various physiological states, drugs, and disease, making them an important target for modulation. An understanding of how LSEC morphology is influenced by various disease, toxic, and physiological states and how these changes impact on liver function requires accurate measurement of the size and number of fenestrations. In this paper, we describe scanning electron microscopy fixation and processing techniques used in our laboratory to ensure reproducible specimen preparation and accurate interpretation. The methods include perfusion fixation, secondary fixation and dehydration, preparation for the scanning electron microscope and analysis. Finally, we provide a step by step method for standardized image analysis which will benefit all researchers in the field.
Collapse
Affiliation(s)
- Victoria C Cogger
- Centre for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital; Ageing and Alzheimers Institute, Concord Hospital; Charles Perkins Centre, University of Sydney;
| | - Jennifer N O'Reilly
- Centre for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital; Ageing and Alzheimers Institute, Concord Hospital
| | - Alessandra Warren
- Centre for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital; Ageing and Alzheimers Institute, Concord Hospital; Charles Perkins Centre, University of Sydney
| | - David G Le Couteur
- Centre for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital; Ageing and Alzheimers Institute, Concord Hospital; Charles Perkins Centre, University of Sydney
| |
Collapse
|
30
|
Zhang Q, Liu J, Liu J, Huang W, Tian L, Quan J, Wang Y, Niu R. oxLDL induces injury and defenestration of human liver sinusoidal endothelial cells via LOX1. J Mol Endocrinol 2014; 53:281-93. [PMID: 25057109 DOI: 10.1530/jme-14-0049] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease is associated with hepatic microangiopathy and liver inflammation caused by type 2 diabetes mellitus. Oxidised LDL (oxLDL) is involved in proinflammatory and cytotoxic events in various microcirculatory systems. The lectin-like oxLDL receptor 1 (LOX1) plays a crucial role in oxLDL-induced pathological transformation. However, the underlying mechanism of oxLDL's effects on liver microcirculation disturbances remains unclear. In this study, we investigated the effects of oxLDL on LOX1 (OLR1) expression and function, as well as on the fenestration features of human liver sinusoidal endothelial cells (HLSECs) in vitro. Primary HLSECs were obtained and cultured. The cells were treated with various concentrations of oxLDL (25, 50, 100 and 200 μg/ml), and the cytotoxicity and expression of LOX1 were examined. Furthermore, LOX1 knockdown was performed using siRNA technology, and the changes in intracellular reactive oxygen species (ROS), NFκB, p65, (p65), endothelin 1 (ET1 (EDN1)), eNOS (NOS3) and caveolin 1 (CAV1) levels were measured. Cells were treated with 100 μg/ml oxLDL, and the fenestra morphology was visualised using scanning electron microscopy. oxLDL significantly increased LOX1 expression at both the mRNA and protein levels in HLSECs in a dose- and time-dependent manner. oxLDL stimulation increased ROS generation and NFκB activation, upregulated ET1 and caveolin 1 expression, downregulated eNOS expression and reduced the fenestra diameter and porosity. All of these oxLDL-mediated effects were inhibited after LOX1 knockdown. These results reveal a mechanism by which oxLDL stimulates the production of LOX1 through the ROS/NFκB signalling pathway and by which LOX1 mediates oxLDL-induced endothelial injury and the defenestration of HLSECs.
Collapse
Affiliation(s)
- Qi Zhang
- The First Clinical College of Lanzhou University730000 Lanzhou, Gansu, ChinaDepartment of EndocrinologyGansu Provincial Hospital, 204 West Donggang Road, 730000 Lanzhou, Gansu, China
| | - Jing Liu
- The First Clinical College of Lanzhou University730000 Lanzhou, Gansu, ChinaDepartment of EndocrinologyGansu Provincial Hospital, 204 West Donggang Road, 730000 Lanzhou, Gansu, China
| | - Jia Liu
- The First Clinical College of Lanzhou University730000 Lanzhou, Gansu, ChinaDepartment of EndocrinologyGansu Provincial Hospital, 204 West Donggang Road, 730000 Lanzhou, Gansu, China
| | - Wenhui Huang
- The First Clinical College of Lanzhou University730000 Lanzhou, Gansu, ChinaDepartment of EndocrinologyGansu Provincial Hospital, 204 West Donggang Road, 730000 Lanzhou, Gansu, China
| | - Limin Tian
- The First Clinical College of Lanzhou University730000 Lanzhou, Gansu, ChinaDepartment of EndocrinologyGansu Provincial Hospital, 204 West Donggang Road, 730000 Lanzhou, Gansu, China
| | - Jinxing Quan
- The First Clinical College of Lanzhou University730000 Lanzhou, Gansu, ChinaDepartment of EndocrinologyGansu Provincial Hospital, 204 West Donggang Road, 730000 Lanzhou, Gansu, China
| | - Yunfang Wang
- The First Clinical College of Lanzhou University730000 Lanzhou, Gansu, ChinaDepartment of EndocrinologyGansu Provincial Hospital, 204 West Donggang Road, 730000 Lanzhou, Gansu, China
| | - Ruilan Niu
- The First Clinical College of Lanzhou University730000 Lanzhou, Gansu, ChinaDepartment of EndocrinologyGansu Provincial Hospital, 204 West Donggang Road, 730000 Lanzhou, Gansu, China
| |
Collapse
|