1
|
Lourie E, Shamay T, Toledo S, Nathan R. Spatial memory obviates following behaviour in an information centre of wild fruit bats. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240060. [PMID: 39230458 PMCID: PMC11449202 DOI: 10.1098/rstb.2024.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 09/05/2024] Open
Abstract
According to the information centre hypothesis (ICH), colonial species use social information in roosts to locate ephemeral resources. Validating the ICH necessitates showing that uninformed individuals follow informed ones to the new resource. However, following behaviour may not be essential when individuals have a good memory of the resources' locations. For instance, Egyptian fruit bats forage on spatially predictable trees, but some bear fruit at unpredictable times. These circumstances suggest an alternative ICH pathway in which bats learn when fruits emerge from social cues in the roost but then use spatial memory to locate them without following conspecifics. Here, using an unique field manipulation and high-frequency tracking data, we test for this alternative pathway: we introduced bats smeared with the fruit odour of the unpredictably fruiting Ficus sycomorus trees to the roost, when they bore no fruits, and then tracked the movement of conspecifics exposed to the manipulated social cue. As predicted, bats visited the F. sycomorus trees with significantly higher probabilities than during routine foraging trips (of >200 bats). Our results show how the integration of spatial memory and social cues leads to efficient resource tracking and highlight the value of using large movement datasets and field experiments in behavioural ecology. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Emmanuel Lourie
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| | - Tomer Shamay
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University , Tel Aviv, Israel
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| |
Collapse
|
2
|
Papageorgiou D, Cherono W, Gall G, Nyaguthii B, Farine DR. Testing the information centre hypothesis in a multilevel society. J Anim Ecol 2024; 93:1147-1159. [PMID: 38961615 DOI: 10.1111/1365-2656.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
In various animal species conspecifics aggregate at sleeping sites. Such aggregations can act as information centres where individuals acquire up-to-date knowledge about their environment. In some species, communal sleeping sites comprise individuals from multiple groups, where each group maintains stable membership over time. We used GPS tracking to simultaneously record group movement in a population of wild vulturine guineafowl (Acryllium vulturinum) to investigate whether communal sleeping sites can facilitate the transfer of information among individuals across distinct groups. These birds live in large and stable groups that move both together and apart, often forming communal roosts containing up to five groups. We first test whether roosts provide the opportunity for individuals to acquire information from members of other groups by examining the spatial organization at roosts. The GPS data reveal that groups intermix, thereby providing an opportunity for individuals to acquire out-group information. We next conduct a field experiment to test whether naïve groups can locate novel food patches when co-roosting with knowledgeable groups. We find that co-roosting substantially increases the chances for the members of a naïve group to discover a patch known to individuals from other groups at the shared roost. Further, we find that the discovery of food patches by naïve groups subsequently shapes their space use and inter-group associations. We also draw on our long-term tracking to provide examples that demonstrate natural cases where communal roosting has preceded large-scale multi-group collective movements that extend into areas beyond the groups' normal ranges. Our findings support the extension of the information centre hypothesis to communal sleeping sites that consist of distinct social groups.
Collapse
Affiliation(s)
- Danai Papageorgiou
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
- College for Life Sciences, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | | | - Gabriella Gall
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Brendah Nyaguthii
- Mpala Research Center, Nanyuki, Kenya
- Department of Ornithology, National Museums of Kenya, Nairobi, Kenya
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Ornithology, National Museums of Kenya, Nairobi, Kenya
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Marggraf LC, Lindecke O, Voigt CC, Pētersons G, Voigt-Heucke SL. Nathusius’ bats, Pipistrellus nathusii, bypass mating opportunities of their own species, but respond to foraging heterospecifics on migratory transit flights. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.908560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In late summer, migratory bats of the temperate zone face the challenge of accomplishing two energy-demanding tasks almost at the same time: migration and mating. Both require information and involve search efforts, such as localizing prey or finding potential mates. In non-migrating bat species, playback studies showed that listening to vocalizations of other bats, both con-and heterospecifics, may help a recipient bat to find foraging patches and mating sites. However, we are still unaware of the degree to which migrating bats depend on con-or heterospecific vocalizations for identifying potential feeding or mating opportunities during nightly transit flights. Here, we investigated the vocal responses of Nathusius’ pipistrelle bats, Pipistrellus nathusii, to simulated feeding and courtship aggregations at a coastal migration corridor. We presented migrating bats either feeding buzzes or courtship calls of their own or a heterospecific migratory species, the common noctule, Nyctalus noctula. We expected that during migratory transit flights, simulated feeding opportunities would be particularly attractive to bats, as well as simulated mating opportunities which may indicate suitable roosts for a stopover. However, we found that when compared to the natural silence of both pre-and post-playback phases, bats called indifferently during the playback of conspecific feeding sounds, whereas P. nathusii echolocation call activity increased during simulated feeding of N. noctula. In contrast, the call activity of P. nathusii decreased during the playback of conspecific courtship calls, while no response could be detected when heterospecific call types were broadcasted. Our results suggest that while on migratory transits, P. nathusii circumnavigate conspecific mating aggregations, possibly to save time or to reduce the risks associated with social interactions where aggression due to territoriality might be expected. This avoidance behavior could be a result of optimization strategies by P. nathusii when performing long-distance migratory flights, and it could also explain the lack of a response to simulated conspecific feeding. However, the observed increase of activity in response to simulated feeding of N. noctula, suggests that P. nathusii individuals may be eavesdropping on other aerial hawking insectivorous species during migration, especially if these occupy a slightly different foraging niche.
Collapse
|
4
|
Lo Cascio A, Kasel S, Ford G. A new method employing species‐specific thresholding identifies acoustically overlapping bats. Ecosphere 2022. [DOI: 10.1002/ecs2.4278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Amanda Lo Cascio
- School of Ecosystem and Forest Sciences, Faculty of Science The University of Melbourne Parkville Victoria Australia
| | - Sabine Kasel
- School of Ecosystem and Forest Sciences, Faculty of Science The University of Melbourne Burnley Victoria Australia
| | - Greg Ford
- Balance! Environmental Toowoomba Queensland Australia
| |
Collapse
|
5
|
Sørås R, Fjelldal MA, Bech C, van der Kooij J, Skåra KH, Eldegard K, Stawski C. State dependence of arousal from torpor in brown long-eared bats (Plecotus auritus). J Comp Physiol B 2022; 192:815-827. [PMID: 35972527 PMCID: PMC9550697 DOI: 10.1007/s00360-022-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
To cope with periods of low food availability and unsuitable environmental conditions (e.g., short photoperiod or challenging weather), many heterothermic mammals can readily go into torpor to save energy. However, torpor also entails several potential costs, and quantitative energetics can, therefore, be influenced by the individual state, such as available energy reserves. We studied the thermal energetics of brown long-eared bats (Plecotus auritus) in the northern part of its distributional range, including torpor entry, thermoregulatory ability during torpor and how they responded metabolically to an increasing ambient temperature (Ta) during arousal from torpor. Torpor entry occurred later in bats with higher body mass (Mb). During torpor, only 10 out of 21 bats increased oxygen consumption (V̇O2) to a greater extent above the mean torpor metabolic rates (TMR) when exposed to low Ta. The slope of the torpid thermoregulatory curve was shallower than that of resting metabolic rate (RMR) during normothermic conditions, indicating a higher thermal insulation during torpor. During exposure to an increasing Ta, all bats increased metabolic rate exponentially, but the bats with higher Mb aroused at a lower Ta than those with lower Mb. In bats with low Mb, arousal was postponed to an Ta above the lower critical temperature of the thermoneutral zone. Our results demonstrate that physiological traits, which are often considered fixed, can be more flexible than previously assumed and vary with individual state. Thus, future studies of thermal physiology should to a greater extent take individual state-dependent effects into account.
Collapse
Affiliation(s)
- Rune Sørås
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway.
| | - Mari Aas Fjelldal
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
| | - Claus Bech
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
| | - Jeroen van der Kooij
- Nature Education, Research and Consultancy van der Kooij, Rudsteinveien 67, 1480, Slattum, NO, Norway
| | - Karoline H Skåra
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, Oslo, 0213, NO, Norway
| | - Katrine Eldegard
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Box 5003, 1433, Ås, NO, Norway
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| |
Collapse
|
6
|
Insectivorous bats form mobile sensory networks to optimize prey localization: The case of the common noctule bat. Proc Natl Acad Sci U S A 2022; 119:e2203663119. [PMID: 35939677 PMCID: PMC9388074 DOI: 10.1073/pnas.2203663119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals that depend on ephemeral, patchily distributed prey often use public information to locate resource patches. The use of public information can lead to the aggregation of foragers at prey patches, a mechanism known as local enhancement. However, when ephemeral resources are distributed over large areas, foragers may also need to increase search efficiency, and thus apply social strategies when sampling the landscape. While sensory networks of visually oriented animals have already been confirmed, we lack an understanding of how acoustic eavesdropping adds to the formation of sensory networks. Here we radio-tracked a total of 81 aerial-hawking bats at very high spatiotemporal resolution during five sessions over 3 y, recording up to 19 individuals simultaneously. Analyses of interactive flight behavior provide conclusive evidence that bats form temporary mobile sensory networks by adjusting their movements to neighboring conspecifics while probing the airspace for prey. Complementary agent-based simulations confirmed that the observed movement patterns can lead to the formation of mobile sensory networks, and that bats located prey faster when networking than when relying only on local enhancement or searching solitarily. However, the benefit of networking diminished with decreasing group size. The combination of empirical analyses and simulations elucidates how animal groups use acoustic information to efficiently locate unpredictable and ephemeral food patches. Our results highlight that declining local populations of social foragers may thus suffer from Allee effects that increase the risk of collapses under global change scenarios, like insect decline and habitat degradation.
Collapse
|
7
|
Kohles JE, O'Mara MT, Dechmann DKN. A conceptual framework to predict social information use based on food ephemerality and individual resource requirements. Biol Rev Camb Philos Soc 2022; 97:2039-2056. [PMID: 35932159 DOI: 10.1111/brv.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Environmental variability poses a range of challenges to foraging animals trying to meet their energetic needs. Where food patches are unpredictable but shareable, animals can use social information to locate patches more efficiently or reliably. However, resource unpredictability can be heterogeneous and complex. The behavioural strategies animals employ to exploit such resources also vary, particularly if, when, and where animals use available social information. We reviewed the literature on social information use by foraging animals and developed a novel framework that integrates four elements - (1) food resource persistence; (2) the relative value of social information use; (3) behavioural context (opportunistic or coordinated); and (4) location of social information use - to predict and characterize four strategies of social information use - (1) local enhancement; (2) group facilitation; (3) following; and (4) recruitment. We validated our framework by systematically reviewing the growing empirical literature on social foraging in bats, an ideal model taxon because they exhibit extreme diversity in ecological niche and experience low predation risk while foraging but function at high energy expenditures, which selects for efficient foraging behaviours. Our framework's predictions agreed with the observed natural behaviour of bats and identified key knowledge gaps for future studies. Recent advancements in technology, methods, and analysis will facilitate additional studies in bats and other taxa to further test the framework and our conception of the ecological and evolutionary forces driving social information use. Understanding the links between food distribution, social information use, and foraging behaviour will help elucidate social interactions, group structure, and the evolution of sociality for species across the animal kingdom.
Collapse
Affiliation(s)
- Jenna E Kohles
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.,Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - M Teague O'Mara
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315, Radolfzell, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama.,Department of Biological Sciences, Southeastern Louisiana University, 808 N. Pine Street, Hammond, LA, 70402, USA
| | - Dina K N Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.,Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| |
Collapse
|
8
|
Roemer C, Julien J, Bas Y. An automatic classifier of bat sonotypes around the world. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Charlotte Roemer
- Centre d’Ecologie et des Sciences de la Conservation (Muséum national d’Histoire naturelle, CNRS, Sorbonne Université) Paris France
- CEFEUniversité de MontpellierCNRSEPHEIRDUniversité Paul Valéry Montpellier 3 Montpellier France
| | - Jean‐François Julien
- Centre d’Ecologie et des Sciences de la Conservation (Muséum national d’Histoire naturelle, CNRS, Sorbonne Université) Paris France
| | - Yves Bas
- Centre d’Ecologie et des Sciences de la Conservation (Muséum national d’Histoire naturelle, CNRS, Sorbonne Université) Paris France
- CEFEUniversité de MontpellierCNRSEPHEIRDUniversité Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
9
|
Page RA, ter Hofstede HM. Sensory and Cognitive Ecology of Bats. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012921-052635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution.
Collapse
Affiliation(s)
- Rachel A. Page
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, República de Panamá
| | - Hannah M. ter Hofstede
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, República de Panamá
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
10
|
Lourie E, Schiffner I, Toledo S, Nathan R. Memory and Conformity, but Not Competition, Explain Spatial Partitioning Between Two Neighboring Fruit Bat Colonies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.732514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spatial partitioning between neighboring colonies is considered a widespread phenomenon in colonial species, reported mainly in marine birds. Partitioning is suspected to emerge due to various processes, such as competition, diet specialization, memory, information transfer, or even “foraging cultures.” Yet, empirical evidence from other taxa, and studies that tease apart the relative contribution of the processes underlying partitioning, remain scarce, mostly due to insufficiently detailed movement data. Here, we used high-resolution movement tracks (at 0.125 Hz) of 107 individuals belonging to two neighboring colonies of the Egyptian fruit bat (Rousettus aegyptiacus), a highly gregarious central-place forager, using the ATLAS reverse-GPS system in the Hula Valley, Israel. Based on comparisons between agent-based mechanistic models and observed spatial partitioning patterns, we found high levels of partitioning of both area and tree resources (<11% overlap) that were stable across different fruiting seasons. Importantly, partitioning could not have emerged if the bats’ movement was only limited by food availability and travel distances, as most commonly hypothesized. Rather than density-dependent or between-colony competition, memory, and, to a lesser extent, conformity in tree-use explain how partitioning develops. Elucidating the mechanisms that shape spatial partitioning among neighboring colonies in the wild under variable resource conditions is important for understanding the ecology and evolution of inter-group coexistence, space use patterns and sociality.
Collapse
|
11
|
Guo D, Ding J, Liu H, Zhou L, Feng J, Luo B, Liu Y. Social calls influence the foraging behavior in wild big-footed myotis. Front Zool 2021; 18:3. [PMID: 33413435 PMCID: PMC7791762 DOI: 10.1186/s12983-020-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Why a variety of social animals emit foraging-associated calls during group foraging remains an open question. These vocalizations may be used to recruit conspecifics to food patches (i.e. food advertisement hypothesis) or defend food resources against competitors (food defence hypothesis), presumably depending on food availability. Insectivorous bats rely heavily on vocalizations for navigation, foraging, and social interactions. In this study, we used free-ranging big-footed myotis (Myotis macrodactylus Temminck, 1840) to test whether social calls produced in a foraging context serve to advertise food patches or to ward off food competitors. Using a combination of acoustic recordings, playback experiments with adult females and dietary monitoring (light trapping and DNA metabarcoding techniques), we investigated the relationship between insect availability and social vocalizations in foraging bats. RESULTS The big-footed myotis uttered low-frequency social calls composed of 7 syllable types during foraging interactions. Although the dietary composition of bats varied across different sampling periods, Diptera, Lepidoptera, and Trichoptera were the most common prey consumed. The number of social vocalizations was primarily predicted by insect abundance, insect species composition, and echolocation vocalizations from conspecifics. The number of conspecific echolocation pulses tended to decrease following the emission of most social calls. Feeding bats consistently decreased foraging attempts and food consumption during playbacks of social calls with distinctive structures compared to control trials. The duration of flight decreased 1.29-1.96 fold in the presence of social calls versus controls. CONCLUSIONS These results support the food defence hypothesis, suggesting that foraging bats employ social calls to engage in intraspecific food competition. This study provides correlative evidence for the role of insect abundance and diversity in influencing the emission of social calls in insectivorous bats. Our findings add to the current knowledge of the function of social calls in echolocating bats.
Collapse
Affiliation(s)
- Dongge Guo
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jianan Ding
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Heng Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Lin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.,College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Bo Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, 637002, China.
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
| |
Collapse
|
12
|
Hałat Z, Dechmann DKN, Zegarek M, Ruczyński I. Male bats respond to adverse conditions with larger colonies and increased torpor use during sperm production. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractChanges in environmental conditions can have strong energetic effects on animals through limited food availability or increased thermoregulatory costs. Especially difficult are periods of increased energy expenditures, such as reproduction. Reproductive female bats from the temperate zone often aggregate in maternity colonies to profit from social thermoregulation to reduce torpor use and buffer the effects of poor conditions. The much rarer male colonies may form for similar reasons during testes development. Male colonies thus allow us to study the influence of environmental conditions on energy budget and colony size, without the confounding effects of parental care. We remotely monitored skin temperature and assessed colony size of male parti-coloured bats Vespertilio murinus during summer, and correlated those variables with environmental conditions and food availability (i.e. insect abundance). As we had hypothesized, we found that colony size increased at colder temperatures, but decreased at low wind speeds. Also as predicted, torpor use was relatively low, however, it did increase slightly during adverse conditions. Male sociality may be an adaptation to adverse environmental conditions during sexual maturation, but the pressure to avoid torpor during spermatogenesis may be lower than in pregnant or lactating females.
Collapse
|
13
|
Kohles JE, Carter GG, Page RA, Dechmann DKN. Socially foraging bats discriminate between group members based on search-phase echolocation calls. Behav Ecol 2020. [DOI: 10.1093/beheco/araa056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Animals have evolved diverse strategies to use social information for increasing foraging success and efficiency. Echolocating bats, for example, can eavesdrop on bats foraging nearby because they shift from search-phase calls to feeding buzzes when they detect prey. Feeding buzzes can directly convey information about prey presence, but it is unknown whether search-phase calls also convey social information. Here, we investigated whether search-phase echolocation calls, distinct calls produced by some bat species to scan large open areas for prey, can additionally convey individual identity. We tested this in Molossus molossus, a neotropical insectivorous bat that forages with group members, presumably to find ephemeral insect swarms more efficiently. We caught M. molossus from six different social groups and recorded their search-phase calls during a standardized release procedure, then recaptured and tested 19 marked bats with habituation–dishabituation playback experiments. We showed that they can discriminate between group members based on search-phase calls, and our statistical analysis of call parameters supported the presence of individual signatures in search-phase calls. Individual discrimination is a prerequisite of individual recognition, which may allow M. molossus to maintain contact with group members while foraging without using specialized signals for communication.
Collapse
Affiliation(s)
- Jenna E Kohles
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Ave. Luis F. Clement, Balboa, Ancón, Panamá, República de Panamá
| | - Gerald G Carter
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Ave. Luis F. Clement, Balboa, Ancón, Panamá, República de Panamá
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Aronoff Laboratory, Columbus, OH , USA
| | - Rachel A Page
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Ave. Luis F. Clement, Balboa, Ancón, Panamá, República de Panamá
| | - Dina K N Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Ave. Luis F. Clement, Balboa, Ancón, Panamá, República de Panamá
| |
Collapse
|
14
|
Decision making in foraging bats. Curr Opin Neurobiol 2020; 60:169-175. [PMID: 31927435 DOI: 10.1016/j.conb.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022]
Abstract
Foraging is a complex and cognitively demanding behavior. Although it is often regarded as a mundane task, foraging requires the continuous weighting and integration of many sources of information with varying levels of credence. Bats are extremely diverse in their ecology and behavior, and thus demonstrate a wide variety of foraging strategies. In this review, we examine the different factors influencing the decision process of bats during foraging. Technological developments of recent years will soon enable real-time tracking of environmental conditions, of the position and quality of food items, the location of conspecifics, and the bat's movement history. Monitoring these variables alongside the continuous movement of the bat will facilitate the testing of different decision-making theories such as the use of reinforcement learning in wild free ranging bats and other animals.
Collapse
|
15
|
Culina A, Garroway CJ. Bats use social information within and across species. J Anim Ecol 2019; 88:1444-1446. [PMID: 31599016 PMCID: PMC6856686 DOI: 10.1111/1365-2656.13093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
Abstract
In Focus: LewanzikD.,
, SundaramurthyA. K.,
, GoerlitzH. R.,
(2019). Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost–benefit ratio of interactions. , 88, 1462–1473.30945281 Social interactions can generate social structures that shape the fate of individuals and populations. A key feature of social environments is the information produced by others. Whether actively shared or obtained via ‘eavesdropping’, individuals of many species use publically available information to guide their decision making in important ways. Lewanzik et al. (2019) explore social information use within and across several echolocating bat species. They experimentally manipulated the content of social information about prey abundance with playback experiments of echolocation calls. All species were found to use heterospecific and conspecific social information about conspecific activity levels and prey abundance. This is a rare experimental confirmation of social information use at a community level.
Collapse
Affiliation(s)
- Antica Culina
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, Netherlands
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Lewanzik D, Sundaramurthy AK, Goerlitz HR. Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost-benefit ratio of interactions. J Anim Ecol 2019; 88:1462-1473. [PMID: 30945281 PMCID: PMC6849779 DOI: 10.1111/1365-2656.12989] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/05/2019] [Indexed: 11/27/2022]
Abstract
Animals can use inadvertent social information to improve fitness‐relevant decisions, for instance about where to forage or with whom to interact. Since bats emit high‐amplitude species‐specific echolocation calls when flying, they provide a constant flow of inadvertent social information to others who can decode that acoustic information. Of particular interest is the rate of feeding buzzes—characteristic call sequences preceding any prey capture—which correlates with insect abundance. Previous studies investigating eavesdropping in bats yielded very different and in part contradictory results likely because they commonly focused on single species only, differed substantially in playback buzz rate and did usually not account for (baseline) conspecific activity. Our goal was to overcome these limitations and systematically test which inadvertent social information bats integrate when eavesdropping on others and how this integration affects space use and both intra‐ and interspecific interactions, respectively. We used a community‐wide approach and investigated the effects of a broad range of playback feeding buzz rates and conspecific activity on eavesdropping responses in 24 bat species combinations in the wild. For the first time, we reveal that finely graded and density‐dependent eavesdropping responses are not limited to particular foraging styles or call types, but instead are ubiquitous among insectivorous bats. All bats integrated social information about calling species identity, prey abundance and conspecific activity to estimate the cost–benefit ratio of prospective interactions, yet in a species‐specific manner. The effect of buzz rate was multifaceted, as bats responded differently to different buzz rates, and responses were additionally modulated by heterospecific recognition. Conspecific activity, in contrast, had a negative effect on the eavesdropping responses of all bats. These findings can explain the inconsistent results of previous studies and advance our understanding of the complex nature of conspecific and heterospecific interactions within bat communities. A comprehensive understanding of how bats incorporate social information into their decision‐making will help researchers to explain species distribution patterns and eventually to unravel mechanisms of species coexistence.
Collapse
Affiliation(s)
- Daniel Lewanzik
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Arun K Sundaramurthy
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Faculty of Biology, Ludwig-Maximilians-University, München, Germany
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|