1
|
Fu S, Du H, Dai Y, Zheng K, Cao G, Xu L, Zhong Y, Niu C, Kong Y, Wang X. Screening and molecular mechanism research on bile microRNAs associated with chemotherapy efficacy in perihilar cholangiocarcinoma. iScience 2024; 27:111437. [PMID: 39717085 PMCID: PMC11664176 DOI: 10.1016/j.isci.2024.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
The efficacy of hepatic arterial infusion chemotherapy (HAIC) with oxaliplatin (OXA) and 5-fluorouracil (5-Fu) for treating advanced perihilar cholangiocarcinoma (pCCA) has been demonstrated, yet the survival benefits of HAIC for pCCA patients vary. Here, we aimed to screen out HAIC resistance-related bile microRNAs (miRNAs) and explore the functions of specific bile miRNAs in pCCA based on high-throughput sequencing. Levels of bile miR-532-3p, miR-1250-5p, and miR-4772-5p were related to the survival of advanced pCCA patients after HAIC. However, only overexpression of miR-532-3p promoted OXA/5-Fu resistance, and downregulation of its expression improved sensitivity to OXA/5-Fu. Mechanistic investigations revealed secreted protein acidic and rich in cysteine (SPARC) as the direct target of miR-532-3p. Our study reveals that bile miR-532-3p, miR-1250-5p, and miR-4772-5p may serve as survival biomarkers in advanced pCCA patients after HAIC and that bile miR-532-3p promotes resistance to HAIC with OXA and 5-Fu via negatively regulating SPARC expression.
Collapse
Affiliation(s)
- Shijie Fu
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100000, China
| | - Haizhen Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yuyang Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kanglian Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Liang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yujie Zhong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chuanxin Niu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiaodong Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
2
|
Liu Z, Pang B, Wang Y, Zheng J, Li Y, Jiang J. Advances of New Extracellular Vesicle Isolation and Detection Technologies in Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405872. [PMID: 39676429 DOI: 10.1002/smll.202405872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Cancer is a global health issue threatening people's lives. Currently, cancer detection methods still have a lot of room for improvement in both efficiency and accuracy. The development and application of new technologies are urgently required for early cancer diagnosis and prognosis. Extracellular vesicles (EVs) are a type of phospholipid bilayer vesicle secreted by cells and play an important role in cancer development and metastasis. These small vesicles participate in cancer information transmission, antigen presentation, angiogenesis, immune response, tumor invasion, and mediate signaling pathways in the tumor microenvironment. Liquid biopsy of EV cargo contents is a fast-developing research area, holding promise for early cancer diagnosis and monitoring cancer progression in real-time. However, current EV detection technologies for clinical translation are still facing many challenges. Recent advancements in developing techniques for EV isolation and detection have made significant progress and are paving the way toward clinical application. Here, the advantages and limitations of traditional EV detection and isolation technologies in cancer diagnosis and prognosis are reviewed. The review also focuses on emerging EV detection and isolation technologies in cancer, discusses the challenges faced by current methods, and explores the perspective of new EV detection techniques for future cancer diagnosis.
Collapse
Affiliation(s)
- Zhihan Liu
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Bairen Pang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| | - Yuhui Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Jianping Zheng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Junhui Jiang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
3
|
Raghav A, Jeong GB. Phase I-IV Drug Trials on Hepatocellular Carcinoma in Asian Populations: A Systematic Review of Ten Years of Studies. Int J Mol Sci 2024; 25:9286. [PMID: 39273237 PMCID: PMC11395253 DOI: 10.3390/ijms25179286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Despite advances in the treatment of hepatocellular carcinoma (HCC) over the last few decades, treatment opportunities for patients with HCC remain limited. HCC is the most common form of liver cancer, accounting for approximately 90% of all cases worldwide. Moreover, apart from the current pharmacological interventions, hepatic resection and liver transplantation are the mainstay curative approaches for patients with HCC. This systematic review included phase I, II, III, and IV clinical trials (CTs) and randomized controlled trials (RCTs) on current treatments for patients with HCC in Asian populations (2013-2023). A total of 427 articles were screened, and 184 non-duplicate publications were identified. After screening the titles and abstracts, 96 publications were excluded, and another 28 were excluded after full-text screening. The remaining 60 eligible RCTs/CTs were finally included. A total of 60 clinical trials fulfilled our inclusion criteria with 36 drugs used as monotherapy or combination therapy for HCC. Most studies used sorafenib alone or in combination with any of the treatment regimens. Lenvatinib or atezolizumab with bevacizumab was used for HCC after initial sorafenib treatment. Eighteen studies compared the efficacy of sorafenib with that of other drugs, including lenvatinib, cabozantinib, tepotinib, tigatuzumab, linifanib, erlotinib, resminostat, brivanib, tislelizumab, selumetinib, and refametinib. This study provides comprehensive insights into effective treatment interventions for HCC in Asian populations. The overall assessment indicates that sorafenib, used alone or in combination with atezolizumab and bevacizumab, has been the first treatment choice in the past decade to achieve better outcomes in patients with HCC in Asian populations.
Collapse
Affiliation(s)
- Alok Raghav
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Hu X, Wei J, Liu P, Zheng Q, Zhang Y, Zhang Q, Yao J, Ni J. Organoid as a promising tool for primary liver cancer research: a comprehensive review. Cell Biosci 2024; 14:107. [PMID: 39192365 DOI: 10.1186/s13578-024-01287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Primary liver cancer (PLC) is one of the most common malignant gastrointestinal tumors worldwide. Limited by the shortage of liver transplantation donors and the heterogeneity of tumors, patients with liver cancer lack effective treatment options, which leads to rapid progression and metastasis. Currently, preclinical models of PLC fall short of clinical reality and are limited in their response to disease progression and the effectiveness of drug therapy. Organoids are in vitro three-dimensional cultured preclinical models with a high degree of heterogeneity that preserve the histomorphological and genomic features of primary tumors. Liver cancer organoids have been widely used for drug screening, new target discovery, and precision medicine; thus representing a promising tool to study PLC. Here, we summarize the progress of research on liver cancer organoids and their potential application as disease models. This review provides a comprehensive introduction to this emerging technology and offers new ideas for researchers to explore in the field of precision medicine.
Collapse
Affiliation(s)
- Xuekai Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jiayun Wei
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Pinyan Liu
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Qiuxia Zheng
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yue Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Qichen Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yao
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- School of Basic Medical Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
5
|
Yang Q, Nie L, Xu J, Li H, Zhu X, Wei M, Yao J. A machine learning-based predictive model for biliary stricture attributable to malignant tumors: a dual-center retrospective study. Front Oncol 2024; 14:1406512. [PMID: 39135994 PMCID: PMC11317252 DOI: 10.3389/fonc.2024.1406512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Biliary stricture caused by malignant tumors is known as Malignant Biliary Stricture (MBS). MBS is challenging to differentiate clinically, and accurate diagnosis is crucial for patient prognosis and treatment. This study aims to identify the risk factors for malignancy in all patients diagnosed with biliary stricture by Endoscopic Retrograde Cholangiopancreatography (ERCP), and to develop an effective clinical predictive model to enhance diagnostic outcomes. Methodology Through a retrospective study, data from 398 patients diagnosed with biliary stricture using ERCP between January 2019 and January 2023 at two institutions: the First People's Hospital affiliated with Jiangsu University and the Second People's Hospital affiliated with Soochow University. The study began with a preliminary screening of risk factors using univariate regression. Lasso regression was then applied for feature selection. The dataset was divided into a training set and a validation set in an 8:2 ratio. We analyzed the selected features using seven machine learning algorithms. The best model was selected based on the Area Under the Receiver Operating Characteristic (ROC) Curve (AUROC) and other evaluation indicators. We further evaluated the model's accuracy using calibration curves and confusion matrices. Additionally, we used the SHAP method for interpretability and visualization of the model's predictions. Results RF model is the best model, achieved an AUROC of 0.988. Shap result indicate that age, stricture location, stricture length, carbohydrate antigen 199 (CA199), total bilirubin (TBil), alkaline phosphatase (ALP), (Direct Bilirubin) DBil/TBil, and CA199/C-Reactive Protein (CRP) were risk factors for MBS, and the CRP is a protective factor. Conclusion The model's effectiveness and stability were confirmed, accurately identifying high-risk patients to guide clinical decisions and improve patient prognosis.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Gastroenterology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lu Nie
- Department of Intervention Vascular, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Jian Xu
- Department of Gastroenterology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hua Li
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, China
| | - Xin Zhu
- Department of Gastroenterology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingwei Wei
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, China
| | - Jun Yao
- Department of Gastroenterology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Ahmadi Asouri S, Aghadavood E, Mirzaei H, Abaspour A, Esmaeil Shahaboddin M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024; 10:e33767. [PMID: 39040379 PMCID: PMC11261894 DOI: 10.1016/j.heliyon.2024.e33767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
Collapse
Affiliation(s)
- Sahar Ahmadi Asouri
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abaspour
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Köhler B, Bes M, Chan HLY, Esteban JI, Piratvisuth T, Sukeepaisarnjaroen W, Tanwandee T, Thongsawat S, Mang A, Morgenstern D, Swiatek-de Lange M, Dayyani F. A new biomarker panel for differential diagnosis of cholangiocarcinoma: Results from an exploratory analysis. Int J Biol Markers 2024; 39:107-117. [PMID: 38549363 DOI: 10.1177/03936155241235185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Diagnosis of cholangiocarcinoma (CCA) can be challenging due to unclear imaging criteria and difficulty obtaining adequate tissue biopsy. Although serum cancer antigen 19-9 and carcinoembryonic antigen have been proposed as potential diagnostic aids, their use remains limited by insufficient sensitivity and specificity. This exploratory analysis aimed to identify individual- and combinations of serum biomarkers to distinguish CCA from hepatocellular carcinoma (HCC) and chronic liver disease (CLD) controls using samples from a published study. METHODS This prospective, multicenter, case-control study included patients aged ≥18 years at high-risk of HCC. Serum and ethylene diamine tetraacetic acid-plasma samples were collected prior to any treatment and confirmed diagnosis of HCC or CCA. Fourteen biomarkers (measured by electrochemiluminescence immunoassays or enzyme-linked immunosorbent assays) were subjected to univariate analysis and 13 included in a multivariate analysis (per selected combinations and exhaustive search). RESULTS Overall, 55 CCA, 306 HCC, and 733 CLD control samples were analyzed. For distinguishing CCA from HCC, alpha-fetoprotein and matrix metalloproteinase-2 (MMP-2) showed the best individual performance (area under the curve (AUC) 86.6% and 84.4%, respectively); tissue inhibitor of metalloproteinase-1 (TIMP-1) was most able to distinguish CCA from CLD (AUC 94.5%) and from HCC + CLD (AUC 88.6%). The combination of MMP-2 and TIMP-1 was the best-performing two-marker panel, with AUC >90% for all comparisons. CONCLUSION MMP-2 and TIMP-1 are promising biomarkers that could support differential diagnosis of CCA. Incorporating these assays into the diagnostic algorithm could provide additional diagnostic information in a non-invasive, rapid manner, and could supplement existing diagnostic methods.
Collapse
Affiliation(s)
- Bruno Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Marta Bes
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Transfusion Safety Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Henry Lik-Yuen Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region of China
| | - Juan Ignacio Esteban
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | | | - Tawesak Tanwandee
- Division of Gastroenterology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Satawat Thongsawat
- Department of Internal Medicine, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai, Thailand
| | - Anika Mang
- Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | - Farshid Dayyani
- Department of Medicine, Division of Hematology/Oncology, University of California in Irvine, Irvine, CA, USA
| |
Collapse
|
8
|
Chen J, Liang J, Xu B, Liang J, Ma M, Wang Z, Zeng G, Xu Q, Liang L, Lai J, Huang L. High Bile Titer and High Bile to Serum Ratio of CYFRA 21 - 1 Reliably Discriminate Malignant Biliary Obstruction Caused by Cholangiocarcinoma. J Gastrointest Cancer 2024; 55:800-808. [PMID: 38280173 DOI: 10.1007/s12029-024-01023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Previously we demonstrated that elevated serum CYFRA 21 - 1 is a reliable diagnostic and prognostic biomarker for biliary tract cancers. This study aims to explore the diagnostic performance of bile CYFRA 21 - 1 (bCYFRA 21 - 1) in discriminating malignant biliary obstruction (MBO) caused by cholangiocarcinoma (CCA). METHODS 77 CCA patients ((17 intrahepatic CCA (iCCA), 49 perihilar CCA (pCCA) and 11 distal CCA (dCCA)) and 43 benign patients with biliary obstruction were enrolled. Serum and bile levels of CYFRA 21 - 1, carcinoembryonic antigen (CEA) and carbohydrate antigen 19 - 9 (CA19-9) were quantified. Diagnostic performances of these biomarkers were estimated by receiver operator characteristic curves. Subgroups analysis of these tumor markers among CCA subtypes was performed. RESULTS High bCYFRA 21 - 1 (cut-off value of 59.25 ng/mL with sensitivity of 0.889 and specificity of 0.750) and high bile to serum ratio of CYFRA 21 - 1 (b/sCYFRA 21 - 1, cut-off value of 31.55 with sensitivity of 0.741 and specificity of 0.778) achieved better diagnostic performance than any other biomarker in discriminating MBO. Subgroup analysis revealed that bCYFRA 21 - 1 was significantly elevated in all CCA subtypes; moreover b/sCYFRA 21 - 1 was upregulated in pCCA and dCCA (the mean b/sCYFRA 21 - 1 of pCCA was highest among CCA subtypes: 57.90, IQR 29.82-112.27). CONCLUSIONS Both high biliary CYFRA 21 - 1 and high bile to serum ratio of CYFRA 21 - 1 were reliable diagnostic biomarkers for MBO caused by CCA.
Collapse
Affiliation(s)
- Jiancong Chen
- Department of PancreatoBiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiahua Liang
- Department of PancreatoBiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Borui Xu
- Department of PancreatoBiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jianbo Liang
- Department of Clinical Laboratory, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Mingjian Ma
- Department of PancreatoBiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Zicheng Wang
- Department of PancreatoBiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Guangyan Zeng
- Department of Gastrointestinal Surgery, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Qiongcong Xu
- Department of PancreatoBiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Lijian Liang
- Department of PancreatoBiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiaming Lai
- Department of PancreatoBiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| | - Li Huang
- Department of PancreatoBiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
9
|
Andrade R, Ribeiro IP, Carreira IM, Tralhão JG. The Diagnostic and Prognostic Potentials of Non-Coding RNA in Cholangiocarcinoma. Int J Mol Sci 2024; 25:6002. [PMID: 38892191 PMCID: PMC11172565 DOI: 10.3390/ijms25116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare biliary tract tumor with high malignancy. CCA is the second most common primary hepatobiliary cancer after hepatocarcinoma. Despite its rarity, the incidence of CCA is steadily increasing globally. Most patients with CCA are asymptomatic in the early stages, resulting in a late-stage diagnosis and poor prognosis. Finding reliable biomarkers is essential to improve CCA's early diagnosis and survival rate. Non-coding RNAs (ncRNAs) are non-protein coding RNAs produced by genomic transcription. This includes microRNAs, long non-coding RNAs, and circular RNAs. ncRNAs have multiple functions in regulating gene expression and are crucial for maintaining normal cell function and developing diseases. Many studies have shown that aberrantly expressed ncRNAs can regulate the occurrence and development of CCA. ncRNAs can be easily extracted and detected through tumor tissue and liquid biopsies, representing a potential tool for diagnosing and prognosis CCA. This review will provide a detailed update on the diagnostic and prognostic potentials of lncRNAs and cirRNAs as biomarkers in CCA.
Collapse
Affiliation(s)
- Rita Andrade
- Surgery Department, Centro Hospitalar e Universitario de Coimbra EPE (CHUC), 3000-075 Coimbra, Portugal;
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (CBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Marques Carreira
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (CBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José Guilherme Tralhão
- Surgery Department, Centro Hospitalar e Universitario de Coimbra EPE (CHUC), 3000-075 Coimbra, Portugal;
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (CBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Zhang L, Jiang G, Lu J, Wang L. LINC00844 suppresses tumor progression and predicts survival outcomes through inhibiting miR-19a-5p in cholangiocarcinoma. Clin Transl Oncol 2024; 26:414-423. [PMID: 37400667 DOI: 10.1007/s12094-023-03254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a heterogeneous malignancy. The aim of the study was to investigate the regulatory role of long noncoding RNA LINC00844 in CCA progression, explore the underlying molecular mechanisms, and to analyze the potential prognostic value of LINC00844 in CCA patients. METHODS Expression of LINC00844 in CCA cell lines and tissues was examined by reverse transcription-quantitative PCR. Cell counting kit-8 assay was used to assess CCA cell proliferation, and the Transwell assay was used to evaluate tumor cell migration and invasion. miRNAs sponged by LINC00844 were predicted and confirmed using a luciferase reporter assay. Kaplan-Meier survival analysis was performed to evaluate the survival prognosis of CCA patients. RESULTS The expression levels of LINC00844 were decreased in CCA tissues and cells. Overexpression of LINC00844 inhibited cell proliferation, migration and invasion in CCA cells. miR-19a-5p is directly targeted by LINC00844, mediating the inhibitory effects of LINC00844 on the proliferation, migration and invasion of CCA cells. LINC00844 and miR-19a-5p expression were associated with differentiation and tumor node metastasis stage in CCA patients. CCA patients with low LINC00844 expression or overexpression of miR-19a-5p had worse overall survival. CONCLUSION The expression levels of LINC00844 were decreased in both CCA tissues and cells, and high LINC00844 inhibited CCA cell proliferation, migration and invasion through sponging miR-19a-5p. Low LINC00844 and high miR-19a-5p expression were associated with worse overall survival in CCA patients. All the data suggested that the LINC00844/miR-19a-5p axis may provide novel therapeutic targets and prognostic biomarkers for CCA patients.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Guohong Jiang
- Department of Clinical Laboratory, Qingdao Chest Hospital, Qingdao, 266043, Shandong, China
| | - Juan Lu
- Department of Clinical Laboratory, The Fifth People's Hospital of Zibo, Zichuan District, No. 102 Zi Mining Bureau, Zibo, 255100, Shandong, China
| | - Lina Wang
- Department of Clinical Laboratory, The Fifth People's Hospital of Zibo, Zichuan District, No. 102 Zi Mining Bureau, Zibo, 255100, Shandong, China.
| |
Collapse
|
11
|
Chang JL, Huang CJ, Tsai YC, Chiang NJ, Huang YS, Hung SC, Shan YS, Lee GB. An integrated microfluidic system for automatic detection of cholangiocarcinoma cells from bile. LAB ON A CHIP 2024; 24:375-382. [PMID: 38126571 DOI: 10.1039/d3lc00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cholangiocarcinoma (CCA) is an aggressive cancer that originates from the epithelial cells lining the bile ducts. Due to its location deep within the body and nonspecific symptoms in the early stages, it is often diagnosed at the advanced stage, thus leading to worse prognosis. Circulating tumor cells within liquid biopsies (i.e. blood) have been considered as promising biomarkers for CCA diagnosis, though current methods for profiling them are not satisfactory in terms of sensitivity and specificity. Herein we developed a new cancer cell probing and immuno-tracking assay known as "CAPTURE", which was performed on an integrated microfluidic system (IMS) to automate CCA diagnosis from bile with a sample amount of only 1 mL. The assay utilized magnetic beads surface-coated with two affinity reagents, a nucleic acid aptamer (HN16) and a glycosaminoglycan (SCH 45-mix), for capturing cancer cells in bile; the "gold standard" anti-epithelial cell adhesion molecule was used as a comparison. In a single-blind test of 54 CCA-positive (+) and 102 CCA-negative (-) clinical samples, sensitivities and specificities of 96 and 80%, respectively, were documented with the CAPTURE assay on-bench. An IMS composed of a centrifugal module for sample pretreatment and a CAPTURE module for cell capture and staining was integrated with a new "vertical integration module" for detecting cancer cells from bile without human intervention. Furthermore, a novel micro-tier structure within the centrifugal module was designed to block passage of gallbladder stones with diameters >1 mm, thereby preventing their interference during the subsequent CAPTURE assay. Improved sensitivity and specificity (100 & 83%, respectively) by using three affinity reagents were achieved on the IMS when using 26 clinical bile samples, confirming its clinical bio-applicability for CCA diagnosis. This approach could be therefore used for early-stage CCA diagnostics, ideally enabling effective treatment, as well as reducing potential for relapse.
Collapse
Affiliation(s)
- Jui-Lin Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chien-Jui Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Nai-Jung Chiang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yu-Shan Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gwo-Bin Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Martini A, Prasai K, Zemla TJ, Ahmed FY, Elnagar MB, Giama NH, Guzzardo V, Biasiolo A, Fassan M, Yin J, Pontisso P, Roberts LR. SerpinB3/4 Expression Is Associated with Poor Prognosis in Patients with Cholangiocarcinoma. Cancers (Basel) 2024; 16:225. [PMID: 38201652 PMCID: PMC10778206 DOI: 10.3390/cancers16010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Cholangiocarcinoma (CCA), the second most common primary liver tumor, is associated with a dismal outcome, and useful prognostic markers are not currently available in clinical practice. SerpinB3, a serine protease inhibitor, was recently found to play a relevant role in malignant transformation in different cancers. The aim of the present study was to determine the expression of SerpinB3/4 in tissue and serum samples of patients with CCA in relation to clinical outcomes. SerpinB3/4 was assessed in the tissue microarrays (TMAs) of 123 surgically resected CCAs. ELISA assays were carried out in 188 patients with CCA to detect the free and IgM-linked forms of SerpinB3/4. Overall survival was analyzed in relation to SerpinB3/4 expression, and Cox models were used to identify the variables associated with survival. High levels of SerpinB3/4 (TMA score 2+/3+) were detected in 15 tumors (12.2%), characterized by a more advanced TNM stage (III/IV: 64.3% vs. 31.3%; p = 0.031) and lower overall patient survival, independently of CCA subclass (intrahepatic CCA: median 1.1 (0.8-Not Estimable, NE) vs. 2.4 (1.8-3.4) years; p = 0.0007; extrahepatic CCA: median 0.8 (0.2-NE) vs. 2.2 (1.5-5.4) years; p = 0.011). Vascular invasion (p = 0.027) and SerpinB3/4 scores (p = 0.0016) were independently associated with mortality in multivariate analysis. Patients who had detectable free or IgM-linked SerpinB3/4 in their serum showed poorer survival (1 vs. 2.4 years, p = 0.015, for free SerpinB3/4, and 1 vs. 2.6 years, p = 0.0026, for SerpinB3/4-IgM). In conclusion, high levels of SerpinB3/4 in tissue and serum in CCA are associated with poor outcomes after surgery, regardless of tumor subclass.
Collapse
Affiliation(s)
- Andrea Martini
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
| | - Kritika Prasai
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| | - Tyler J. Zemla
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (T.J.Z.); (J.Y.)
| | - Fowsiyo Y. Ahmed
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| | - Mamoun B. Elnagar
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| | - Nasra H. Giama
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| | - Vincenza Guzzardo
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
| | - Alessandra Biasiolo
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
| | - Matteo Fassan
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
- Veneto Institute of Oncology, (IOV-IRCCS), via Gattamelata 64, 35128 Padua, Italy
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (T.J.Z.); (J.Y.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
- European Reference Network—ERN RARE-LIVER, 72076 Tübingen, Germany
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| |
Collapse
|
13
|
Dolbnya AD, Popov IA, Pekov SI. Molecular Biomarkers in Cholangiocarcinoma: Focus on Bile. Curr Top Med Chem 2024; 24:722-736. [PMID: 38303538 DOI: 10.2174/0115680266290367240130054142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Hepatobiliary system cancers have demonstrated an increasing incidence rate in the past years. Without the presence of early symptoms, the majority of such cancers manifest with a set of similar symptoms, such as cholestasis resulting in posthepatic icterus. Differential diagnosis of hepatobiliary cancers is required for the therapy selection, however, the similarity of the symptoms complicates diagnostics. Thus, the search for molecular markers is of high interest for such patients. Cholangiocarcinoma (CCA) is characterized by a poor prognosis due to a low resectability rate, which occurs because this disease is frequently beyond the limits of surgical therapy at the time of diagnosis. The CCA is diagnosed by the combination of clinical/biochemical features, radiological methods, and non-specific serum tumor biomarkers, although invasive examination is still needed. The main disadvantage is limited specificity and sensitivity, which complicates early diagnostics. Therefore, prognostic and predictive biomarkers are still lacking and urgently needed for early diagnosis. In contrast to serum, bile is more accessible to identify biliary disease due to its simpler composition. Moreover, bile can contain higher concentrations of tumor biomarkers due to its direct contact with the tumor. It is known that the composition of the main bile component - bile acids, may vary during different diseases of the biliary tract. This review summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in serum and bile and provides an overview of the methods of bile acids analysis.
Collapse
Affiliation(s)
- Andrey D Dolbnya
- Siberian State Medical University, Tomsk, 634050, Russian Federation
| | - Igor A Popov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
| | - Stanislav I Pekov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russian Federation
| |
Collapse
|
14
|
Chen H, Durand S, Bourgin M, Lambertucci F, Motiño O, Montégut L, Li S, Nogueira-Recalde U, Anagnostopoulos G, Maiuri MC, Kroemer G, Martins I. Targeted Analysis of Glycerophospholipids and Mono-, Di-, or Tri-Acylglycerides in Liver Cancer. Methods Mol Biol 2024; 2769:189-198. [PMID: 38315398 DOI: 10.1007/978-1-0716-3694-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The metabolic rearrangements of hepatic metabolism associated with liver cancer are still incompletely understood. There is an ongoing need to identify novel and more efficient diagnostic biomarkers and therapeutic targets based on the metabolic mechanisms of these diseases. In comparison to traditional diagnostic biomarkers, metabolomics is a comprehensive technique for discovering chemical signatures for liver cancer screening, prediction, and earlier diagnosis. Lipids are a large and diverse group of complex biomolecules that are at the heart of liver physiology and play an important role in the development and progression of cancer. In this chapter, we described two detailed protocols for targeted lipids analysis: glycerophospholipids and mono, di, tri-acylglycerides, both by Flow Injection Analysis (FIA) HPLC coupled to a SelexIon/QTRAP 6500+ system. These approaches provide a targeted lipidomic metabolomic signature of dissimilar metabolic disorders affecting liver cancers.
Collapse
Affiliation(s)
- Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
| | - Mélanie Bourgin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Profesor Novoa Santos, A Coruña, Spain
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Naples, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France.
| |
Collapse
|
15
|
Yang Z, Qi Y, Wang Y, Chen X, Wang Y, Zhang X. Identifying Network Biomarkers in Early Diagnosis of Hepatocellular Carcinoma via miRNA-Gene Interaction Network Analysis. Curr Issues Mol Biol 2023; 45:7374-7387. [PMID: 37754250 PMCID: PMC10529263 DOI: 10.3390/cimb45090466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer at the histological level. Despite the emergence of new biological technology, advanced-stage HCC remains largely incurable. The prediction of a cancer biomarker is a key problem for targeted therapy in the disease. METHODS We performed a miRNA-gene integrated analysis to identify differentially expressed miRNAs (DEMs) and genes (DEGs) of HCC. The DEM-DEG interaction network was constructed and analyzed. Gene ontology enrichment and survival analyses were also performed in this study. RESULTS By the analysis of healthy and tumor samples, we found that 94 DEGs and 25 DEMs were significantly differentially expressed in different datasets. Gene ontology enrichment analysis showed that these 94 DEGs were significantly enriched in the term "Liver" with a statistical p-value of 1.71 × 10-26. Function enrichment analysis indicated that these genes were significantly overrepresented in the term "monocarboxylic acid metabolic process" with a p-value = 2.94 × 10-18. Two sets (fourteen genes and five miRNAs) were screened by a miRNA-gene integrated analysis of their interaction network. The statistical analysis of these molecules showed that five genes (CLEC4G, GLS2, H2AFZ, STMN1, TUBA1B) and two miRNAs (hsa-miR-326 and has-miR-331-5p) have significant effects on the survival prognosis of patients. CONCLUSION We believe that our study could provide critical clinical biomarkers for the targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China (X.Z.)
| | - Yuanyuan Qi
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China (X.Z.)
| | - Yijing Wang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China (X.Z.)
| | - Xiangyun Chen
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China (X.Z.)
| | - Yuerong Wang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China (X.Z.)
| | - Xiaoli Zhang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China (X.Z.)
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
16
|
Sun D, Xu Z, Cao S, Wu H, Lu M, Xu Q, Wang K, Ji G. Imaging features based on CT and MRI for predicting prognosis of patients with intrahepatic cholangiocarcinoma: a single-center study and meta-analysis. Cancer Imaging 2023; 23:56. [PMID: 37287062 PMCID: PMC10245452 DOI: 10.1186/s40644-023-00576-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND To evaluate the prognostic role of imaging features based on CT and MRI in intrahepatic cholangiocarcinoma (ICC). METHODS Two hundred and four patients from a single-center database who underwent radical ICC surgery from 2010 to 2019 were enrolled in the study. Cox proportional hazard model was used for survival analysis of imaging features. A meta-analysis was performed to determine imaging features that predict overall survival (OS) and event-free survival (EFS) in ICC. RESULTS In the CT group of the retrospective cohort, tumor multiplicity, infiltrative tumor margin, lymph node metastasis, enhancement pattern in hepatic arterial phase and tumor necrosis correlated with poorer EFS and OS; moreover, enhancing capsules, high carcinoembryonic antigen levels contributed to poor OS. In the MRI group, tumor multiplicity and enhancement pattern were prognostic factors for OS; tumor multiplicity and enhancement pattern resulted in poor EFS. A total of 13 articles containing 1822 patients with ICC were enrolled in the adjusted hazard ratios meta-analysis. The results showed that enhancement pattern and infiltrative tumor margin were predictors of OS and EFS, whereas bile duct invasion was a predictor of OS. CONCLUSIONS Arterial enhancement patterns and tumor margin status were associated with both OS and EFS of ICC patients following resection.
Collapse
Affiliation(s)
- Dongwei Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, 300 Guangzhou RoadJiangsu Province, Nanjing, People's Republic of China
| | - Zhenggang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, 300 Guangzhou RoadJiangsu Province, Nanjing, People's Republic of China
| | - Shuya Cao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, 300 Guangzhou RoadJiangsu Province, Nanjing, People's Republic of China
| | - Huaiyu Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, 300 Guangzhou RoadJiangsu Province, Nanjing, People's Republic of China
| | - Ming Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu Province, China
| | - Qing Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu Province, China
| | - Ke Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, 300 Guangzhou RoadJiangsu Province, Nanjing, People's Republic of China.
| | - Guwei Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, 300 Guangzhou RoadJiangsu Province, Nanjing, People's Republic of China.
| |
Collapse
|
17
|
Muraki R, Morita Y, Ida S, Kitajima R, Furuhashi S, Takeda M, Kikuchi H, Hiramatsu Y, Takanashi Y, Hamaya Y, Sugimoto K, Ito J, Kawata K, Kawasaki H, Sato T, Kahyo T, Setou M, Takeuchi H. Phosphatidylcholine in bile-derived small extracellular vesicles as a novel biomarker of cholangiocarcinoma. Cancer Med 2023. [PMID: 37096775 DOI: 10.1002/cam4.5973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Owing to the lack of definite diagnostic modalities, it is challenging to distinguish malignant cases of cholangiocarcinoma (CCA), which often causes biliary tract obstruction, from benign ones. Here, we investigated a novel lipid biomarker of CCA in bile-derived small extracellular vesicles (sEVs) and developed a simple detection method for clinical application. METHODS Bile samples from seven patients with malignant diseases (hilar CCA = 4, distal CCA = 3) and eight patients with benign diseases (gallstones = 6, primary sclerosing cholangitis = 1, autoimmune pancreatitis = 1) were collected through a nasal biliary drainage tube. sEVs were isolated via serial ultracentrifugation and characterized using nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting (with CD9, CD63, CD81, and TSG101). Comprehensive lipidomic analysis was performed using liquid chromatography-tandem mass spectrometry. Using a measurement kit, we further confirmed whether lipid concentrations could be used as a potential CCA marker. RESULTS Lipidomic analysis of bile sEVs in the two groups identified 209 significantly increased lipid species in the malignant group. When focusing on lipid class, phosphatidylcholine (PC) level was 4.98-fold higher in the malignant group than in the benign group (P = 0.037). The receiver operating characteristic (ROC) curve showed a sensitivity of 71.4%, a specificity of 100%, and an area under the curve (AUC) of 0.857 (95% confidence interval [CI]:0.643-1.000). Using a PC assay kit, the ROC curve showed a cutoff value of 16.1 μg/mL, a sensitivity of 71.4%, a specificity of 100%, and an AUC of 0.839 (95% CI: 0.620-1.000). CONCLUSION PC level in sEVs from human bile is a potential diagnostic marker for CCA and can be assessed by a commercially available assay kit.
Collapse
Affiliation(s)
- Ryuta Muraki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinya Ida
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryo Kitajima
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Furuhashi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Makoto Takeda
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotoshi Kikuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshihiro Hiramatsu
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Perioperative Functioning Care & Support, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jun Ito
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Kawata
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
18
|
Désert R, Giannone F, Schuster C, Baumert TF. Tumor microenvironment-derived serum markers as a new frontier of diagnostic and prognostic assessment in biliary tract cancers. Int J Cancer 2023; 152:804-806. [PMID: 36455586 PMCID: PMC7615303 DOI: 10.1002/ijc.34357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Romain Désert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
| | - Fabio Giannone
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
- Pole Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut hospitalo-universitaire (IHU), Université de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
- Pole Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut hospitalo-universitaire (IHU), Université de Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
19
|
Christensen TD, Jensen C, Larsen O, Leerhøy B, Hansen CP, Madsen K, Høgdall D, Karsdal MA, Chen IM, Nielsen D, Johansen JS, Willumsen N. Blood-based tumor fibrosis markers as diagnostic and prognostic biomarkers in patients with biliary tract cancer. Int J Cancer 2023; 152:1036-1049. [PMID: 36455598 DOI: 10.1002/ijc.34356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Abstract
Biliary tract cancer (BTC) is characterized by a desmoplastic extracellular matrix (ECM). We tested the diagnostic and prognostic use of seven circulating biomarkers of ECM remodeling: pro-peptides of type III collagen (PRO-C3), VI (PRO-C6) and XI (PRO-C11), matrix metalloprotease (MMP) degraded type III collagen (C3M) and type IV collagen (C4M) fragments, granzyme B degraded type IV collagen fragments (C4G) and MMP degraded and citrullinated vimentin (VICM) a marker of macrophage activation. The study included 269 patients with all stages of BTC and 49 patients with benign biliary tract diseases. Serum samples from BTC patients were collected before surgery, or before first- or second-line chemotherapy. C3M, C4M, PRO-C3, PRO-C6, PRO-C11 and VICM levels were elevated in patients with BTC compared to patients with benign disease. Receiver operating characteristics curve analyses identified PRO-C3 (area under curve [AUC] = 0.87) as the ECM marker with the best diagnostic performance. The ECM biomarkers correlated with inflammation biomarkers (C-reactive protein [CRP], interleukin-6 [IL-6] and YKL-40) but not with CA19-9. To investigate prognostic performance, patients were split into three cohorts (first-line, second-line and surgery). Elevated ECM biomarker levels were associated with short overall survival (OS), but only pretreatment PRO-C3 and PRO-C6 were associated with OS in both the first-line and second-line settings when adjusting for CA19-9, performance status and stage in a multivariate Cox-regression analyses. Our results indicate that collagen remodeling is increased in patients with BTC and associated with survival. The collagen pro-peptides (PRO-C3 and PRO-C6) could be used as novel biomarkers in these patients.
Collapse
Affiliation(s)
- Troels D Christensen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | | | - Ole Larsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Bonna Leerhøy
- Digestive Disease Center, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Carsten P Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kasper Madsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Dan Høgdall
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | | | - Inna M Chen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Dorte Nielsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | | |
Collapse
|
20
|
Jeong MH, Son T, Tae YK, Park CH, Lee HS, Chung MJ, Park JY, Castro CM, Weissleder R, Jo JH, Bang S, Im H. Plasmon-Enhanced Single Extracellular Vesicle Analysis for Cholangiocarcinoma Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205148. [PMID: 36698298 PMCID: PMC10015870 DOI: 10.1002/advs.202205148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/01/2023] [Indexed: 05/20/2023]
Abstract
Cholangiocarcinoma (CCA) is a fatal disease often detected late in unresectable stages. Currently, there are no effective diagnostic methods or biomarkers to detect CCA early with high confidence. Analysis of tumor-derived extracellular vesicles (tEVs) harvested from liquid biopsies can provide a new opportunity to achieve this goal. Here, an advanced nanoplasmonic sensing technology is reported, termed FLEX (fluorescence-amplified extracellular vesicle sensing technology), for sensitive and robust single EV analysis. In the FLEX assay, EVs are captured on a plasmonic gold nanowell surface and immunolabeled for cancer-associated biomarkers to identify tEVs. The underlying plasmonic gold nanowell structures then amplify EVs' fluorescence signals, an effective amplification process at the single EV level. The FLEX EV analysis revealed a wide heterogeneity of tEVs and their marker levels. FLEX also detected small tEVs not detected by conventional EV fluorescence imaging due to weak signals. Tumor markers (MUC1, EGFR, and EPCAM) are identified in CCA, and this marker combination is applied to detect tEVs in clinical bile samples. The FLEX assay detected CCA with an area under the curve of 0.93, significantly better than current clinical markers. The sensitive and accurate nanoplasmonic EV sensing technology can aid in early CCA diagnosis.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Taehwang Son
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Yoo Keung Tae
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Chan Hee Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hee Seung Lee
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Moon Jae Chung
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeong Youp Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
- Department of Systems BiologyHarvard Medical SchoolBostonMA02115USA
| | - Jung Hyun Jo
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Seungmin Bang
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hyungsoon Im
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
21
|
Circular RNAs in cholangiocarcinoma. Cancer Lett 2023; 553:215980. [PMID: 36336149 DOI: 10.1016/j.canlet.2022.215980] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Cholangiocarcinoma (CCA) is the most common primary biliary malignancy with an adverse prognosis. Although its incidence is relatively low, early diagnosis is difficult due to the lack of specific symptoms. Current treatment options for CCA are limited, resulting in a low curative rate. Circular RNAs (circRNAs) have become a new research hotspot in recent years, and they are frequently dysregulated in CCA and may become therapeutic targets and prognostic biomarkers of CCA. Accumulating evidence has demonstrated that numerous dysregulated circRNAs are vital players in the etiopathogenesis of CCA. Aberrant expression of specific circRNAs was correlated with unfavourable clinical characteristics in CCA. Many studies have found that circRNAs are involved in the progression and development of CCA through various mechanisms, including competitive inhibition of miRNAs via the competing endogenous RNA (ceRNA) network, interaction with RNA-binding proteins (RBPs), activation of cancer-related signalling pathways, and regulation of proteins and peptides. Additionally, some circRNAs are involved in the inflammatory microenvironment of CCA and play a crucial role in chemotherapy drug resistance. Thus, they are essential for the early diagnosis and prediction of CCA, and more attention should be given to the roles and mechanisms of circRNAs in CCA. In this review, we summarize the abnormal expression of circRNAs in CCA and the specific inflammatory microenvironment involved, as well as the roles and mechanisms of circRNAs in the occurrence and development of CCA. We also review the latest knowle dge on circRNAs in CCA and discuss the challenges associated with the introduction of circRNAs into clinical practice and their potential clinical value.
Collapse
|
22
|
Ohaegbulam KC, Koethe Y, Fung A, Mayo SC, Grossberg AJ, Chen EY, Sharzehi K, Kardosh A, Farsad K, Rocha FG, Thomas CR, Nabavizadeh N. The multidisciplinary management of cholangiocarcinoma. Cancer 2023; 129:184-214. [PMID: 36382577 DOI: 10.1002/cncr.34541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a lethal malignancy of the biliary epithelium that can arise anywhere along the biliary tract. Surgical resection confers the greatest likelihood of long-term survivability. However, its insidious onset, difficult diagnostics, and resultant advanced presentation render the majority of patients unresectable, highlighting the importance of early detection with novel biomarkers. Developing liver-directed therapies and emerging targeted therapeutics may offer improved survivability for patients with unresectable or advanced disease. In this article, the authors review the current multidisciplinary standards of care in resectable and unresectable cholangiocarcinoma, with an emphasis on novel biomarkers for early detection and nonsurgical locoregional therapy options.
Collapse
Affiliation(s)
- Kim C Ohaegbulam
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yilun Koethe
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alice Fung
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Skye C Mayo
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J Grossberg
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Emerson Y Chen
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kaveh Sharzehi
- Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Adel Kardosh
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Khashayar Farsad
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Flavio G Rocha
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Department of Radiation Oncology, Dartmouth School of Medicine, Hanover, New Hampshire, USA
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
23
|
Benson KK, Sheel A, Rahman S, Esnakula A, Manne A. Understanding the Clinical Significance of MUC5AC in Biliary Tract Cancers. Cancers (Basel) 2023; 15:cancers15020433. [PMID: 36672382 PMCID: PMC9856870 DOI: 10.3390/cancers15020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Biliary tract cancers (BTC) arise from biliary epithelium and include cholangiocarcinomas or CCA (including intrahepatic (ICC) and extrahepatic (ECC)) and gallbladder cancers (GBC). They often have poor outcomes owing to limited treatment options, advanced presentations, frequent recurrence, and poor response to available systemic therapy. Mucin 5AC (MUC5AC) is rarely expressed in normal biliary epithelium, but can be upregulated in tissues of benign biliary disease, premalignant conditions (e.g., biliary intraepithelial neoplasia), and BTCs. This mucin's numerous glycoforms can be divided into less-glycosylated immature and heavily-glycosylated mature forms. Reported MUC5AC tissue expression in BTC varies widely, with some associations based on cancer location (e.g., perihilar vs. peripheral ICC). Study methods were variable regarding cancer subtypes, expression positivity thresholds, and MUC5AC glycoforms. MUC5AC can be detected in serum of BTC patients at high concentrations. The hesitancy in developing MUC5AC into a clinically useful biomarker in BTC management is due to variable evidence on the diagnostic and prognostic value. Concrete conclusions on tissue MUC5AC are difficult, but serum detection might be relevant for diagnosis and is associated with poor prognosis. Future studies are needed to further the understanding of the potential clinical value of MUC5AC in BTC, especially regarding predictive and therapeutic value.
Collapse
Affiliation(s)
- Katherine K. Benson
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shafia Rahman
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ashwini Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-366-2982
| |
Collapse
|
24
|
Xu L, Xiao T, Xu L, Yao W. Identification of therapeutic targets and prognostic biomarkers in cholangiocarcinoma via WGCNA. Front Oncol 2022; 12:977992. [PMID: 36591499 PMCID: PMC9795187 DOI: 10.3389/fonc.2022.977992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor for which limited treatment methods and prognostic signatures are available. This study aims to identify potential therapeutic targets and prognostic biomarkers for CCA. Methods Based on differentially expressed genes (DEGs) identified from The Cancer Genome Atlas (TCGA) data, our study identified key gene modules correlated with CCA patient survival by weighted gene coexpression network analysis (WGCNA). Cox regression analysis identified survival-related genes in the key gene modules. The biological properties of the survival-related genes were evaluated by CCK-8 and transwell assays. Then, these genes were used to construct a prognostic signature that was internally and externally validated. Additionally, by combining clinical characteristics with the gene-based prognostic signature, a nomogram for survival prediction was built. Results WGCNA divided the 1531 DEGs into four gene modules, and the yellow gene module was significantly associated with overall survival (OS) and histologic neoplasm grade. Our study identified the lncRNA AGAP2-AS1 and a novel gene, GOLGA7B, that are closely related to survival. GOLGA7B downregulation promoted the invasion, migration and proliferation of CCA cells, but AGAP2-AS1 had the opposite effect. AGAP2-AS1 and GOLGA7B were integrated into a gene-based prognostic signature, and both internal and external validation studies confirmed that this two-gene prognostic signature and nomogram could accurately predict CCA patient prognosis. Conclusion AGAP2-AS1 and GOLGA7B are potential therapeutic targets and prognostic biomarkers for CCA.
Collapse
Affiliation(s)
- Lei Xu
- Department of Pediatrics Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Xiao
- Department of Ultrasonography Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Xu
- Department of Nursing Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Wei Yao,
| |
Collapse
|
25
|
Christensen TD, Maag E, Larsen O, Feltoft CL, Nielsen KR, Jensen LH, Leerhøy B, Hansen CP, Chen IM, Nielsen DL, Johansen JS. Development and validation of circulating protein signatures as diagnostic biomarkers for biliary tract cancer. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 5:100648. [PMID: 36699667 PMCID: PMC9867981 DOI: 10.1016/j.jhepr.2022.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Background & Aims Biliary tract cancer (BTC) is associated with a dismal prognosis, partly because it is typically diagnosed late, highlighting the need for diagnostic biomarkers. The purpose of this project was to identify and validate multiprotein signatures that could differentiate patients with BTC from non-cancer controls. Methods In this study, we included treatment-naïve patients with BTC, healthy controls, and patients with benign conditions including benign biliary tract disease. Participants were divided into three non-overlapping cohorts: a case-control-based discovery cohort (BTC = 186, controls = 249); a case-control-based validation cohort (validation cohort 1: BTC = 113, controls = 241); and a cohort study-based validation cohort including participants (BTC = 8, controls = 132) referred for diagnostic work-up for suspected cancer (validation cohort 2). Immuno-Oncology (I-O)-related proteins were measured in serum and plasma using a proximity extension assay (Olink Proteomics). Lasso and Ridge regressions were used to generate protein signatures of I-O-related proteins and carbohydrate antigen 19-9 (CA19-9) in the discovery cohort. Results Sixteen protein signatures, including 2 to 82 proteins, were generated. All signatures included CA19-9 and chemokine C-C motif ligand 20. Signatures discriminated between patients with BTC vs. controls, with AUCs ranging from 0.95 to 0.99 in the discovery cohort and 0.94 to 0.97 in validation cohort 1. In validation cohort 2, AUCs ranged from 0.84 to 0.94. Nine signatures achieved a specificity of 82% to 84% while keeping a sensitivity of 100% in validation cohort 2. All signatures performed better than CA19-9, and signatures including >15 proteins showed the best performance. Conclusion The study demonstrated that it is possible to generate protein signatures that can successfully differentiate patients with BTC from non-cancer controls. Impact and implications We attempted to find blood sample-based protein profiles that could differentiate patients with biliary tract cancer from those without cancer. Several profiles were found and tested in different groups of patients. The profiles were successful at identifying most patients with biliary tract cancer, pointing towards the utility of multiprotein signatures in this context.
Collapse
Key Words
- AUC, area under receiver-operating characteristic curve
- BBTD, benign biliary tract disease
- BP, best point
- BTC, biliary tract cancer
- CA19-9, carbohydrate antigen 19-9
- CAIX, carbonic anhydrase IX
- CASP8, caspase 8
- CCA, cholangiocarcinoma
- CCL, chemokine (C-C motif) ligand
- CXCR, C-X-C motif chemokine
- EDTA, ethylenediaminetetraacetic acid
- GBC, gall bladder cancer
- I-O, immuno-oncology
- IL, interleukin
- MMP-, matrix metalloproteinase-
- NPX, normalized protein expression
- TME, tumor microenvironment
- biliary tract cancer
- blood protein assay
- cholangiocarcinoma
- dCCA, distal cholangiocarcinoma
- diagnosis
- gall bladder cancer
- iCCA, intrahepatic cholangiocarcinoma
- multi-biomarker signature
- pCCA, perihilar cholangiocarcinoma
Collapse
Affiliation(s)
- Troels D. Christensen
- Deparment of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark,Corresponding author. Address: Department of Oncology, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, DK-2730 Herlev, Denmark; Tel.: +45 38681381.
| | | | - Ole Larsen
- Deparment of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
| | - Claus L. Feltoft
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
| | - Kaspar René Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Bonna Leerhøy
- Digestive Disease Center, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inna M. Chen
- Deparment of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
| | - Dorte L. Nielsen
- Deparment of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Julia S. Johansen
- Deparment of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark,Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
26
|
Vithayathil M, Khan SA. Current epidemiology of cholangiocarcinoma in Western countries. J Hepatol 2022; 77:1690-1698. [PMID: 35977611 DOI: 10.1016/j.jhep.2022.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 12/27/2022]
Abstract
Cholangiocarcinomas are cancers arising from bile ducts, either found within the liver (intrahepatic) or outside the liver (extrahepatic). In Western countries, deaths due to intrahepatic cancers are rising at a higher rate than deaths due to extrahepatic cancers. This may be due to rising cases of liver disease and misclassification of the different cancer types.
Collapse
Affiliation(s)
- Mathew Vithayathil
- Liver Unit, Division of Digestive Diseases, Imperial College London and Imperial College Healthcare NHS Trust, United Kingdom
| | - Shahid A Khan
- Liver Unit, Division of Digestive Diseases, Imperial College London and Imperial College Healthcare NHS Trust, United Kingdom.
| |
Collapse
|
27
|
Bile detection of squamous cell carcinoma antigen (SCCA) in extrahepatic cholangiocarcinoma. Dig Liver Dis 2022; 55:534-540. [PMID: 36369195 DOI: 10.1016/j.dld.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a rare biliary tract tumor with poor prognosis that often is challenging to diagnose and the majority of patients present with advanced stage. Squamous cell carcinoma antigen 1 (SCCA1) overexpression has been found in different tumors associated with poor prognosis and chemoresistance. AIMS To assess the presence and possible prognostic role of SCCA1/2 isoforms in bile and serum of patients with CCA. METHODS Forty seven surgical patients (36 with CCA and 11 with benign diseases) were prospectively included in the study. Serum and bile specimens were collected at the time of surgery and free and IgM-complexed SCCA was quantified by ELISA (Xeptagen, srl). RESULTS Free or IgM linked SCCA was rarely found in serum, while SCCA was detectable in bile samples of patients with CCA, especially in those with extrahepatic form (43% vs 17%, p = 0.008), but not in controls. Despite similar tumor stage, these positive patients presented a trend toward a higher percentage of portal invasion (27% vs 15%) and of tumor recurrence than negative cases (62% vs 40%), although the difference was not statistically significant. CONCLUSION These preliminary results indicate that bile testing for SCCA is a specific marker of extrahepatic CCA, with potential prognostic value.
Collapse
|
28
|
Zhang X, Cai Y, Xiong X, Liu A, Zhou R, You Z, Li F, Cheng N. Comparison of current guidelines and consensus on the management of patients with cholangiocarcinoma: 2022 update. Intractable Rare Dis Res 2022; 11:161-172. [PMID: 36457589 PMCID: PMC9709616 DOI: 10.5582/irdr.2022.01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022] Open
Abstract
As a consequence of breakthroughs in the area of guidelines research, the therapy for cholangiocarcinoma has significantly improved the efficacy rate of diagnosis and survival outcomes. We compared the most recently updated clinical practice guidelines and consensus to provide recommendations based on the diagnostic and therapeutic equipment available in various countries. Following a systematic review, we discovered that these guidelines and consensus had both similarities and differences in terms of what organizations or groups drafted the guidelines and the approach, applicability, content and recent updates of the guidelines as well as in terms of diagnostic and treatment algorithms. The disparities could be attributable to a variety of etiological factors, high risk patients, health resources, medical technology, treatment options, and income levels. Additionally, while complete adoption of guidelines may benefit physicians, patients, and authorities, there remains a disconnect between expected goals and implementation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nansheng Cheng
- Address correspondence to:Nansheng Cheng, Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China. E-mail:
| |
Collapse
|
29
|
Watcharatanyatip K, Chutipongtanate S, Chokchaichamnankit D, Weeraphan C, Mingkwan K, Luevisadpibul V, Newburg DS, Morrow AL, Svasti J, Srisomsap C. Translational Proteomic Approach for Cholangiocarcinoma Biomarker Discovery, Validation, and Multiplex Assay Development: A Pilot Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185904. [PMID: 36144640 PMCID: PMC9501115 DOI: 10.3390/molecules27185904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Cholangiocarcinoma (CCA) is a highly lethal disease because most patients are asymptomatic until they progress to advanced stages. Current CCA diagnosis relies on clinical imaging tests and tissue biopsy, while specific CCA biomarkers are still lacking. This study employed a translational proteomic approach for the discovery, validation, and development of a multiplex CCA biomarker assay. In the discovery phase, label-free proteomic quantitation was performed on nine pooled plasma specimens derived from nine CCA patients, nine disease controls (DC), and nine normal individuals. Seven proteins (S100A9, AACT, AFM, and TAOK3 from proteomic analysis, and NGAL, PSMA3, and AMBP from previous literature) were selected as the biomarker candidates. In the validation phase, enzyme-linked immunosorbent assays (ELISAs) were applied to measure the plasma levels of the seven candidate proteins from 63 participants: 26 CCA patients, 17 DC, and 20 normal individuals. Four proteins, S100A9, AACT, NGAL, and PSMA3, were significantly increased in the CCA group. To generate the multiplex biomarker assays, nine machine learning models were trained on the plasma dynamics of all seven candidates (All-7 panel) or the four significant markers (Sig-4 panel) from 45 of the 63 participants (70%). The best-performing models were tested on the unseen values from the remaining 18 (30%) of the 63 participants. Very strong predictive performances for CCA diagnosis were obtained from the All-7 panel using a support vector machine with linear classification (AUC = 0.96; 95% CI 0.88–1.00) and the Sig-4 panel using partial least square analysis (AUC = 0.94; 95% CI 0.82–1.00). This study supports the use of the composite plasma biomarkers measured by clinically compatible ELISAs coupled with machine learning models to identify individuals at risk of CCA. The All-7 and Sig-4 assays for CCA diagnosis should be further validated in an independent prospective blinded clinical study.
Collapse
Affiliation(s)
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Center for Population Health Science and Analytics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: or (S.C.); (C.S.)
| | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkla 90110, Thailand
| | - Kanokwan Mingkwan
- Division of Surgery, Sapphasitthiprasong Hospital, Ubon Ratchathani 34000, Thailand
| | - Virat Luevisadpibul
- Division of Information and Technology, Ubonrak Thonburi Hospital, Ubon Ratchathani 34000, Thailand
| | - David S. Newburg
- Center for Population Health Science and Analytics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ardythe L. Morrow
- Center for Population Health Science and Analytics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Correspondence: or (S.C.); (C.S.)
| |
Collapse
|
30
|
Pan Y, Shao S, Sun H, Zhu H, Fang H. Bile-derived exosome noncoding RNAs as potential diagnostic and prognostic biomarkers for cholangiocarcinoma. Front Oncol 2022; 12:985089. [PMID: 36091129 PMCID: PMC9449313 DOI: 10.3389/fonc.2022.985089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is one of the most aggressive malignancies, lacking novel diagnostic and prognostic biomarkers. Exosome noncoding RNAs (ncRNA) were previously proposed as a potential source of biomarkers in several cancers. This study aimed to interpret the value of specific bile-derived ncRNA as predictors for early diagnosis and prognosis of CCA. Methods We recruited 100 patients who received endoscopic retrograde cholangiopancreatography at our hospital for bile duct obstruction due to CCA (n = 50) and biliary stone (n = 50). They were further divided into training set and validation set (3:2). A panel of CCA-specific ncRNAs including 5 miRNAs (PMID: 30165035) and 2 lncRNAs (PMID: 29050258) were detected in both serum and bile exosomes. The diagnostic accuracy was assessed using the area under the receiver operating characteristic curve. Logistic analysis was used to classify the potential predictors of CCA and further establish the diagnostic model. And the prognostic value of the ncRNAs was also assessed. Results Exosomes were successfully collected from bile and serum. Exosomal miR-141-3p, miR-200a-3p, miR-200c-3p in serum and bile, as well as miR-200b-3p and ENST00000588480.1 in bile showed AUCs of >0.70 in the diagnosis of CCA. Bile exosomal miR-200c-3p displayed the best diagnostic value with the AUC of 0.87. The combination of serum CA19-9 into the model could increase the AUC to 0.906. Bile exosomal miR-200a-3p and miR-200c-3p were found to be independent predictors of CCA. Among exosomal ncRNAs in human bile and blood, 3 (serum and bile exosomal miR-200c-3p, bile exosomal miR-200a-3p) showed significant value in predicting cancer recurrence and 1 (serum exosomal miR-200c-3p) had great predictive ability of cancer death. High levels of serum exosomal miR-200c-3p showed unfavorable tumor-free survival and overall survival. Conclusion The bile exosomal miR-200 family, particularly miR-200c-3p, was verified to be a potential biomarker for the early detection of CCA. The diagnostic ability of exosomal ncRNAs in human bile is better than that in blood. Moreover, high levels of bile exosomal miR-200a-3p, miR-200c-3p, and serum exosomal miR-200c-3p represented adverse clinical outcomes.
Collapse
Affiliation(s)
- Yan Pan
- Department of Integrative Oncology, The First People’s Hospital of Fuyang, Fuyang First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Shao
- Department of Oncological Surgery, The First People’s Hospital of Fuyang, Fuyang First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Sun
- Department of Oncological Surgery, The First People’s Hospital of Fuyang, Fuyang First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Huafeng Zhu
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixing Fang
- Department of Oncological Surgery, The First People’s Hospital of Fuyang, Fuyang First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haixing Fang,
| |
Collapse
|
31
|
Haag F, Manikkam A, Kraft D, Bär C, Wilke V, Nowak AJ, Bertrand J, Omari J, Pech M, Gylstorff S, Relja B. Selective Internal Radiotherapy Changes the Immune Profiles of Extracellular Vesicles and Their Immune Origin in Patients with Inoperable Cholangiocarcinoma. Cells 2022; 11:2309. [PMID: 35954154 PMCID: PMC9367375 DOI: 10.3390/cells11152309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
The incidence of cholangiocellular carcinoma (CCA) is rising worldwide. As there are no specific early symptoms or specific markers of CCA, it is often diagnosed in later inoperable stages. Accumulating evidence underlines the importance of radiation therapy in the induction of antitumor immunity. The surface protein composition on extracellular vesicles (EVs) relates to originating cells and thus may play a role in vesicle function. We assessed immune profiles of EVs and their immune origin in patients with inoperable CCA prior and after selective internal radiotherapy (SIRT). A total of 47 CCA patients receiving SIRT and 12 healthy volunteers (HV) were included. Blood was withdrawn before therapy (pre T) and after T. EVs were purified from plasma by cluster of differentiation (CD)9-, CD63-, and CD81-immunobead isolation. To detect differently abundant surface markers, dynamic range and EVs input quality were assessed. A total of 37 EVs surface markers were measured by flow cytometry and correlated either with the administered activity dose (MBq) or with the interval until death (month). EVs phenotyping identified lymphocytes, B cells, NK cells, platelets, endothelial cells, leukocyte activation, B cell activation, T and B cell adhesion markers, stem/progenitor cells, and antigen-presenting cells (APC) as EVs-parenteral cells. CD4 and CD8 significantly declined, while other markers significantly increased in CCA patients pre T vs. HV. Platelets-deriving EVs significantly decreased, normalizing to levels of HV but still significantly increasing vs. HV post SIRT. B cells-deriving EVs significantly increased pre T vs. HV, positively correlating with administered activity dose. MHCII and CD40 EVs significantly increased pre SIRT and negatively correlated with administered activity dose, while EVs from antigen presenting cells and CD49e pre SIRT positively correlated with survival time after therapy. Increased levels of CD24 and CD44 in cancer pre T were significantly decreased post T. Among the heterogeneity of EVs that was demonstrated, in particular, B cells-deriving, MHCII, and CD40 positive or APC-deriving EVs need to be further studied for their diagnostic or prognostic relevance in clinical scenarios.
Collapse
Affiliation(s)
- Florian Haag
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
- Research Campus STIMULATE, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Anjana Manikkam
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
- Research Campus STIMULATE, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Daniel Kraft
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
| | - Caroline Bär
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
| | - Vanessa Wilke
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
| | - Aleksander J. Nowak
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
- Research Campus STIMULATE, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Jazan Omari
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
- Research Campus STIMULATE, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Maciej Pech
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
- Research Campus STIMULATE, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Severin Gylstorff
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
- Research Campus STIMULATE, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (F.H.); (A.M.); (D.K.); (C.B.); (V.W.); (A.J.N.); (J.O.); (M.P.); (S.G.)
- Research Campus STIMULATE, Otto-von-Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
32
|
Abstract
Bile duct stenosis continues to present a diagnostic dilemma for clinicians. It is important to establish the benign or malignant nature of the stricture early in order to avoid any unnecessary delay in medical treatment or surgery. Tissue acquisition for histological diagnosis is particularly crucial when the initial diagnostic work up is inconclusive. The diagnostic yield from the conventional endoscopic retrograde cholangiopancreatography (ERCP) with brushing and biopsy is suboptimal. Patients with indeterminate biliary strictures (IDBSs) often require a multi-disciplinary diagnostic approach and additional endoscopic evaluation, including cholangioscopy and endoscopic ultrasound, before a final diagnosis can be reached. In this article, we discuss the recent endoscopic advancements in the diagnosis of biliary stricture with a focus on the roles of cholangioscopy and endoscopic ultrasound (EUS).
Collapse
|
33
|
Arechederra M, Rullán M, Amat I, Oyon D, Zabalza L, Elizalde M, Latasa MU, Mercado MR, Ruiz-Clavijo D, Saldaña C, Fernández-Urién I, Carrascosa J, Jusué V, Guerrero-Setas D, Zazpe C, González-Borja I, Sangro B, Herranz JM, Purroy A, Gil I, Nelson LJ, Vila JJ, Krawczyk M, Zieniewicz K, Patkowski W, Milkiewicz P, Cubero FJ, Alkorta-Aranburu G, G Fernandez-Barrena M, Urman JM, Berasain C, Avila MA. Next-generation sequencing of bile cell-free DNA for the early detection of patients with malignant biliary strictures. Gut 2022; 71:1141-1151. [PMID: 34285068 PMCID: PMC9120390 DOI: 10.1136/gutjnl-2021-325178] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Despite significant progresses in imaging and pathological evaluation, early differentiation between benign and malignant biliary strictures remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary strictures, enabling the collection of bile. We tested the diagnostic potential of next-generation sequencing (NGS) mutational analysis of bile cell-free DNA (cfDNA). DESIGN A prospective cohort of patients with suspicious biliary strictures (n=68) was studied. The performance of initial pathological diagnosis was compared with that of the mutational analysis of bile cfDNA collected at the time of first ERCP using an NGS panel open to clinical laboratory implementation, the Oncomine Pan-Cancer Cell-Free assay. RESULTS An initial pathological diagnosis classified these strictures as of benign (n=26), indeterminate (n=9) or malignant (n=33) origin. Sensitivity and specificity of this diagnosis were 60% and 100%, respectively, as on follow-up 14 of the 26 and eight of the nine initially benign or indeterminate strictures resulted malignant. Sensitivity and specificity for malignancy of our NGS assay, herein named Bilemut, were 96.4% and 69.2%, respectively. Importantly, one of the four Bilemut false positives developed pancreatic cancer after extended follow-up. Remarkably, the sensitivity for malignancy of Bilemut was 100% in patients with an initial diagnosis of benign or indeterminate strictures. Analysis of 30 paired bile and tissue samples also demonstrated the superior performance of Bilemut. CONCLUSION Implementation of Bilemut at the initial diagnostic stage for biliary strictures can significantly improve detection of malignancy, reduce delays in the clinical management of patients and assist in selecting patients for targeted therapies.
Collapse
Affiliation(s)
- Maria Arechederra
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - María Rullán
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Irene Amat
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Pathology, Navarra University Hospital Complex, Pamplona, Spain
| | - Daniel Oyon
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Lucia Zabalza
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Maria Elizalde
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Maria R Mercado
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Pathology, Navarra University Hospital Complex, Pamplona, Spain
| | - David Ruiz-Clavijo
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Cristina Saldaña
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Ignacio Fernández-Urién
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Juan Carrascosa
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Vanesa Jusué
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - David Guerrero-Setas
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Cruz Zazpe
- Department of General Surgery, Navarra University Hospital Complex, Pamplona, Spain
| | | | - Bruno Sangro
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Liver Unit, Dept. of Internal Medicine, Clinica Universitaria de Navarra, Pamplona, Spain,CIBEREHD, Madrid, Spain
| | - Jose M Herranz
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain,CIBEREHD, Madrid, Spain
| | - Ana Purroy
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Biobank Unit, Navarrabiomed, Pamplona, Spain
| | - Isabel Gil
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Biobank Unit, Navarrabiomed, Pamplona, Spain
| | - Leonard J Nelson
- Institute for Bioengineering, University of Edinburgh, Edinburgh, UK
| | - Juan J Vila
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany,Liver and Internal Medicine Unit, Medical University of Warsaw, Warszawa, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Waldemar Patkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland,Translational Medicine Group, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Francisco Javier Cubero
- CIBEREHD, Madrid, Spain,Department of Immunology, Ophtalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,CIBEREHD, Madrid, Spain
| | - Jesus M Urman
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain .,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain.,CIBEREHD, Madrid, Spain
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain .,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain.,CIBEREHD, Madrid, Spain
| |
Collapse
|
34
|
Chan HLY, Vogel A, Berg T, De Toni EN, Kudo M, Trojan J, Eiblmaier A, Klein H, Hegel JK, Sharma A, Madin K, Rolny V, Lisy M, Piratvisuth T. Performance evaluation of the Elecsys
PIVKA‐II
and Elecsys AFP assays for hepatocellular carcinoma diagnosis. JGH Open 2022; 6:292-300. [PMID: 35601131 PMCID: PMC9120909 DOI: 10.1002/jgh3.12720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Background and Aims Prothrombin induced by vitamin K absence‐II (PIVKA‐II) is a serum biomarker linked to hepatocellular carcinoma (HCC), showing superiority to alpha‐fetoprotein (AFP) for early disease detection. We aimed to assess the clinical and analytical performance of the Elecsys® PIVKA‐II immunoassay in diagnosing HCC and evaluate PIVKA‐II's technical performance. Methods Serum samples from adult cases (i.e. patients with a first‐time HCC diagnosis; n = 168) and disease controls (i.e. patients without HCC with an at‐risk condition; n = 208) were assessed. An AFP cut‐off of 20 ng/mL was used to differentiate between HCC cases and disease controls. Clinical performance of the Elecsys PIVKA‐II assay was compared with that of comparator assays (Lumipulse G PIVKA‐II, μTASWako DCP, ARCHITECT PIVKA‐II) using receiver operating characteristic curve analysis to determine the area under the curve (AUC) values. Results The Elecsys PIVKA‐II assay compared favorably with comparator assays. Using a 28.4 ng/mL cut‐off, the Elecsys PIVKA‐II assay detected HCC with 86.9% sensitivity and 83.7% specificity. Clinical performance of the Elecsys PIVKA‐II assay (AUC: 90.8%) was equivalent to that of comparator assays (AUC: 88.3–89.6%). Relatively high PIVKA‐II concentrations were observed for cholangiocarcinoma and pancreatic cancer with the Elecsys assay in specificity panel analyses, indicating that high PIVKA‐II concentrations should not be used alone in the absence of other clinical data. Conclusions The Elecsys PIVKA‐II assay showed good analytical performance under routine laboratory conditions, comparing favorably with comparator assays. These findings support the suitability of the Elecsys PIVKA‐II assay as an aid in HCC diagnosis.
Collapse
Affiliation(s)
- Henry L Y Chan
- Faculty of Medicine The Chinese University of Hong Kong Hong Kong China
| | - Arndt Vogel
- Clinic for Gastroenterology, Hepatology and Endocrinology Medizinische Hochschule Hannover Hannover Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II Leipzig University Medical Center Leipzig Germany
| | - Enrico N De Toni
- Department of Medicine II University Hospital, Ludwig Maximilian University of Munich Munich Germany
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology Kindai University Faculty of Medicine Osaka Japan
| | - Jörg Trojan
- Department of Gastrointestinal Oncology Goethe Universitat Frankfurt Frankfurt Germany
| | - Anja Eiblmaier
- Laboratory Services Microcoat Biotechnologie GmbH Bernried Germany
| | | | - Johannes Kolja Hegel
- Studies, Collaborations, and Innovation Management Labor Berlin Charité Vivantes Services GmbH Berlin Germany
| | - Ashish Sharma
- Global Medical and Scientific Affairs Roche Diagnostics International Ltd Rotkreuz Switzerland
| | - Kairat Madin
- Global Study Management Roche Diagnostics GmbH Penzberg Germany
| | - Vinzent Rolny
- New Technology Statistics Roche Diagnostics GmbH Penzberg Germany
| | - Marcus‐Rene Lisy
- Research and Development Roche Diagnostics GmbH Penzberg Germany
| | | |
Collapse
|
35
|
Izquierdo-Sanchez L, Lamarca A, La Casta A, Buettner S, Utpatel K, Klümpen HJ, Adeva J, Vogel A, Lleo A, Fabris L, Ponz-Sarvise M, Brustia R, Cardinale V, Braconi C, Vidili G, Jamieson NB, Macias RI, Jonas JP, Marzioni M, Hołówko W, Folseraas T, Kupčinskas J, Sparchez Z, Krawczyk M, Krupa Ł, Scripcariu V, Grazi GL, Landa-Magdalena A, Ijzermans JN, Evert K, Erdmann JI, López-López F, Saborowski A, Scheiter A, Santos-Laso A, Carpino G, Andersen JB, Marin JJ, Alvaro D, Bujanda L, Forner A, Valle JW, Koerkamp BG, Banales JM. Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. J Hepatol 2022; 76:1109-1121. [PMID: 35167909 DOI: 10.1016/j.jhep.2021.12.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a rare and heterogeneous biliary cancer, whose incidence and related mortality is increasing. This study investigates the clinical course of CCA and subtypes (intrahepatic [iCCA], perihilar [pCCA], and distal [dCCA]) in a pan-European cohort. METHODS The ENSCCA Registry is a multicenter observational study. Patients were included if they had a histologically proven diagnosis of CCA between 2010-2019. Demographic, histomorphological, biochemical, and clinical studies were performed. RESULTS Overall, 2,234 patients were enrolled (male/female=1.29). iCCA (n = 1,243) was associated with overweight/obesity and chronic liver diseases involving cirrhosis and/or viral hepatitis; pCCA (n = 592) with primary sclerosing cholangitis; and dCCA (n = 399) with choledocholithiasis. At diagnosis, 42.2% of patients had local disease, 29.4% locally advanced disease (LAD), and 28.4% metastatic disease (MD). Serum CEA and CA19-9 showed low diagnostic sensitivity, but their concomitant elevation was associated with increased risk of presenting with LAD (odds ratio 2.16; 95% CI 1.43-3.27) or MD (odds ratio 5.88; 95% CI 3.69-9.25). Patients undergoing resection (50.3%) had the best outcomes, particularly with negative-resection margin (R0) (median overall survival [mOS] = 45.1 months); however, margin involvement (R1) (hazard ratio 1.92; 95% CI 1.53-2.41; mOS = 24.7 months) and lymph node invasion (hazard ratio 2.13; 95% CI 1.55-2.94; mOS = 23.3 months) compromised prognosis. Among patients with unresectable disease (49.6%), the mOS was 10.6 months for those receiving active palliative therapies, mostly chemotherapy (26.2%), and 4.0 months for those receiving best supportive care (20.6%). iCCAs were associated with worse outcomes than p/dCCAs. ECOG performance status, MD and CA19-9 were independent prognostic factors. CONCLUSION CCA is frequently diagnosed at an advanced stage, a proportion of patients fail to receive cancer-specific therapies, and prognosis remains dismal. Identification of preventable risk factors and implementation of surveillance in high-risk populations are required to decrease cancer-related mortality. LAY SUMMARY This is, to date, the largest international (pan-European: 26 hospitals and 11 countries) observational study, in which the course of cholangiocarcinoma has been investigated, comparing the 3 subtypes based on the latest International Classification of Diseases 11th Edition (ICD-11) (i.e., intrahepatic [2C12], perihilar [2C18], or distal [2C15] affected bile ducts), which come into effect in 2022. General and tumor-type specific features at diagnosis, risk factors, biomarker accuracy, as well as patient management and outcomes, are presented and compared, outlining the current clinical state of cholangiocarcinoma in Europe.
Collapse
Affiliation(s)
- Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, "Instituto de Salud Carlos III" (ISCIII), Madrid, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust/Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Adelaida La Casta
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Stefan Buettner
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Jorge Adeva
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ana Lleo
- Division of Internal Medicine and Hepatology, Humanitas Clinical Research Center IRCSS, Humanitas University, Rozzano, Milan, Italy
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy; Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Mariano Ponz-Sarvise
- Clinica Universidad de Navarra and Program in Solid Tumors (CIMA), Universidad de Navarra, IDISNA, Pamplona, Spain
| | - Raffaele Brustia
- Department of Hepatobiliary and Liver Transplantation Surgery, AP-HP, Hôpital Pitié Salpêtrière, CRSA, Sorbonne Université, Paris, France
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino "Sapienza" University of Rome, Latina, Italy
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, UK; The Royal Marsden NHS Trust, London & Surrey, UK
| | - Gianpaolo Vidili
- Department of Medical, Surgical and Experimental Sciences, Clinica Medica Unit, University of Sassari, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | - Nigel B Jamieson
- Institute of Cancer Sciences, University of Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Rocio Ir Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, "Instituto de Salud Carlos III" (ISCIII), Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Biomedical Research Institute (IBSAL), Salamanca, Spain
| | - Jan Philipp Jonas
- University Hospital Zurich, Department of Visceral- and Transplant Surgery, Zurich, Switzerland; Clinic Favoriten, Department for Surgery, Wien, Austria
| | - Marco Marzioni
- Università Politecnica delle Marche, Department of Gastroenterology, Ancona, Italy
| | - Wacław Hołówko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Juozas Kupčinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Zeno Sparchez
- 3rd Medical Department, Institute for Gastroenterology and Hepatology, University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Marcin Krawczyk
- Department of Medicine II Saarland University Medical Center, Saarland University, Homburg, Germany; Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Krupa
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1 in Rzeszów, Poland; Medical Department, University of Rzeszów, Poland
| | - Viorel Scripcariu
- Department of Morpho-Functional Sciences I, Department of Surgery II, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | | | - Ana Landa-Magdalena
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Jan Nm Ijzermans
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Joris I Erdmann
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Flora López-López
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jose Jg Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, "Instituto de Salud Carlos III" (ISCIII), Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Biomedical Research Institute (IBSAL), Salamanca, Spain
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, "Instituto de Salud Carlos III" (ISCIII), Madrid, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, "Instituto de Salud Carlos III" (ISCIII), Madrid, Spain; Liver Unit. Barcelona Clinic Liver Cancer (BCLC) group. Hospital Clinic Barcelona. IDIBAPS. University of Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust/Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, "Instituto de Salud Carlos III" (ISCIII), Madrid, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
36
|
Ohtsubo K, Miyake K, Arai S, Fukuda K, Suzuki C, Kotani H, Tanimoto A, Nishiyama A, Nanjo S, Yamashita K, Takeuchi S, Yano S. Methylation of Tumor Suppressive miRNAs in Plasma from Patients With Pancreaticobiliary Diseases. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:378-383. [PMID: 35530650 PMCID: PMC9066530 DOI: 10.21873/cdp.10120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM We previously reported the usefulness of aberrant methylation of tumor suppressive miRNAs in bile to discriminate pancreaticobiliary cancers (PBCs) from benign pancreaticobiliary diseases (BD). Here we performed a methylation analysis of plasma miRNAs to identify miRNAs specific for PBCs. PATIENTS AND METHODS Plasma was collected from 80 patients with pancreatic cancer (PC); 18 with biliary tract cancer (BTC) and 28 with BD. Sequences encoding 3 tumor suppressive miRNAs (miR-200a, -200b, and -1247) were PCR amplified and sequenced, and their methylation rates were determined. RESULTS The methylation rate of miR-1247 was significantly higher in patients with BTC than in those with BD, and tended to be higher in patients with PC than in those with BD. Furthermore, it was significantly higher in three patients with stages I/II BTC than in those with BD. CONCLUSION Methylation of miR-1247 in plasma may be useful to distinguish BTC from BD.
Collapse
Affiliation(s)
- Koushiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kunio Miyake
- Department of Health Sciences, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Chiaki Suzuki
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kotani
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kaname Yamashita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
37
|
Losurdo G, Gravina AG, Maroni L, Gabrieletto EM, Ianiro G, Ferrarese A. Future challenges in gastroenterology and hepatology, between innovations and unmet needs: A SIGE Young Editorial Board's perspective. Dig Liver Dis 2022; 54:583-597. [PMID: 34509394 DOI: 10.1016/j.dld.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Gastroenterology, Digestive Endoscopy and Hepatology have faced significant improvements in terms of diagnosis and therapy in the last decades. However, many fields still remain poorly explored, and many questions unanswered. Moreover, basic-science, as well as translational and clinical discoveries, together with technology advancement will determine further steps toward a better, refined care for many gastroenterological disorders in the future. Therefore, the Young Investigators of the Italian Society of Gastroenterology (SIGE) joined together, offering a perspective on major future innovations in some hot clinical topics in Gastroenterology, Endoscopy, and Hepatology, as well as the current pitfalls and the grey zones.
Collapse
Affiliation(s)
- Giuseppe Losurdo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro' of Bari; PhD Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Emergency and Organ Transplantation, University 'Aldo Moro' of Bari.
| | - Antonietta Gerarda Gravina
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Maroni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | | | - Gianluca Ianiro
- Digestive Disease Center, Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alberto Ferrarese
- Gastroenterology and Hepatology, Azienda Ospedaliera Universitaria Integrata, Ospedale Borgo Trento, Verona, Italy
| |
Collapse
|
38
|
Tan X, Bednarsch J, Rosin M, Appinger S, Liu D, Wiltberger G, Garcia Vallejo J, Lang SA, Czigany Z, Boroojerdi S, Gaisa NT, Boor P, Bülow RD, De Vos-Geelen J, Valkenburg-van Iersel L, Clahsen-van Groningen MC, de Jong EJM, Groot Koerkamp B, Doukas M, Rocha FG, Luedde T, Klinge U, Sivakumar S, Neumann UP, Heij LR. PD-1+ T-Cells Correlate with Nerve Fiber Density as a Prognostic Biomarker in Patients with Resected Perihilar Cholangiocarcinoma. Cancers (Basel) 2022; 14:cancers14092190. [PMID: 35565318 PMCID: PMC9103905 DOI: 10.3390/cancers14092190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Recent studies have identified Nerve Fiber Density (NFD) as a prognostic biomarker for Cholangiocarcinoma (CCA). In the field of CCA treatment with checkpoint inhibitors (ICI) is increasing but not all patients respond. Good biomarkers to predict response to ICI are lacking. The present study investigates the immune cell composition and expression of checkpoint molecules in relation to NFD in perihilar cholangiocarcinoma (pCCA) patients. Our study identified NFD to correlate with PD-1+ T cells as a biomarker indicative for a good prognosis. Abstract Background and Aims: Perihilar cholangiocarcinoma (pCCA) is a hepatobiliary malignancy, with a dismal prognosis. Nerve fiber density (NFD)—a novel prognostic biomarker—describes the density of small nerve fibers without cancer invasion and is categorized into high numbers and low numbers of small nerve fibers (high vs low NFD). NFD is different than perineural invasion (PNI), defined as nerve fiber trunks invaded by cancer cells. Here, we aim to explore differences in immune cell populations and survival between high and low NFD patients. Approach and Results: We applied multiplex immunofluorescence (mIF) on 47 pCCA patients and investigated immune cell composition in the tumor microenvironment (TME) of high and low NFD. Group comparison and oncological outcome analysis was performed. CD8+PD-1 expression was higher in the high NFD than in the low NFD group (12.24 × 10−6 vs. 1.38 × 10−6 positive cells by overall cell count, p = 0.017). High CD8+PD-1 expression was further identified as an independent predictor of overall (OS; Hazard ratio (HR) = 0.41; p = 0.031) and recurrence-free survival (RFS; HR = 0.40; p = 0.039). Correspondingly, the median OS was 83 months (95% confidence interval (CI): 18–48) in patients with high CD8+PD-1+ expression compared to 19 months (95% CI: 5–93) in patients with low CD8+PD-1+ expression (p = 0.018 log rank). Furthermore, RFS was significantly lower in patients with low CD8+PD-1+ expression (14 months (95% CI: 6–22)) compared to patients with high CD8+PD-1+ expression (83 months (95% CI: 17–149), p = 0.018 log rank). Conclusions: PD-1+ T-cells correlate with high NFD as a prognostic biomarker and predict good survival; the biological pathway needs to be investigated.
Collapse
Affiliation(s)
- Xiuxiang Tan
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
| | - Mika Rosin
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
| | - Simone Appinger
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
| | - Dong Liu
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
| | - Georg Wiltberger
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
| | - Juan Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands;
| | - Sven Arke Lang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
| | - Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
| | - Shiva Boroojerdi
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
| | - Nadine T. Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany; (N.T.G.); (P.B.); (R.D.B.)
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany; (N.T.G.); (P.B.); (R.D.B.)
| | - Roman David Bülow
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany; (N.T.G.); (P.B.); (R.D.B.)
| | - Judith De Vos-Geelen
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.D.V.-G.); (L.V.-v.I.); (E.J.M.d.J.)
| | - Liselot Valkenburg-van Iersel
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.D.V.-G.); (L.V.-v.I.); (E.J.M.d.J.)
| | | | - Evelien J. M. de Jong
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.D.V.-G.); (L.V.-v.I.); (E.J.M.d.J.)
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.C.C.-v.G.); (M.D.)
| | - Flavio G. Rocha
- Division of Surgical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, 40225 Düsseldorf, Germany;
| | - Uwe Klinge
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
| | - Shivan Sivakumar
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
- Department of Surgery, Maastricht University Medical Centre (MUMC), 6229 HX Maastricht, The Netherlands
| | - Lara Rosaline Heij
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (X.T.); (J.B.); (M.R.); (S.A.); (D.L.); (G.W.); (S.A.L.); (Z.C.); (S.B.); (U.K.); (U.P.N.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany; (N.T.G.); (P.B.); (R.D.B.)
- Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.C.C.-v.G.); (M.D.)
- Correspondence:
| |
Collapse
|
39
|
Wu Y, Hayat K, Hu Y, Yang J. Long Non-Coding RNAs as Molecular Biomarkers in Cholangiocarcinoma. Front Cell Dev Biol 2022; 10:890605. [PMID: 35573683 PMCID: PMC9093656 DOI: 10.3389/fcell.2022.890605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary system cancer that has the characteristics of strong invasiveness, poor prognosis, and few therapy choices. Furthermore, the absence of precise biomarkers for early identification and prognosis makes it hard to intervene in the early phase of initial diagnosis or recurring cholangiocarcinoma following surgery. Encouragingly, previous studies found that long non-coding RNA (lncRNA), a subgroup of RNA that is more than 200 nucleotides long, can affect cell proliferation, migration, apoptosis, and even drug resistance by altering numerous signaling pathways, thus reaching pro-cancer or anti-cancer outcomes. This review will take a retrospective view of the recent investigations on the work of lncRNAs in cholangiocarcinoma progression and the potential of lncRNAs serving as promising clinical biomarkers and therapeutic targets for CCA.
Collapse
Affiliation(s)
- Yanhua Wu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Khizar Hayat
- Department of Gastroenterology, International Education College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Jianfeng Yang,
| |
Collapse
|
40
|
Mocan LP, Ilieș M, Melincovici CS, Spârchez M, Crăciun R, Nenu I, Horhat A, Tefas C, Spârchez Z, Iuga CA, Mocan T, Mihu CM. Novel approaches in search for biomarkers of cholangiocarcinoma. World J Gastroenterol 2022; 28:1508-1525. [PMID: 35582128 PMCID: PMC9048460 DOI: 10.3748/wjg.v28.i15.1508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) arises from the ductular epithelium of the biliary tree, either within the liver (intrahepatic CCA) or more commonly from the extrahepatic bile ducts (extrahepatic CCA). This disease has a poor prognosis and a growing worldwide prevalence. The poor outcomes of CCA are partially explained by the fact that a final diagnosis is challenging, especially the differential diagnosis between hepatocellular carcinoma and intrahepatic CCA, or distal CCA and pancreatic head adenocarcinoma. Most patients present with an advanced disease, unresectable disease, and there is a lack in non-surgical therapeutic modalities. Not least, there is an acute lack of prognostic biomarkers which further complicates disease management. Therefore, there is a dire need to find alternative diagnostic and follow-up pathways that can lead to an accurate result, either singlehandedly or combined with other methods. In the "-omics" era, this goal can be attained by various means, as it has been successfully demonstrated in other primary tumors. Numerous variants can reach a biomarker status ranging from circulating nucleic acids to proteins, metabolites, extracellular vesicles, and ultimately circulating tumor cells. However, given the relatively heterogeneous data, extracting clinical meaning from the inconsequential noise might become a tall task. The current review aims to navigate the nascent waters of the non-invasive approach to CCA and provide an evidence-based input to aid clinical decisions and provide grounds for future research.
Collapse
Affiliation(s)
- Lavinia-Patricia Mocan
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Maria Ilieș
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Mihaela Spârchez
- 2nd Pediatrics Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Rareș Crăciun
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Iuliana Nenu
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Adelina Horhat
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristian Tefas
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Zeno Spârchez
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Tudor Mocan
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| |
Collapse
|
41
|
Yamamoto Y, Sugimoto A, Maruo K, Tsujio G, Sera T, Kushiyama S, Nishimura S, Kuroda K, Togano S, Eguchi S, Tanaka R, Kimura K, Amano R, Ohira M, Yashiro M. CXCR2 signaling might have a tumor-suppressive role in patients with cholangiocarcinoma. PLoS One 2022; 17:e0266027. [PMID: 35377900 PMCID: PMC8979434 DOI: 10.1371/journal.pone.0266027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We reported that chemokine C-X-C motif receptor 2 (CXCR2) signaling appears to play an important role in the pathogenic signaling of gastric cancer (GC), and although CXCR2 may have a role in other solid cancers, the significance of CXCR2 in cholangiocarcinoma (CCA) has not been evaluated. Herein, we determined the clinicopathologic significance of CXCL1-CXCR2 signaling in CCA. MATERIALS AND METHODS Two human CCA cell lines, OCUG-1 and HuCCT1, were used. CXCR2 expression was examined by western blotting. We investigated the effects of CXCL1 on the proliferation (by MTT assay) and migration activity (by a wound-healing assay) of each cell line. Our immunohistochemical study of the cases of 178 CCA patients examined the expression levels of CXCR2 and CXCL1, and we analyzed the relationship between these expression levels and the patients' clinicopathologic features. RESULTS CXCR2 was expressed on both CCA cell lines. CXCL1 significantly inhibited both the proliferative activity and migratory activity of both cell lines. CXCL1 and CXCR2 were immunohistochemically expressed in 73% and 18% of the CCA cases, respectively. The CXCL1-positive group was significantly associated with negative lymph node metastasis (p = 0.043). The CXCR2-positive group showed significantly better survival (p = 0.042, Kaplan-Meier). A multivariate logistic regression analysis revealed that CXCR2 expression (p = 0.031) and lymph node metastasis (p = 0.004) were significantly correlated with the CCA patients' overall survival. CONCLUSION CXCR2 signaling might exert a tumor-suppressive effect on CCA cells. CXCR2 might be a useful independent prognostic marker for CCA patients after surgical resection.
Collapse
Affiliation(s)
- Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Maruo
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shingo Togano
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinpei Eguchi
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ryota Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Kimura
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Amano
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| |
Collapse
|
42
|
Singh A, Dwivedi A. Circulating miRNA and cell-free DNA as a potential diagnostic tool in early detection of biliary tract cancer: A meta-analysis. Biomarkers 2022; 27:399-406. [PMID: 35400252 DOI: 10.1080/1354750x.2022.2064551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM To investigate the clinical efficacy of miRNA, cell-free DNA, and circulating tumor cells in biliary tract cancer diagnosis. METHODS A comprehensive literature search was conducted up to September 2021, using public databases. The quality of the screened articles was evaluated using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS 2) tool followed by statistical analysis. Revman 5.4, Meta-disc 1.4, and MetaEssential were used for the statistical estimation. RESULTS A total of 28 studies were retrieved that involved 3,333 participants (1,874 patients and 1,450 control). Overall performance in terms of pooled sensitivity and specificity was 0.84 and 0.91 individually. Moreover, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and area under the curve (AUC) were 10.29, 0.15, and 0.9567 respectively. Subgroup analysis based on the sample source revealed that plasma can be a prominent source in diagnosing BTC. Publication bias assessed using Begg's and Egger's test reported that no publication bias was present (p-value: 0.083, 0.162). CONCLUSIONS The miRNA and cell-free DNA exhibited a high diagnostic value in early diagnosis. While CTCs might be useful in the later stages.
Collapse
Affiliation(s)
- Aakansha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi- 835215, Jharkhand, India
| | - Anjana Dwivedi
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi- 835215, Jharkhand, India
| |
Collapse
|
43
|
Munugala N, Maithel SK, Shroff RT. Novel biomarkers and the future of targeted therapies in cholangiocarcinoma: a narrative review. Hepatobiliary Surg Nutr 2022; 11:253-266. [PMID: 35464290 PMCID: PMC9023822 DOI: 10.21037/hbsn-20-475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022]
Abstract
Background and Objectives Cholangiocarcinoma is a highly aggressive and heterogenous group of biliary malignancies arising from any site in the biliary tree, comprising 15% of all primary liver cancers. The nature of the disease and nonspecific presentation leads to late diagnosis and ultimately poor outcomes for patients. Combination gemcitabine and cisplatin has been the standard of care for cholangiocarcinoma (CCA) since 2010, with a median overall survival of 11.7 months. The five-year survival for CCA remains 5-10%, revealing a clear need for improved treatment options. Methods This targeted review highlights the role of next generation sequencing in CCA and the clinically relevant tumor biomarkers that have become the focus of therapeutic development. Key Content and Findings These tumor biomarkers or actionable mutations hold the potential to enable earlier diagnosis, provide prognostic information, and guide treatment decisions for patients with CCA. Specifically, the FGFR2 fusion and IDH1 mutation have shown considerable promise in development of targeted therapies. Clinical trials with inhibitors targeting FGFR2 fusion and IDH1 mutation have created expectations that these drugs will soon enter clinical practice. Other biomarkers including KRAS and B-raf protooncogenes, Her2/neu genes, and BRCA1 and 2 tumor-suppressor genes have also been touted as potential targets for future therapies, with early data showing promise for new drug development. Conclusion The discovery of these actionable mutations and identification of targeted therapies have challenged the notion of a "one-size fits all" for treatment of CCA, and generated optimism that these novel treatments will soon be available for patients with CCA.
Collapse
Affiliation(s)
| | - Shishir K. Maithel
- Division of Surgical Oncology, Emory University, Winship Cancer Institute, Atlanta, GA, USA
| | - Rachna T. Shroff
- Division of Hematology and Oncology, Department of GI Medical Oncology, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
44
|
Biomarkers and Genetic Markers of Hepatocellular Carcinoma and Cholangiocarcinoma-What Do We Already Know. Cancers (Basel) 2022; 14:cancers14061493. [PMID: 35326644 PMCID: PMC8946081 DOI: 10.3390/cancers14061493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma and cholangiocarcinoma continue to remain a serious threat. In this review, we describe the most common biomarkers and genetic markers currently used in the diagnosis of hepatocellular carcinoma and cholangiocarcinoma. It can be observed that biomarkers and genetic markers might be applied in various parts of diagnosis including screening tests in a high-risk group, non-invasive detection, control of therapy, treatment selection, and control of recurrence. Also, it can be seen that nowadays there is a need for more specific markers that would improve the detection in early or very early stages of both types of cancers and further research should be focused on it. Abstract Hepatocellular carcinoma (HCC) is the most common primary liver cancer with an increasing worldwide mortality rate. Cholangiocarcinoma (CCA) is the second most common primary liver cancer. In both types of cancers, early detection is very important. Biomarkers are a relevant part of diagnosis, enabling non-invasive detection and control of cancer recurrence, as well as in the application of screening tests in high-risk groups. Furthermore, some of these biomarkers are useful in controlling therapy and treatment selection. Detection of some markers presents higher sensitivity and specificity in combination with other markers when compared with a single detection. Some gene aberrations are also prognostic markers in the two types of cancers. In the following review, we discuss the most common biomarkers and genetic markers currently being used in the diagnosis of hepatocellular carcinoma and cholangiocarcinoma.
Collapse
|
45
|
Pavicevic S, Reichelt S, Uluk D, Lurje I, Engelmann C, Modest DP, Pelzer U, Krenzien F, Raschzok N, Benzing C, Sauer IM, Stintzing S, Tacke F, Schöning W, Schmelzle M, Pratschke J, Lurje G. Prognostic and Predictive Molecular Markers in Cholangiocarcinoma. Cancers (Basel) 2022; 14:1026. [PMID: 35205774 PMCID: PMC8870611 DOI: 10.3390/cancers14041026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and subsumes a heterogeneous group of malignant tumors arising from the intra- or extrahepatic biliary tract epithelium. A rising mortality from CCA has been reported worldwide during the last decade, despite significant improvement of surgical and palliative treatment. Over 50% of CCAs originate from proximal extrahepatic bile ducts and constitute the most common CCA entity in the Western world. Clinicopathological characteristics such as lymph node status and poor differentiation remain the best-studied, but imperfect prognostic factors. The identification of prognostic molecular markers as an adjunct to traditional staging systems may not only facilitate the selection of patients who would benefit the most from surgical, adjuvant or palliative treatment strategies, but may also be helpful in defining the aggressiveness of the disease and identifying patients at high-risk for tumor recurrence. The purpose of this review is to provide an overview of currently known molecular prognostic and predictive markers and their role in CCA.
Collapse
Affiliation(s)
- Sandra Pavicevic
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sophie Reichelt
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Cornelius Engelmann
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Dominik P. Modest
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Uwe Pelzer
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| |
Collapse
|
46
|
Li L, Zhong L, Tang C, Gan L, Mo T, Na J, He J, Huang Y. CD105: tumor diagnosis, prognostic marker and future tumor therapeutic target. Clin Transl Oncol 2022; 24:1447-1458. [PMID: 35165838 DOI: 10.1007/s12094-022-02792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Cancer is one of the diseases with the highest morbidity and mortality rates worldwide, and its therapeutic options are inadequate. The endothelial glycoprotein, also known as CD105, is a type I transmembrane glycoprotein located on the surface of the cell membranes and it is one of the transforming growth factor-β (TGF-β) receptor complexes. It regulates the responses associated with binding to transforming growth factor β1 egg (Activin-A), bone morphogenetic protein 2 (BMP-2), and bone morphogenetic protein 7 (BMP-7). Additionally, it is involved in the regulation of angiogenesis. This glycoprotein is indispensable in the treatment of tumor angiogenesis, and it also plays a leading role in tumor angiogenesis therapy. Therefore, CD105 is considered to be a novel therapeutic target. In this study, we explored the significance of CD105 in the diagnosis, treatment and prognosis of various tumors, and provided evidence for the effect and mechanism of CD105 on tumors.
Collapse
Affiliation(s)
- Lan Li
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chao Tang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tong Mo
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
47
|
Combined arterial and delayed enhancement patterns of MRI assist in prognostic prediction for intrahepatic mass-forming cholangiocarcinoma (IMCC). Abdom Radiol (NY) 2022; 47:640-650. [PMID: 34820689 DOI: 10.1007/s00261-021-03292-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study valued MR delayed enhancement pattern in predicting postoperative prognosis of intrahepatic mass-forming cholangiocarcinoma (IMCC). METHODS From 2011 to 2015, 231 patients of IMCC underwent DCE-MRI preoperatively. Enhancement patterns and MRI characteristics were evaluated. Recurrence and mortality data were compared among IMCCs with different enhancement patterns. Prognostic factor analysis was performed using preoperative and postoperative clinical-pathologic factors, as well as imaging findings. RESULTS Fifty-six (24.2%), 142 (61.5%) and 33 (14.3%) tumors showed hypo, peripheral rim and diffuse hyper enhancement in AP. Fifty-six (24.2%), 81 (35.1%) and 94 (40.7%) tumors showed hypo, heterogeneous and uniform enhancement in DP. Patients with arterial diffuse hyper enhancement or delayed uniform enhancement IMCCs had lower preoperative CA19-9 levels, smaller tumor sizes and minor operations than the rest patients (p < 0.05) and they were less associated with lymph nodes metastasis, vascular invasion, necrosis or poor tumor differentiation (p < 0.05), therefore with higher overall and disease-free survival rates (p < 0.05). The combination of AP and DP increased the detection rate of patients with good prognosis in the arterial rim enhancement group. Multivariate analysis revealed the delayed enhancement pattern (hypo HR = 6.304/10.028 for DFS/OS; heterogenous HR = 4.579/4.972 for DFS/OS), multitude of lesions (HR = 1.6/1.5 for DFS/OS) and tumor sizes (HR = 1.6 for DFS) were independent prognostic factors. CONCLUSIONS The uniform enhancement pattern in delayed MRI was an independent optimal prognostic factor for IMCCs and increased the detection rate of patients with good prognosis compared to the arterial diffuse hyper enhancement pattern.
Collapse
|
48
|
Song JP, Liu XZ, Chen Q, Liu YF. High tumor mutation burden indicates a poor prognosis in patients with intrahepatic cholangiocarcinoma. World J Clin Cases 2022; 10:790-801. [PMID: 35127895 PMCID: PMC8790456 DOI: 10.12998/wjcc.v10.i3.790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is malignancies of the biliary duct system and constitutes approximately 10%-20% of all primary liver cancers. Tumor mutation burden (TMB) is a useful biomarker across many cancer types for the identification of patients who will benefit from immunotherapy. Despite the role of TMB in calculating the effectiveness and prognosis of immune checkpoint inhibitors has been confirmed in multiple human cancer types, the prognostic value of TMB in ICC patients is rare investigated.
AIM To investigate the prognostic value of TMB in patients with ICC.
METHODS Data of 412 patients with ICC were included in the study. TMB was calculated as the total number of somatic non-silent protein-coding mutations divided by the coding region. The Kaplan-Meier method was used to analyze overall survival (OS), and relapse free survival (RFS). The cut-off value of TMB was determined by time-dependent receiver operating characteristic (ROC) curve. Cox regression was performed for multivariable analysis of OS. The nomogram and calibration curve were analyzed to construct and evaluate the prognostic model.
RESULTS In the analysis of the time-dependent ROC curve, we defined 3.1 mut/Mb as the cut-off value of TMB. The Kaplan-Meier plot revealed that patients with high TMB had poor OS (HR = 1.47, P = 0.002) and RFS (HR = 1.42, P = 0.035). Cox regression analysis also demonstrated that TMB was an independent risk predictor for ICC (HR = 1.43, P = 0.0240). Furthermore, independent prognostic factors of ICC included CA19-9 (HR = 1.78, P = 0.0005), chronic viral hepatitis (HR = 1.72, P = 0.0468), tumor resection (HR = 2.58, P < 0.0001) and disease progression (metastatic disease vs. solitary liver tumor; HR = 2.55, P = 0.0002). The nomogram and calibration curve also indicated the effectiveness of the constructed prognostic model.
CONCLUSION TMB was an independent prognostic biomarker in patients with ICC. Moreover, patients with ICC with high TMB had poor OS and RFS as compared to those with low TMB.
Collapse
Affiliation(s)
- Jian-Ping Song
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xue-Zhi Liu
- Department of General Surgery, Shouguang People's Hospital, Shouguang 262700, Shandong Province, China
| | - Qian Chen
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yan-Feng Liu
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
49
|
Bile Processing Protocol for Improved Proteomic Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2420:1-10. [PMID: 34905161 DOI: 10.1007/978-1-0716-1936-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the critical issues to warrant the success of a proteome-wide analysis is sample preparation. Efficient protein extraction in the absence of interferent material is mandatory to achieve an ample proteome coverage by mass spectrometry. The study of biological fluids is always challenging due to their specific biochemical composition. However, there is increasing interest in their characterization as it will provide proteins that may advice disease setting, state, and progression. In particular, bile is proximal to liver and pancreas, and its study is especially attractive since it might provide valuable information for the clinical management of severe diseases afflicting these organs, which are at an urgent need of new biomarkers. Though previous efforts have been made to optimize protocols to analyze bile proteome, only partial descriptions were achieved due to its complex composition, where proteins represent less than 5% of the organic components. Here we describe a new method that significantly increases the bile proteome coverage while reducing by a factor of six the amount of sample required for the proteomic analysis.
Collapse
|
50
|
Huang RH, Wang LX, He J, Gao W. Application and prospects of single cell sequencing in tumors. Biomark Res 2021; 9:88. [PMID: 34895349 PMCID: PMC8665603 DOI: 10.1186/s40364-021-00336-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is an intricate disease with inherent intra-tumor heterogeneity at the cellular level because of genetic changes and environmental differences. Cellular heterogeneity exists even within the same tumor type. Small deviations in a genome or transcriptome can lead to significant differences in function. Conventional bulk population sequencing, which produces admixed populations of cells, can only provide an average expression signal for one cell population, ignoring differences between individual cells. Important advances in sequencing have been made in recent years. Single cell sequencing starts in a single cell, thereby increasing our capability to characterize intratumor heterogeneity. This technology has been used to analyze genetic variation, specific metabolic activity, and evolutionary processes in tumors, which may help us understand tumor occurrence and development and improve our understanding of the tumor microenvironment. In addition, it provides a theoretical basis for the development of clinical treatments, especially for personalized medicine. In this article, we briefly introduce Single cell sequencing technology, summarize the application of Single cell sequencing to study the tumor microenvironment, as well as its therapeutic application in different clinical procedures.
Collapse
Affiliation(s)
- Ruo Han Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Le Xin Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|