1
|
Wang L, Zhang Y, Yu T, Wu H. The Role and Mechanism of Deubiquitinase USP7 in Tumor-Associated Inflammation. Biomedicines 2024; 12:2734. [PMID: 39767641 PMCID: PMC11726842 DOI: 10.3390/biomedicines12122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Deubiquitinating enzymes are a class of proteases that remove ubiquitin tags from proteins, thereby controlling protein stability and function. Tumor inflammation arises from interactions between tumor cells and their microenvironment, which trigger an inflammatory response. The deubiquitinating enzyme USP7 plays a central role in this process. Research suggests that USP7 may modulate various signaling pathways related to inflammatory responses through its deubiquitinating activity, thereby influencing tumor development and progression, including regulating T cell immune activity, improving macrophage anti-tumor activity, and regulating NF-κB signal pathways. Overall, describing the role and mechanism of USP7 in the tumor inflammatory response is of great importance for elucidating the regulatory mechanism of tumor inflammation and developing new therapeutic strategies. This article mainly reviews the structure, function, role, and mechanism of USP7 in the tumor inflammation response.
Collapse
Affiliation(s)
- Luhong Wang
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
- Dalian Key Laboratory of Protein Modification and Disease, Faculty of Medicine, School of Biological Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhang
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
| | - Tao Yu
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
| | - Huijian Wu
- Dalian Key Laboratory of Protein Modification and Disease, Faculty of Medicine, School of Biological Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Zhang Y, Dou W, Zhao Z, Li G, Li C, Chen X, Mou L. Stereo-selectivity of enantiomeric inhibitors to ubiquitin-specific protease 7 (USP7) dissected by molecular docking, molecular dynamics simulations, and binding free energy calculations. Mol Divers 2024:10.1007/s11030-024-10948-z. [PMID: 39298085 DOI: 10.1007/s11030-024-10948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024]
Abstract
The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.
Collapse
Affiliation(s)
- Yusheng Zhang
- Department of Urology, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261031, Shandong, China
| | - Wenwen Dou
- Department of Infectious Diseases, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261031, Shandong, China
| | - Ziqi Zhao
- Department of Urology, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261031, Shandong, China
| | - Guozhen Li
- Department of Urology, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261031, Shandong, China
| | - Chunlong Li
- Department of Urology, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261031, Shandong, China.
| | - Xiangyu Chen
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261031, Shandong, China.
| | - Linkai Mou
- Department of Urology, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261031, Shandong, China.
| |
Collapse
|
3
|
Guo NJ, Wang B, Zhang Y, Kang HQ, Nie HQ, Feng MK, Zhang XY, Zhao LJ, Wang N, Liu HM, Zheng YC, Li W, Gao Y. USP7 as an emerging therapeutic target: A key regulator of protein homeostasis. Int J Biol Macromol 2024; 263:130309. [PMID: 38382779 DOI: 10.1016/j.ijbiomac.2024.130309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.
Collapse
Affiliation(s)
- Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Meng-Kai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
4
|
You HJ, Ma LH, Wang X, Wang YX, Zhang HY, Bao ES, Zhong YJ, Liu XY, Kong DL, Zheng KY, Kong FY, Tang RX. Hepatitis B virus core protein stabilizes RANGAP1 to upregulate KDM2A and facilitate hepatocarcinogenesis. Cell Oncol (Dordr) 2024; 47:639-655. [PMID: 37845585 DOI: 10.1007/s13402-023-00889-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 10/18/2023] Open
Abstract
PURPOSE As a vital component of the hepatitis B virus (HBV) nucleocapsid, HBV core protein (HBC) contributes to hepatocarcinogenesis. Here, we aimed to assess the effects of RANGAP1 and KDM2A on tumorigenesis induced by HBC. METHODS Co-immunoprecipitation (Co-IP) combined with mass spectrometry were utilized to identify the proteins with the capacity to interact with HBC. The gene and protein levels of RANGAP1 and KDM2A in hepatocellular carcinoma (HCC) and HBV-positive HCC tissues were evaluated using different cohorts. The roles of RANGAP1 and KDM2A in HCC cells mediated by HBC were investigated in vitro and in vivo. Co-IP and western blot were used to estimate the interaction of HBC with RANGAP1 and KDM2A and assess RANGAP1 stabilization regulated by HBC. RESULTS We discovered that HBC could interact with RANGAP1 and KDM2A, the levels of which were markedly elevated in HCC tissues. Relying on RANGAP1 and KDM2A, HBC facilitated HCC cell growth and migration. The increased stabilization of RANGAP1 mediated by HBC was relevant to the disruption of the interaction between RANGAP1 and an E3 ligase SYVN1. RANGAP1 interacted with KDM2A, and it further promoted KDM2A stabilization by disturbing the interaction between KDM2A and SYVN1. HBC enhanced the interaction of KDM2A with RANGAP1 and upregulated the expression of KDM2A via RANGAP1 in HCC cells. CONCLUSIONS These findings demonstrate a novel mechanism by which HBC facilitates hepatocarcinogenesis. RANGAP1 and KDM2A could act as potential molecular targets for treating HBV-associated malignancy.
Collapse
Affiliation(s)
- Hong-Juan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li-Hong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Xin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huan-Yang Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - En-Si Bao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Jie Zhong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Ye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - De-Long Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fan-Yun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Su C, Zhang H, Mo J, Liao Z, Zhang B, Zhu P. SP1-activated USP27X-AS1 promotes hepatocellular carcinoma progression via USP7-mediated AKT stabilisation. Clin Transl Med 2024; 14:e1563. [PMID: 38279869 PMCID: PMC10819096 DOI: 10.1002/ctm2.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to pose a significant threat to patient survival. Emerging evidence underscores the pivotal involvement of long non-coding RNAs (lncRNAs) in the cancer process. Nevertheless, our understanding of the roles and processes of lncRNAs in HCC remains limited. METHODS The expression level of USP27X-AS1 was assessed in an HCC patient cohort through a combination of bioinformatics analysis and qRT-PCR. Subsequent biological experiments were conducted to delve into the functional aspects of USP27X-AS1. Additional molecular biology techniques, including RNA pulldown and RNA immunoprecipitation (RIP), were employed to elucidate the potential mechanisms involving USP27X-AS1 in HCC. Finally, CUT-RUN assay and other investigations were carried out to determine the factors contributing to the heightened expression of USP27X-AS1 in HCC. RESULTS High expression of the novel oncogene USP27X-AS1 predicted poor prognosis in HCC patients. Further investigation confirmed that USP27X-AS1 promoted the proliferation and metastasis of HCC by enabling USP7 to interact with AKT, which reduced level of AKT poly-ubiquitylation and enhanced AKT protein stability, which improves protein stabilisation of AKT and promotes the progression of HCC. Moreover, we also revealed that SP1 binds to USP27X-AS1 promoter to activate its transcription. CONCLUSIONS Novel oncogenic lncRNA USP27X-AS1 promoted HCC progression via recruiting USP7 to deubiquitinate AKT. SP1 transcriptionally activated USP27X-AS1 expression. These findings shed light on HCC and pointed to USP27X-AS1 as a potential predictive biomarker and treatment target for the malignancy.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Haoquan Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Jie Mo
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Zhibin Liao
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Bixiang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubeiPeople's Republic of China
| | - Peng Zhu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubeiPeople's Republic of China
| |
Collapse
|
6
|
Abdalla MMI. Serum resistin and the risk for hepatocellular carcinoma in diabetic patients. World J Gastroenterol 2023; 29:4271-4288. [PMID: 37545641 PMCID: PMC10401662 DOI: 10.3748/wjg.v29.i27.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is a major contributor to cancer-related fatalities across the globe. Diabetes has been identified as a significant risk factor for HCC, with recent research indicating that the hormone resistin could be involved in the onset and advancement of HCC in diabetic individuals. Resistin is a hormone that is known to be involved in inflammation and insulin resistance. Patients with HCC have been observed to exhibit increased resistin levels, which could be correlated with more severe disease stages and unfavourable prognoses. Nevertheless, the exact processes through which resistin influences the development and progression of HCC in diabetic patients remain unclear. This article aims to examine the existing literature on the possible use of resistin levels as a biomarker for HCC development and monitoring. Furthermore, it reviews the possible pathways of HCC initiation due to elevated resistin and offers new perspectives on comprehending the fundamental mechanisms of HCC in diabetic patients. Gaining a better understanding of these processes may yield valuable insights into HCC’s development and progression, as well as identify possible avenues for prevention and therapy.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, Zandieh MA, Behroozaghdam M, Mirzaei S, Hushmandi K, Nabavi N, Salimimoghadam S, Ren J, Rashidi M, Raesi R, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett 2023; 28:33. [PMID: 37085753 PMCID: PMC10122325 DOI: 10.1186/s11658-023-00438-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200032, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Ivanova M, Bottiglieri L, Sajjadi E, Venetis K, Fusco N. Malignancies in Patients with Celiac Disease: Diagnostic Challenges and Molecular Advances. Genes (Basel) 2023; 14:376. [PMID: 36833303 PMCID: PMC9956047 DOI: 10.3390/genes14020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Celiac disease (CD) is a multiorgan autoimmune disorder of the chronic intestinal disease group characterized by duodenal inflammation in genetically predisposed individuals, precipitated by gluten ingestion. The pathogenesis of celiac disease is now widely studied, overcoming the limits of the purely autoimmune concept and explaining its hereditability. The genomic profiling of this condition has led to the discovery of numerous genes involved in interleukin signaling and immune-related pathways. The spectrum of disease manifestations is not limited to the gastrointestinal tract, and a significant number of studies have considered the possible association between CD and neoplasms. Patients with CD are found to be at increased risk of developing malignancies, with a particular predisposition of certain types of intestinal cancer, lymphomas, and oropharyngeal cancers. This can be partially explained by common cancer hallmarks present in these patients. The study of gut microbiota, microRNAs, and DNA methylation is evolving to find the any possible missing links between CD and cancer incidence in these patients. However, the literature is extremely mixed and, therefore, our understanding of the biological interplay between CD and cancer remains limited, with significant implications in terms of clinical management and screening protocols. In this review article, we seek to provide a comprehensive overview of the genomics, epigenomics, and transcriptomics data on CD and its relation to the most frequent types of neoplasms that may occur in these patients.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Luca Bottiglieri
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
9
|
Xu Q, Liao Z, Gong Z, Liu X, Yang Y, Wang Z, Yang W, Hou L, Yang J, Song J, Liu W, Wang B, Hua J, Pu M, Li N. Down-regulation of EVA1A by miR-103a-3p promotes hepatocellular carcinoma cells proliferation and migration. Cell Mol Biol Lett 2022; 27:93. [PMID: 36273122 PMCID: PMC9588234 DOI: 10.1186/s11658-022-00388-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND EVA1A (Eva-1 homolog A), a novel protein involved in autophagy and apoptosis, functions as a tumor suppressor in some human primary cancers, including hepatocellular carcinoma (HCC). While it is consistently downregulated in several cancers, its involvement in hepatocarcinogenesis is still largely unknown. METHODS We first detected the expression of EVA1A in HCC tissues and cell lines using RT‒qPCR, immunohistochemistry and western blotting and detected the expression of miR-103a-3p by RT‒qPCR. Then, bioinformatics prediction, dual-luciferase reporter gene assays and western blotting were used to screen and identify the upstream microRNA of EVA1A. After manipulating the expression of miR-103a-3p or EVA1A, wound healing, invasion, proliferation, colony formation, apoptosis, autophagy, mitosis and mitochondrial function assays, including mitochondrial membrane potential, ROS and ATP production assays, were performed to investigate the functions of miR-103a-3p targeting EVA1A in HCC cells. Apoptosis-related proteins were assessed by RT‒qPCR (TP53) or western blotting (TP53, BAX, Bcl-2 and caspase-3). Autophagy level was evaluated by observing LC3 puncta and examining the protein levels of p62, Beclin1 and LC3-II/I. RESULTS We found that EVA1A expression was decreased while miR-103a-3p expression was increased in HCC tissues and cell lines and that their expression was inversely correlated in HCC patients. The expression of miR-103a-3p was associated with HCC tumor stage and poor prognosis. miR-103a-3p could target EVA1A through direct binding to its 3'-UTR and suppress its expression. Overexpression of miR-103a-3p significantly downregulated the expression of EVA1A, TP53 and BAX, upregulated the JAK2/STAT3 pathway and promoted HCC cell migration, invasion and proliferation, while repression of miR-103a-3p dramatically upregulated the expression of EVA1A, TP53, BAX and cleaved-caspase-3, inhibited HCC cell migration, invasion and proliferation, and caused mitochondrial dysfunction and apoptosis. Overexpression of EVA1A significantly attenuated the cancer-promoting effects of miR-103a-3p in HCC cells, while knockdown of EVA1A alleviated the mitochondrial dysfunction and apoptosis caused by miR-103a-3p inhibition. Overexpression of EVA1A did not induce significant changes in autophagy levels, nor did it affect G2/M transition or mitosis. CONCLUSION These findings indicate that the downregulation of the tumor suppressor EVA1A by miR-103a-3p potentially acts as a key mediator in HCC progression, mainly by inhibiting apoptosis and promoting metastasis. The miR-103a/EVA1A/TP53 axis provides a new potential diagnostic and therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Qian Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhaozhong Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zunshuang Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuling Yang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhe Wang
- Department of Biotechnology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Weiyan Yang
- Department of Anesthesiology, Family Planning Service Center, Maternal and Child Health Hospital of Jiaozhou City, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiejie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Junying Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Junnan Hua
- Department of Biotechnology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingyi Pu
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Yu C, Rao D, Wang T, Song J, Zhang L, Huang W. Emerging roles of TRIM27 in cancer and other human diseases. Front Cell Dev Biol 2022; 10:1004429. [PMID: 36200036 PMCID: PMC9527303 DOI: 10.3389/fcell.2022.1004429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
As a member of the TRIM protein family, TRIM27 is a RING-mediated E3 ubiquitin ligase that can mark other proteins for degradation. Its ubiquitination targets include PTEN, IκBα and p53, which allows it to regulate many signaling pathways to exert its functions under both physiological and pathological conditions, such as cell proliferation, differentiation and apoptosis. During the past decades, TRIM27 was reported to be involved in many diseases, including cancer, lupus nephritis, ischemia-reperfusion injury and Parkinson’s disease. Although the research interest in TRIM27 is increasing, there are few reviews about the diverse roles of this protein. Here, we systematically review the roles of TRIM27 in cancer and other human diseases. Firstly, we introduce the biological functions of TRIM27. Next, we focus on the roles of TRIM27 in cancer, including ovarian cancer, breast cancer and lung cancer. At the same time, we also describe the roles of TRIM27 in other human diseases, such as lupus nephritis, ischemia-reperfusion injury and Parkinson’s disease. Finally, we discuss the future directions of TRIM27 research, especially its potential roles in tumor immunity.
Collapse
Affiliation(s)
- Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jia Song, ; Lei Zhang, ; Wenjie Huang,
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Jinzhong, China
- Tongji Medical College, Shanxi Tongji Hospital, Huazhong University of Science and Technology, Taiyuan, China
- *Correspondence: Jia Song, ; Lei Zhang, ; Wenjie Huang,
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jia Song, ; Lei Zhang, ; Wenjie Huang,
| |
Collapse
|