1
|
Wu B, Wen J, Lu R, Zhou W. Genetic diversity, population structure, and phylogenetic relationships of a widespread East Asia herb, Cryptotaenia japonica Hassk. (Apiaceae) based on genomic SNP data generated by dd-RAD sequencing. Front Genet 2024; 15:1368760. [PMID: 39205937 PMCID: PMC11349635 DOI: 10.3389/fgene.2024.1368760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Single-nucleotide polymorphisms (SNPs) represent the most prevalent form of genomic polymorphism and are extensively used in population genetics research. Using dd-RAD sequencing, a high-throughput sequencing method, we investigated the genome-level diversity, population structure, and phylogenetic relationships among three morphological forms of the widely distributed taxon Cryptotaenia japonica Hassk., which is native to East Asia. Our study aimed to assess the species status of C. japonica according to its genetic structure and genetic diversity patterns among 66 naturally distributed populations, comprising 26 C. japonica f. japonica, 36 C. japonica f. dissecta (Y. Yabe) Hara and 4 C. japonica f. pinnatisecta S. L. Liou accessions. Based on genomic SNP data generated by dd-RAD sequencing, we conducted genetic diversity, principal component, neighbor-joining (NJ) phylogenetic, admixture clustering, and population differentiation analyses. The findings revealed the following: (1) 5,39,946 unlinked, high-quality SNPs, with mean π, H O, H E and F IS values of 0.062, 0.066, 0.043 and -0.014, respectively, were generated; (2) population divergence was unaffected by isolation through distance; (3) six main distinct regions corresponding to geographic locations and exhibiting various levels of genetic diversity were identified; (4) pairwise F ST analysis showed significant (P < 0.05) population differentiation in 0%-14% of populations among the six regions after sequential Bonferroni correction; and (5) three migration events (historical gene flow) indicated east‒west directionality. Moreover, contemporary gene flow analysis using Jost's D, Nei's G ST, and Nm values highlighted the middle latitude area of East Asia as a significant contributor to genetic structuring in C. japonica. Overall, our study elucidates the relatively low genetic differentiation and population structure of C. japonica across East Asia, further enhancing our understanding of plant lineage diversification in the Sino-Japanese Floristic Region.
Collapse
Affiliation(s)
- Baocheng Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | | | | | | |
Collapse
|
2
|
Riofrío M, Naranjo C, Mendoza A, Draper D, Marques I. Genetic diversity and structure in two epiphytic orchids from the montane forests of southern Ecuador: The role of overcollection on Masdevallia rosea in comparison with the widespread Pleurothallis lilijae. PLoS One 2023; 18:e0290604. [PMID: 37713402 PMCID: PMC10503748 DOI: 10.1371/journal.pone.0290604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/11/2023] [Indexed: 09/17/2023] Open
Abstract
Ecuador has a high diversity of orchids, but little is known about levels of genetic diversity for the great majority of species. Understanding how orchids might adapt to changes is crucial as deforestation and fragmentation of forest ecosystems threaten the survival of many epiphytic orchids that depend on other species, such as fungi and their host trees, for germination, growth, and establishment. Overcollection and the illegal trade are also major concerns for the survival of wild populations of orchids. Despite increasing awareness, effective interventions are often limited by a lack of data concerning the impacts that overexploitation might have. To fill this gap, we tested the effects of overcollection in the genetic diversity and structure of Masdevallia rosea, a narrow distributed epiphytic orchid historically collected in Ecuador, in comparison with the widely distributed Pleurothallis lilijae. Genotyping based on AFLPs showed reduced levels of diversity in wild populations but most especially in the overcollected, M. rosea. Overall, genetic admixture was high in P. lilijae segregating populations by altitude levels while fewer genetic groups were found in M. rosea. Genetic differentiation was low in both species. A spatial genetic structure was found in P. lilijae depending on altitude levels, while no spatial genetic structure was found in M. rosea. These results suggest different scenarios for the two species: while gene flow over long distance is possible in P. lilijae, the same seems to be unlikely in M. rosea possibly due to the low levels of individuals in the known populations. In situ and ex situ conservation strategies should be applied to protect the genetic pool in these epiphytic orchid species, and to promote the connectivity between wild populations. Adopting measures to reduce overexploitation and to understand the impacts of harvesting in wild populations are necessary to strengthen the legal trade of orchids.
Collapse
Affiliation(s)
- María Riofrío
- Department of Biology Sciences, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Carlos Naranjo
- Department of Biology Sciences, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Alberto Mendoza
- Department of Biology Sciences, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - David Draper
- CE3C - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisbon, Portugal
| | - Isabel Marques
- Forest Research Centre (CEF) & Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Evans A, de Kort H, Brys R, Duffy KJ, Jersáková J, Kull T, Selosse MA, Tsiftsis S, Minasiewicz J, Jacquemyn H. Historical biogeography and local adaptation explain population genetic structure in a widespread terrestrial orchid. ANNALS OF BOTANY 2023; 131:623-634. [PMID: 36680796 PMCID: PMC10147325 DOI: 10.1093/aob/mcad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Historical changes in environmental conditions and colonization-extinction dynamics have a direct impact on the genetic structure of plant populations. However, understanding how past environmental conditions influenced the evolution of species with high gene flow is challenging when signals for genetic isolation and adaptation are swamped by gene flow. We investigated the spatial distribution and genetic structure of the widespread terrestrial orchid Epipactis helleborine to identify glacial refugia, characterize postglacial population dynamics and assess its adaptive potential. METHODS Ecological niche modelling was used to locate possible glacial refugia and postglacial recolonization opportunities of E. helleborine. A large single-nucleotide polymorphism (SNP) dataset obtained through genotyping by sequencing was used to define population genetic diversity and structure and to identify sources of postglacial gene flow. Outlier analyses were used to elucidate how adaptation to the local environment contributed to population divergence. KEY RESULTS The distribution of climatically suitable areas was restricted during the Last Glacial Maximum to the Mediterranean, south-western Europe and small areas in the Alps and Carpathians. Within-population genetic diversity was high in E. helleborine (mean expected heterozygosity, 0.373 ± 0.006; observed heterozygosity, 0.571 ± 0.012; allelic richness, 1.387 ± 0.007). Italy and central Europe are likely to have acted as important genetic sources during postglacial recolonization. Adaptive SNPs were associated with temperature, elevation and precipitation. CONCLUSIONS Forests in the Mediterranean and Carpathians are likely to have acted as glacial refugia for Epipactis helleborine. Postglacial migration northwards and to higher elevations resulted in the dispersal and diversification of E. helleborine in central Europe and Italy, and to geographical isolation and divergent adaptation in Greek and Italian populations. Distinguishing adaptive from neutral genetic diversity allowed us to conclude that E. helleborine has a high adaptive potential to climate change and demonstrates that signals of adaptation and historical isolation can be identified even in species with high gene flow.
Collapse
Affiliation(s)
- Alexandra Evans
- Department of Biology, Plant Conservation and Population Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hanne de Kort
- Department of Biology, Plant Conservation and Population Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rein Brys
- Research Institute for Forest and Nature, Geraardsbergen, Belgium
| | - Karl J Duffy
- Department of Biology, University of Naples Federico II, Complesso Monte Sant’Angelo, Naples 80126, Italy
| | - Jana Jersáková
- Department of Biology of Ecosystems, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tiiu Kull
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Kreutzwaldi, 51014 Tartu, Estonia
| | - Marc-André Selosse
- Institut Systématique Evolution Biodiversité, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Spyros Tsiftsis
- Department of Forest and Natural Environment Sciences, International Hellenic University, GR-66132, Drama, Greece
| | - Julita Minasiewicz
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Zhang Z, Li J, Suddee S, Bouamanivong S, Averyanov LV, Gale SW. Exploring island syndromes: Variable matrix permeability in Phalaenopsis pulcherrima (Orchidaceae), a specialist lithophyte of tropical Asian inselbergs. FRONTIERS IN PLANT SCIENCE 2023; 14:1097113. [PMID: 36890904 PMCID: PMC9986494 DOI: 10.3389/fpls.2023.1097113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Plants confined to island-like habitats are hypothesised to possess a suite of functional traits that promote on-spot persistence and recruitment, but this may come at the cost of broad-based colonising potential. Ecological functions that define this island syndrome are expected to generate a characteristic genetic signature. Here we examine genetic structuring in the orchid Phalaenopsis pulcherrima, a specialist lithophyte of tropical Asian inselbergs, both at the scale of individual outcrops and across much of its range in Indochina and on Hainan Island, to infer patterns of gene flow in the context of an exploration of island syndrome traits. METHODS We sampled 323 individuals occurring in 20 populations on 15 widely scattered inselbergs, and quantified genetic diversity, isolation-by-distance and genetic structuring using 14 microsatellite markers. To incorporate a temporal dimension, we inferred historical demography and estimated direction of gene flow using Bayesian approaches. RESULTS We uncovered high genotypic diversity, high heterozygosity and low rates of inbreeding, as well as strong evidence for the occurrence of two genetic clusters, one comprising the populations of Hainan Island and the other those of mainland Indochina. Connectivity was greater within, rather than between the two clusters, with the former unequivocally supported as ancestral. DISCUSSION Despite a strong capacity for on-spot persistence conferred by clonality, incomplete self-sterility and an ability to utilize multiple magnet species for pollination, our data reveal that P. pulcherrima also possesses traits that promote landscape-scale gene flow, including deceptive pollination and wind-borne seed dispersal, generating an ecological profile that neither fully conforms to, nor fully contradicts, a putative island syndrome. A terrestrial matrix is shown to be significantly more permeable than open water, with the direction of historic gene flow indicating that island populations can serve as refugia for postglacial colonisation of continental landmasses by effective dispersers.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Hainan University), Ministry of Education, College of Forestry, Hainan University, Haikou, China
- Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jihong Li
- Flora Conservation Department, Kadoorie Farm & Botanic Garden, Tai Po, Hong Kong, China
| | - Somran Suddee
- Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, Chatuchak, Bangkok, Thailand
| | - Somsanith Bouamanivong
- Biotechnology and Ecology Institute, Ministry of Science and Technology, Vientiane, Laos
| | - Leonid V. Averyanov
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Stephan W. Gale
- Flora Conservation Department, Kadoorie Farm & Botanic Garden, Tai Po, Hong Kong, China
| |
Collapse
|
5
|
Yamashita Y, Satoh N, Kurosawa T, Kaneko S. Genetic diversity and structure of the endangered lady's slipper orchid
Cypripedium japonicum
Thunb. (Orchidaceae) in Japan. POPUL ECOL 2022. [DOI: 10.1002/1438-390x.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yumi Yamashita
- Graduate School of Symbiotic Systems Science and Technology Fukushima University Fukushima Fukushima Japan
- Faculty of Symbiotic Systems Science Fukushima University Fukushima Fukushima Japan
| | - Natsuki Satoh
- Graduate School of Symbiotic Systems Science and Technology Fukushima University Fukushima Fukushima Japan
| | - Takahide Kurosawa
- Faculty of Symbiotic Systems Science Fukushima University Fukushima Fukushima Japan
| | - Shingo Kaneko
- Faculty of Symbiotic Systems Science Fukushima University Fukushima Fukushima Japan
| |
Collapse
|
6
|
Minasiewicz J, Krawczyk E, Znaniecka J, Vincenot L, Zheleznaya E, Korybut-Orlowska J, Kull T, Selosse MA. Weak population spatial genetic structure and low infraspecific specificity for fungal partners in the rare mycoheterotrophic orchid Epipogium aphyllum. JOURNAL OF PLANT RESEARCH 2022; 135:275-293. [PMID: 34993702 PMCID: PMC8894228 DOI: 10.1007/s10265-021-01364-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/19/2021] [Indexed: 06/02/2023]
Abstract
Some plants abandoned photosynthesis and developed full dependency on fungi for nutrition. Most of the so-called mycoheterotrophic plants exhibit high specificity towards their fungal partners. We tested whether natural rarity of mycoheterotrophic plants and usual small and fluctuating population size make their populations more prone to genetic differentiation caused by restricted gene flow and/or genetic drift. We also tested whether these genetic characteristics might in turn shape divergent fungal preferences. We studied the mycoheterotrophic orchid Epipogium aphyllum, addressing the joint issues of genetic structure of its populations over Europe and possible consequences for mycorrhizal specificity within the associated fungal taxa. Out of 27 sampled E. aphyllum populations, nine were included for genetic diversity assessment using nine nuclear microsatellites and plastid DNA. Population genetic structure was inferred based on the total number of populations. Individuals from 17 locations were included into analysis of genetic identity of mycorrhizal fungi of E. aphyllum based on barcoding by nuclear ribosomal DNA. Epipogium aphyllum populations revealed high genetic diversity (uHe = 0.562) and low genetic differentiation over vast distances (FST = 0.106 for nuclear microsatellites and FST = 0.156 for plastid DNA). Bayesian clustering analyses identified only two genetic clusters, with a high degree of admixture. Epipogium aphyllum genets arise from panmixia and display locally variable, but relatively high production of ramets, as shown by a low value of rarefied genotypic richness (Rr = 0.265). Epipogium aphyllum genotype control over partner selection was negligible as (1) we found ramets from a single genetic individual associated with up to 68% of the known Inocybe spp. associating with the plant species, (2) and partner identity did not show any geographic structure. The absence of mosaicism in the mycorrhizal specificity over Europe may be linked to preferential allogamous habit of E. aphyllum and significant gene flow, which tend to promote host generalism.
Collapse
Affiliation(s)
- Julita Minasiewicz
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Emilia Krawczyk
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Joanna Znaniecka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Lucie Vincenot
- Normandie University, UNIROUEN, INRAE, ECODIV, 76000, Rouen, France
| | - Ekaterina Zheleznaya
- Peoples' Friendship University of Russia, Podolskoye shosse 8/5, 115093, Moscow, Russia
- Timiryazev State Biological Museum, Malaya Gruzinskaya, 15, 123242, Moscow, Russia
| | - Joanna Korybut-Orlowska
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Tiiu Kull
- Estonian University of Life Sciences, Tartu, Estonia
| | - Marc-André Selosse
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 39 75005, Paris, France
| |
Collapse
|
7
|
Lee SR, Choi TY, Jung SY. Genetic Diversity on a Rare Terrestrial Orchid, Habenaria linearifolia in South Korea: Implications for Conservation Offered by Genome-Wide Single Nucleotide Polymorphisms. FRONTIERS IN PLANT SCIENCE 2022; 13:772621. [PMID: 35283866 PMCID: PMC8907889 DOI: 10.3389/fpls.2022.772621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Monitoring intraspecific diversity offers invaluable insights on conservation practices as the variation is the product of species evolution. Accordingly, the role of population genetic diversity has drawn great attention over the last century responding to the biodiversity loss induced by a series of anthropogenic changes. Orchids are one of the most diverse, yet ironically most rapidly disappearing plant groups due to the specialized habitat preferences. Thus, population-level genetic diversity studies may offer a powerful tool for orchid conservation programs. Using the 3 restriction site-associated DNA (3RAD) approach, 2,734 genome-wide single nucleotide polymorphisms (SNPs) were isolated. With the 2,734 SNPs, we investigated genetic diversity and population structure on 72 individuals of Habenaria linearifolia and Habenaria cruciformis in South Korea. Overall, the genetic diversity was well maintained in South Korean Habenaria, but high F ST values were estimated suggesting large population diversification with limited gene flow. Bayesian assignment analysis revealed a morphologically cryptic diversity pattern in Jeju Island populations, which might serve as an evolutionarily significant unit.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, South Korea
| | - Tae-Young Choi
- Department of Biology Education, College of Education, Chosun University, Gwangju, South Korea
| | - Su-Young Jung
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, South Korea
| |
Collapse
|
8
|
Ellwanger C, Steger L, Pollack C, Wells R, Benjamin Fant J. Anthropogenic fragmentation increases risk of genetic decline in the threatened orchid Platanthera leucophaea. Ecol Evol 2022; 12:e8578. [PMID: 35222956 PMCID: PMC8855017 DOI: 10.1002/ece3.8578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Protecting biodiversity requires an understanding of how anthropogenic changes impact the genetic processes associated with extinction risk. Studies of the genetic changes due to anthropogenic fragmentation have revealed conflicting results. This is likely due to the difficulty in isolating habitat loss and fragmentation, which can have opposing impacts on genetic parameters. The well-studied orchid, Platanthera leucophaea, provides a rich dataset to address this issue, allowing us to examine range-wide genetic changes. Midwestern and Northeastern United States. We sampled 35 populations of P. leucophaea that spanned the species' range and varied in patch composition, degree of patch isolation, and population size. From these populations we measured genetic parameters associated with increased extinction risk. Using this combined dataset, we modeled landscape variables and population metrics against genetic parameters to determine the best predictors of increased extinction risk. All genetic parameters were strongly associated with population size, while development and patch isolation showed an association with genetic diversity and genetic structure. Genetic diversity was lowest in populations with small census sizes, greater urbanization pressures (habitat loss), and small patch area. All populations showed moderate levels of inbreeding, regardless of size. Contrary to expectation, we found that critically small populations had negative inbreeding values, indicating non-random mating not typically observed in wild populations, which we attribute to selection for less inbred individuals. The once widespread orchid, Platanthera leucophaea, has suffered drastic declines and extant populations show changes in the genetic parameters associated with increased extinction risk, especially smaller populations. Due to the important correlation with risk and habitat loss, we advocate continued monitoring of population sizes by resource managers, while the critically small populations may need additional management to reverse genetic declines.
Collapse
Affiliation(s)
- Claire Ellwanger
- Plant Biology and ConservationChicago Botanic GardenGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern University, O.T. Hogan HallEvanstonIllinoisUSA
- U.S. Forest ServiceOkanogan‐Wenatchee National ForestWenatcheeWashingtonUSA
| | - Laura Steger
- Plant Biology and ConservationChicago Botanic GardenGlencoeIllinoisUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Cathy Pollack
- U.S. Fish and Wildlife ServiceChicago Field OfficeChicagoIllinoisUSA
| | - Rachel Wells
- Plant Biology and ConservationChicago Botanic GardenGlencoeIllinoisUSA
- Department of BiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Jeremie Benjamin Fant
- Plant Biology and ConservationChicago Botanic GardenGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern University, O.T. Hogan HallEvanstonIllinoisUSA
| |
Collapse
|
9
|
Genetic Divergence between Two Sympatric Ecotypes of Phalaenopsis pulcherrima on Hainan Island. DIVERSITY 2021. [DOI: 10.3390/d13090446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ecotypes are the result of ecological differentiation at the early stages of speciation. Adaptation to soil conditions offers arguably the best examples of local adaptation in plants. Two sympatric ecotypes, with either a red or green abaxial leaf surface, were found without clear geographical isolation in Phalaenopsis pulcherrima, a Southeast Asia endemic and endangered orchid. The soil of the red leaf ecotype has a higher water content and nutrient content than the green ecotype. What is the genetic structure of the two ecotypes? Is there complete or partial reproductive isolation between the two ecotypes? In this work, leaf reflection of the two ecotypes in P. pulcherrima were compared, to illustrate their difference in leaf color. The genetic differentiation between two ecotypes was examined, using ISSR and SRAP markers to determine the genetic structure of the populations. Our results showed that the green ecotype had reflectance spectrum peaks at 530 nm and 620 nm, while in the red ecotype, the peak at 530 nm was absent. A total of 165 ISSR and SRAP loci showed a high level of genetic diversity within the green ecotype, and analyses of the population structure revealed two genetic clusters that corresponded to the red and green ecotypes. The percentage of variation between the two ecotypes (24.55%) was greater than the percentage of variation among the populations (16.54%)—indicating partial reproductive isolation, high genetic differentiation, and that ecological differentiation has been more important than geographical barriers among populations within ecotypes. Most pairwise FST values between the populations within either ecotype on Hainan Island were less than 0.15; however, the FST between both the Thai and Malaysian populations and the Hainan Island population was greater than 0.25, due to South China sea isolation. Ecotypic differentiation is an important part of speciation; therefore, we must take into account the axes along which lineages sort, when formulating protection strategies.
Collapse
|
10
|
Hedrén M, Birkedal S, de Boer H, Ghorbani A, Gravendeel B, Hansson S, Svensson Å, Zarre S. Asymmetric contributions of seed and pollen to gene dispersal in the marsh orchid Dactylorhiza umbrosa in Asia Minor. Mol Ecol 2021; 30:1791-1805. [PMID: 33587812 DOI: 10.1111/mec.15848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022]
Abstract
Orchids differ from other plants in their extremely small and partly air-filled seeds that can be transported long distances by wind. Seed dispersal in orchids is expected to contribute strongly to overall gene flow, and orchids generally express low levels of genetic differentiation between populations and low pollen to seed flow ratios. However, studies in orchids distributed in northern Europe have often found a poor geographic structuring of genetic variation. Here, we studied geographic differentiation in the marsh orchid Dactylorhiza umbrosa, which is widely distributed in upland regions from Asia Minor to Central Asia. These areas were less affected by Pleistocene ice ages than northern Europe and the orchid should have been able to survive the last ice age in local refugia. In the plastid genome, which is dispersed by seeds, populations at close distance were clearly divergent, but the differentiation still increased with geographic distance, and a significant phylogeographic structure had developed. In the nuclear genome, which is dispersed by both seeds and pollen, populations showed an even stronger correlation between genetic and geographic distance, but average levels of differentiation were lower than in the plastid genome, and no phylogeographic structure was evident. Combining plastid and nuclear data, we found that the ratio of pollen to seed dispersal (mp/ms) decreases with physical distance. Comparison with orchids that grow in parts of Europe that were glaciated during the last ice suggests that a balanced structure of genetic diversity develops only slowly in many terrestrial orchids, despite efficient seed dispersal.
Collapse
Affiliation(s)
- Mikael Hedrén
- Department of Biology, University of Lund, Lund, Sweden
| | | | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Endless Forms Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Barbara Gravendeel
- Endless Forms Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Åke Svensson
- Department of Dermatology, Malmö University Hospital SUS, Malmö, Sweden
| | - Shahin Zarre
- Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Phillips RD, Reiter N, Peakall R. Orchid conservation: from theory to practice. ANNALS OF BOTANY 2020; 126:345-362. [PMID: 32407498 PMCID: PMC7424752 DOI: 10.1093/aob/mcaa093] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Given the exceptional diversity of orchids (26 000+ species), improving strategies for the conservation of orchids will benefit a vast number of taxa. Furthermore, with rapidly increasing numbers of endangered orchids and low success rates in orchid conservation translocation programmes worldwide, it is evident that our progress in understanding the biology of orchids is not yet translating into widespread effective conservation. SCOPE We highlight unusual aspects of the reproductive biology of orchids that can have important consequences for conservation programmes, such as specialization of pollination systems, low fruit set but high seed production, and the potential for long-distance seed dispersal. Further, we discuss the importance of their reliance on mycorrhizal fungi for germination, including quantifying the incidence of specialized versus generalized mycorrhizal associations in orchids. In light of leading conservation theory and the biology of orchids, we provide recommendations for improving population management and translocation programmes. CONCLUSIONS Major gains in orchid conservation can be achieved by incorporating knowledge of ecological interactions, for both generalist and specialist species. For example, habitat management can be tailored to maintain pollinator populations and conservation translocation sites selected based on confirmed availability of pollinators. Similarly, use of efficacious mycorrhizal fungi in propagation will increase the value of ex situ collections and likely increase the success of conservation translocations. Given the low genetic differentiation between populations of many orchids, experimental genetic mixing is an option to increase fitness of small populations, although caution is needed where cytotypes or floral ecotypes are present. Combining demographic data and field experiments will provide knowledge to enhance management and translocation success. Finally, high per-fruit fecundity means that orchids offer powerful but overlooked opportunities to propagate plants for experiments aimed at improving conservation outcomes. Given the predictions of ongoing environmental change, experimental approaches also offer effective ways to build more resilient populations.
Collapse
Affiliation(s)
- Ryan D Phillips
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, WA, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Noushka Reiter
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Royal Botanic Gardens Victoria, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
12
|
Ren G, Mateo RG, Conti E, Salamin N. Population Genetic Structure and Demographic History of Primula fasciculata in Southwest China. FRONTIERS IN PLANT SCIENCE 2020; 11:986. [PMID: 32714358 PMCID: PMC7351516 DOI: 10.3389/fpls.2020.00986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Understanding the factors that drive the genetic structure of a species and its responses to past climatic changes is an important first step in modern population management. The response to the last glacial maximum (LGM) has been well studied, however, the effect of previous glaciation periods on plant demographic history is still not well studied. Here we investigated the population structure and demographic history of Primula fasciculata that widely occurs in the Hengduan Mountains and Qinghai-Tibetan Plateau. We obtained genomic data for 234 samples of the species using restriction site-associated DNA (RAD) sequencing and combined approximate Bayesian computation (ABC) and species distribution modeling (SDM) to evaluate the effects of multiple glaciation periods by testing several population divergence models and demographic scenarios. The analyses of population structure showed that P. fasciculata displays a striking population structure with six groups that could be identified genetically. Our ABC modeling suggested that the current groups diverged from ancestral populations located in the eastern Hengduan Mountains after the largest glaciation occurred in the region (~ 0.8-0.5 million years ago), which is consistent with the result of SDMs. Each current group has survived in different glacial refugia during the LGM and experienced expansions and/or bottlenecks since their divergence during or across the following Quaternary glacial cycles. Our study demonstrates the usefulness of population genomics for evaluating the effects of past climatic changes in alpine plant species with shallow population structure.
Collapse
Affiliation(s)
- Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou, China
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Rubén G. Mateo
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Conti
- Department of Systematic and Evolutionary Botany and Botanic Garden, University of Zurich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Niu Z, Hou Z, Wang M, Ye M, Zhang B, Xue Q, Liu W, Ding X. A comparative plastomics approach reveals available molecular markers for the phylogeographic study of Dendrobium huoshanense, an endangered orchid with extremely small populations. Ecol Evol 2020; 10:5332-5342. [PMID: 32607156 PMCID: PMC7319108 DOI: 10.1002/ece3.6277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 11/08/2022] Open
Abstract
Comparative plastomics approaches have been used to identify available molecular markers for different taxonomic level studies of orchid species. However, the adoption of such methods has been largely limited in phylogeographic studies. Therefore, in this study, Dendrobium huoshanense, an endangered species with extremely small populations, was used as a model system to test whether the comparative plastomic approaches could screen available molecular markers for the phylogeographic study. We sequenced two more plastomes of D. huoshanense and compared them with our previously published one. A total of 27 mutational hotspot regions and six polymorphic cpSSRs have been screened for the phylogeographic studies of D. huoshanense. The cpDNA haplotype data revealed that the existence of haplotype distribution center was located in Dabieshan Mts. (Huoshan). The genetic diversity and phylogenetic analyses showed that the populations of D. huoshanense have been isolated and evolved independently for long period. On the contrary, based on cpSSR data, the genetic structure analysis revealed a mixed structure among the populations in Anhui and Jiangxi province, which suggested that the hybridization or introgression events have occurred among the populations of D. huoshanense. These results indicated that human activities have played key roles in shaping the genetic diversity and distributional patterns of D. huoshanense. According to our results, both two markers showed a high resolution for the phylogeographic studies of D. huoshanense. Therefore, we put forth that comparative plastomic approaches could revealed available molecular markers for phylogeographic study, especially for the species with extremely small populations.
Collapse
Affiliation(s)
- Zhitao Niu
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Zhenyu Hou
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Mengting Wang
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Meirong Ye
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Benhou Zhang
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Qingyun Xue
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Wei Liu
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Xiaoyu Ding
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| |
Collapse
|
14
|
Nazareno AG, Neto LM, Buzatti RSDO, van den Berg C, Forzza RC. Four raised to one equals one: A genetic approach to the Pseudolaelia vellozicola complex does not follow a math rule. Ecol Evol 2020; 10:4562-4569. [PMID: 32551043 PMCID: PMC7297771 DOI: 10.1002/ece3.6148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 11/20/2022] Open
Abstract
Pseudolaelia is a genus endemic to the eastern Brazilian Atlantic Forest, consisting of 12 accepted species. Some Pseudolaelia species, such as P. vellozicola, P. aguadocensis, P. oliveirana, and P. regentii, referred to here as the PV complex, present extensive intra- and interpopulation morphological polymorphism, raising uncertainty regarding their circumscriptions. Although previous morphological analyses were used to solve the generic boundaries in the PV complex, persuasive genetic evidence is lacking. In order to test the hypothesis that the group under investigation contains only one taxon, amplification profiles of five intersimple sequence repeat (ISSR) markers were used to evaluate genetic diversity, genetic structure, and the relationships among the PV complex species. A total of 134 reproductive individuals were sampled in eight insular populations. Intrapopulation genetic analysis indicated low levels of genetic diversity. Analysis of genetic structure revealed that each of the eight sample locations can be considered unique biological populations as they are highly differentiated from each other. The Mantel test showed a high and positive correlation between genetic and geographic distance (r = .841, p < .002), indicating isolation by distance. The results are consistent with that expected for plants with insular geographical distribution. When testing for the null hypothesis, the low levels of genetic variation among species (F CT = 0.155) suggest that the populations constitute only one highly polymorphic species with a wide distribution.
Collapse
Affiliation(s)
| | | | | | - Cássio van den Berg
- Department of Biological SciencesUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | | |
Collapse
|
15
|
Analyses of sexual reproductive traits in Dactylorhiza majalis: a case study from East Germany. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThe orchid species Dactylorhiza majalis is endangered by continuing habitat destruction and fragmentation. This requires more detailed information with respect to its sexual reproduction, which is especially relevant for Germany, where from 10 % to 30 % of the world-wide remaining populations grow. In the present study, we determined both the numbers of growing and flowering individuals per stand with regard to D. majalis at 12 localities of Upper Lusatia, Saxony, Germany, during the season 2014. For up to 25 plants per stand, sexual reproduction was assessed by checking over the numbers of blossoms and fruits per inflorescence and by calculating percentages of seed fertilities from embryo-viability stains. Applying pair-wise statistical analyses, we found correlations between two of the above-mentioned traits as well as among the above-cited population-specific reproduction parameters and four out of six Ellenberg’s indicator values, which have been calculated to characterize local site conditions. We furthermore recorded both very poor and enhanced seed fertilities, clustering into two groups which were associated with the Ellenberg’s indicator value thermal continentality. Lower seed fertilities were generally detected in the northern lowlands, whereas D. majalis is probably able to compensate the unpleasant environments of the southern highlands by bearing more fertile seeds. Conducting genetic inventories with three nuclear microsatellites, the sampled seed-producing mother plants of both fertility groups differed by the opposite frequency distribution of two prominent genotypes DD and EE at locus ms14. These findings indicate a genetic selection due to adaptation to climatical stresses. Based on the additionally detected aberrant megasporogenesis, we propose that mother plants of homozygous genotype EE and their germ-cells are less affected by both aneuploidy and large deletions on the remaining chromosomes, and we assume that a linkage disequilibrium exists between such advantageous karyotypes and the studied microsatellite locus. Regarding the challenges of global warming, repeated inventories are finally recommended at all 12 stands in order to validate the long-term indicative properties of the discovered findings.
Collapse
|
16
|
Genetic diversity of endangered orchid Phaius australis across a fragmented Australian landscape. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1022-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Ahrens CW, Supple MA, Aitken NC, Cantrill DJ, Borevitz JO, James EA. Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain. ANNALS OF BOTANY 2017; 119:1267-1277. [PMID: 28334284 PMCID: PMC5604565 DOI: 10.1093/aob/mcx022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 02/12/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Species are often used as the unit for conservation, but may not be suitable for species complexes where taxa are difficult to distinguish. Under such circumstances, it may be more appropriate to consider species groups or populations as evolutionarily significant units (ESUs). A population genomic approach was employed to investigate the diversity within and among closely related species to create a more robust, lineage-specific conservation strategy for a nationally endangered terrestrial orchid and its relatives from south-eastern Australia. METHODS Four putative species were sampled from a total of 16 populations in the Victorian Volcanic Plain (VVP) bioregion and one population of a sub-alpine outgroup in south-eastern Australia. Morphological measurements were taken in situ along with leaf material for genotyping by sequencing (GBS) and microsatellite analyses. KEY RESULTS Species could not be differentiated using morphological measurements. Microsatellite and GBS markers confirmed the outgroup as distinct, but only GBS markers provided resolution of population genetic structure. The nationally endangered Diuris basaltica was indistinguishable from two related species ( D. chryseopsis and D. behrii ), while the state-protected D. gregaria showed genomic differentiation. CONCLUSIONS Genomic diversity identified among the four Diuris species suggests that conservation of this taxonomically complex group will be best served by considering them as one ESU rather than separately aligned with species as currently recognized. This approach will maximize evolutionary potential among all species during increased isolation and environmental change. The methods used here can be applied generally to conserve evolutionary processes for groups where taxonomic uncertainty hinders the use of species as conservation units.
Collapse
Affiliation(s)
- Collin W. Ahrens
- Royal Botanic Gardens Victoria, Science Division, Melbourne, Victoria 3004, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- For correspondence. E-mail
| | - Megan A. Supple
- Australian National University, Research School of Biology, Centre of Excellence in Plant Energy Biology, Canberra, ACT 0200, Australia
| | - Nicola C. Aitken
- Australian National University, Research School of Biology, Centre of Excellence in Plant Energy Biology, Canberra, ACT 0200, Australia
| | - David J. Cantrill
- Royal Botanic Gardens Victoria, Science Division, Melbourne, Victoria 3004, Australia
| | - Justin O. Borevitz
- Australian National University, Research School of Biology, Centre of Excellence in Plant Energy Biology, Canberra, ACT 0200, Australia
| | - Elizabeth A. James
- Royal Botanic Gardens Victoria, Science Division, Melbourne, Victoria 3004, Australia
| |
Collapse
|
18
|
Hu AQ, Gale SW, Kumar P, Saunders RMK, Sun M, Fischer GA. Preponderance of clonality triggers loss of sex in Bulbophyllum bicolor, an obligately outcrossing epiphytic orchid. Mol Ecol 2017; 26:3358-3372. [PMID: 28390097 DOI: 10.1111/mec.14139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/20/2017] [Accepted: 03/24/2017] [Indexed: 12/01/2022]
Abstract
Vegetative propagation (clonal growth) conveys several evolutionary advantages that positively affect life history fitness and is a widespread phenomenon among angiosperms that also reproduce sexually. However, a bias towards clonality can interfere with sexual reproduction and lead to sexual extinction, although a dearth of effective genetic tools and mathematical models for clonal plants has hampered assessment of these impacts. Using the endangered tropical epiphytic or lithophytic orchid Bulbophyllum bicolor as a model, we integrated an examination of breeding system with 12 microsatellite loci and models valid for clonal species to test for the "loss of sex" and infer likely consequences for long-term reproductive dynamics. Bagging experiments and field observations revealed B. bicolor to be self-incompatible and pollinator-dependent, with an absence of fruit-set over 4 years. Challenging the assumptions that clonal populations can be as genotypically diverse as sexually reproducing ones and that clonality does not greatly influence genetic structure, just 22 multilocus genotypes were confirmed among all 15 extant natural populations, 12 of the populations were found to be monoclonal, and all three multiclonal ones exhibited a distinct phalanx clonal architecture. Our results suggest that all B. bicolor populations depend overwhelmingly on clonal growth for persistence, with a concomitant loss of sex due to an absence of pollinators and a lack of mating opportunities at virtually all sites, both of which are further entrenched by habitat fragmentation. Such cryptic life history impacts, potentially contributing to extinction debt, could be widespread among similarly fragmented, outcrossing tropical epiphytes, demanding urgent conservation attention.
Collapse
Affiliation(s)
- Ai-Qun Hu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.,Kadoorie Farm & Botanic Garden, Hong Kong, China
| | | | - Pankaj Kumar
- Kadoorie Farm & Botanic Garden, Hong Kong, China
| | | | - Mei Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
19
|
Hou B, Luo J, Zhang Y, Niu Z, Xue Q, Ding X. Iteration expansion and regional evolution: phylogeography of Dendrobium officinale and four related taxa in southern China. Sci Rep 2017; 7:43525. [PMID: 28262789 PMCID: PMC5337965 DOI: 10.1038/srep43525] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022] Open
Abstract
The genus Dendrobium was used as a case study to elucidate the evolutionary history of Orchidaceae in the Sino-Japanese Floristic Region (SJFR) and Southeast Asia region. These evolutionary histories remain largely unknown, including the temporal and spatial distribution of the evolutionary events. The present study used nuclear and plastid DNA to determine the phylogeography of Dendrobium officinale and four closely related taxa. Plastid DNA haplotype and nuclear data were shown to be discordant, suggesting reticulate evolution drove the species' diversification. Rapid radiation and genetic drift appeared to drive the evolution of D. tosaense and D. flexicaule, whereas introgression or hybridization might have been involved in the evolution of D. scoriarum and D. shixingense. The phylogeographical structure of D. officinale revealed that core natural distribution regions might have served as its glacial refuges. In recent years, human disturbances caused its artificial migration and population extinction. The five taxa may have originated from the Nanling Mountains and the Yungui Plateau and then migrated northward or eastward. After the initial iteration expansion, D. officinale populations appeared to experience the regional evolutionary patterns in different regions and follow the sequential or rapid decline in gene exchange.
Collapse
Affiliation(s)
- Beiwei Hou
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Jing Luo
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yusi Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Industrial Technology Research Institute, Nanjing 210042, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
20
|
Jermakowicz E, Brzosko E, Kotowicz J, Wróblewska A. Genetic Diversity of OrchidMalaxis monophyllosOver European Range as an Effect of Population Properties and Postglacial Colonization. POLISH JOURNAL OF ECOLOGY 2017. [DOI: 10.3161/15052249pje2017.65.1.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Edyta Jermakowicz
- Institute of Biology, University of Bialystok, K. Ciołkowskiego 1J, 15-245 Bialystok, Poland
| | - Emilia Brzosko
- Institute of Biology, University of Bialystok, K. Ciołkowskiego 1J, 15-245 Bialystok, Poland
| | - Jarosław Kotowicz
- Faculty of Mathematics and Informatics, University of Bialystok, Ciołkowskiego 1M, 15-245 Bialystok, Poland
| | - Ada Wróblewska
- Institute of Biology, University of Bialystok, K. Ciołkowskiego 1J, 15-245 Bialystok, Poland
| |
Collapse
|
21
|
Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Iles WJD, Clements MA, Arroyo MTK, Leebens-Mack J, Endara L, Kriebel R, Neubig KM, Whitten WM, Williams NH, Cameron KM. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc Biol Sci 2016; 282:rspb.2015.1553. [PMID: 26311671 DOI: 10.1098/rspb.2015.1553] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Orchids are the most diverse family of angiosperms, with over 25 000 species,more than mammals, birds and reptiles combined. Tests of hypotheses to account for such diversity have been stymied by the lack of a fully resolved broad-scale phylogeny. Here,we provide such a phylogeny, based on 75 chloroplast genes for 39 species representing all orchid subfamilies and 16 of 17 tribes, time-calibrated against 17 angiosperm fossils. Asupermatrix analysis places an additional 144 species based on three plastid genes. Orchids appear to have arisen roughly 112 million years ago (Mya); the subfamilies Orchidoideae and Epidendroideae diverged from each other at the end of the Cretaceous; and the eight tribes and three previously unplaced subtribes of the upper epidendroids diverged rapidly from each other between 37.9 and 30.8 Mya. Orchids appear to have undergone one significant acceleration of net species diversification in the orchidoids, and two accelerations and one deceleration in the upper epidendroids. Consistent with theory, such accelerations were correlated with the evolution of pollinia, the epiphytic habit, CAM photosynthesis, tropical distribution (especially in extensive cordilleras),and pollination via Lepidoptera or euglossine bees. Deceit pollination appears to have elevated the number of orchid species by one-half but not via acceleration of the rate of net diversification. The highest rate of net species diversification within the orchids (0.382 sp sp(-1) My(-1)) is 6.8 times that at the Asparagales crown.
Collapse
|
22
|
Balao F, Tannhäuser M, Lorenzo MT, Hedrén M, Paun O. Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex. Heredity (Edinb) 2016; 116:351-61. [PMID: 26604189 PMCID: PMC4787024 DOI: 10.1038/hdy.2015.98] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/24/2022] Open
Abstract
Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.
Collapse
Affiliation(s)
- F Balao
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - M Tannhäuser
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - M T Lorenzo
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - M Hedrén
- Department of Biology, Lund University, Lund, Sweden
| | - O Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Jaros U, Fischer GA, Pailler T, Comes HP. Spatial patterns of AFLP diversity in Bulbophyllum occultum (Orchidaceae) indicate long-term refugial isolation in Madagascar and long-distance colonization effects in La Réunion. Heredity (Edinb) 2016; 116:434-46. [PMID: 26883184 DOI: 10.1038/hdy.2016.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/21/2015] [Accepted: 12/15/2015] [Indexed: 01/30/2023] Open
Abstract
Bulbophyllum occultum, an epiphytic orchid mainly distributed in the rainforests of (north)eastern Madagascar and La Réunion, represents an interesting model case for testing the effects of anthropogenic vs historical (e.g., climate induced) habitat isolation and long-distance colonization on the genetic structure of plant species with disjunct distributions in the Madagascan region. To this aim, we surveyed amplified fragment length polymorphisms (AFLPs) across 13 populations in Madagascar and nine in La Réunion (206 individuals in total). We found overall high levels of population subdivision (Φ(PT)=0.387) and low within-population diversity (H(E), range: 0.026-0.124), indicating non-equilibrium conditions in a mainly selfing species. There was no impact of recent deforestation (Madagascar) or habitat disturbance (La Réunion) detectable on AFLP diversity. K-means clustering and BARRIER analyses identified multiple gene pools and several genetic breaks, both within and among islands. Inter-island levels of population genetic diversity and subdivision were similar, whereby inter-individual divergence in flower colour explained a significant part of gene pool divergence in La Réunion. Our results suggest that (i) B. occultum persisted across multiple isolated ('refugial') regions along the eastern rainforest corridor of Madagascar over recent climatic cycles and (ii) populations in La Réunion arose from either single or few independent introductions from Madagascar. High selfing rates and sufficient time for genetic drift likely promoted unexpectedly high population genetic and phenotypic (flower colour) differentiation in La Réunion. Overall, this study highlights a strong imprint of history on the genetic structure of a low-gene-dispersing epiphytic orchid from the Madagascan region.
Collapse
Affiliation(s)
- U Jaros
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| | - G A Fischer
- Kadoorie Farm and Botanic Garden Corporation, Tai Po, N.T., Hong Kong, SAR
| | - T Pailler
- UMR CIRAD-université de La Réunion. Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Le Tampon, Réunion, France
| | - H P Comes
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| |
Collapse
|
24
|
Pandey M, Richards M, Sharma J. Microsatellite-based genetic diversity patterns in disjunct populations of a rare orchid. Genetica 2015; 143:693-704. [PMID: 26481007 DOI: 10.1007/s10709-015-9867-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022]
Abstract
We investigated the patterns of genetic diversity and structure in seven disjunct populations of a rare North American orchid, Cypripedium kentuckiense by including populations that represented the periphery and the center of the its range. Eight nuclear and two chloroplast microsatellites were used. Genetic diversity was low across the sampled populations of C. kentuckiense based on both nuclear (average An = 4.0, Ho = 0.436, He = 0.448) and cpDNA microsatellites (average An = 1.57, Nh = 1.57 and H = 0.133). The number of private alleles ranged from one to four per population with a total of 17 private alleles detected at five nuclear microsatellites. One private allele at one cpDNA microsatellite was also observed. Although the absolute values for nuclear microsatellite based population differentiation were low (Fst = 0.075; ϕPT = 0.24), they were statistically significant. Pairwise Fst values ranged from 0.038 to 0.123 and each comparison was significant. We also detected isolation by distance with nDNA microsatellites based on the Mantel test (r(2) = 0.209, P = 0.05). STRUCTURE analysis and the neighbor joining trees grouped the populations similarly whereby the geographically proximal populations were genetically similar. Our data indicate that the species is genetically depauperate but the diversity is distributed more or less equally across its range. Population differentiation and isolation by distance were detectable, which indicates that genetic isolation is beginning to manifest itself across the range in this rare species.
Collapse
Affiliation(s)
- Madhav Pandey
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.,Molecular Research LP, Shallowater, TX, 79363, USA
| | | | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
25
|
Pinheiro F, Cafasso D, Cozzolino S, Scopece G. Transitions between self-compatibility and self-incompatibility and the evolution of reproductive isolation in the large and diverse tropical genus Dendrobium (Orchidaceae). ANNALS OF BOTANY 2015; 116:457-67. [PMID: 25953040 PMCID: PMC4549954 DOI: 10.1093/aob/mcv057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/30/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS The evolution of interspecific reproductive barriers is crucial to understanding species evolution. This study examines the contribution of transitions between self-compatibility (SC) and self-incompatibility (SI) and genetic divergence in the evolution of reproductive barriers in Dendrobium, one of the largest orchid genera. Specifically, it investigates the evolution of pre- and postzygotic isolation and the effects of transitions between compatibility states on interspecific reproductive isolation within the genus. METHODS The role of SC and SI changes in reproductive compatibility among species was examined using fruit set and seed viability data available in the literature from 86 species and ∼2500 hand pollinations. The evolution of SC and SI in Dendrobium species was investigated within a phylogenetic framework using internal transcribed spacer sequences available in GenBank. KEY RESULTS Based on data from crossing experiments, estimations of genetic distance and the results of a literature survey, it was found that changes in SC and SI significantly influenced the compatibility between species in interspecific crosses. The number of fruits produced was significantly higher in crosses in which self-incompatible species acted as pollen donor for self-compatible species, following the SI × SC rule. Maximum likelihood and Bayesian tests did not reject transitions from SI to SC and from SC to SI across the Dendrobium phylogeny. In addition, postzygotic isolation (embryo mortality) was found to evolve gradually with genetic divergence, in agreement with previous results observed for other plant species, including orchids. CONCLUSIONS Transitions between SC and SI and the gradual accumulation of genetic incompatibilities affecting postzygotic isolation are important mechanisms preventing gene flow among Dendrobium species, and may constitute important evolutionary processes contributing to the high levels of species diversity in this tropical orchid group.
Collapse
Affiliation(s)
- Fabio Pinheiro
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista, 13506-900, Rio Claro, SP, Brazil,
| | - Donata Cafasso
- Università degli Studi di Napoli Federico II, Department of Biology, via Cinthia, I-80126, Naples, Italy and
| | - Salvatore Cozzolino
- Università degli Studi di Napoli Federico II, Department of Biology, via Cinthia, I-80126, Naples, Italy and
| | - Giovanni Scopece
- Università degli Studi di Napoli Federico II, Department of Biology, via Cinthia, I-80126, Naples, Italy and Institute for Plant Protection, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, 10, I-50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
26
|
Ross AA, Travers SE. The genetic consequences of rarity in the western prairie fringed orchid (Platanthera praeclara). CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0761-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Ueno S, Rodrigues JF, Alves-Pereira A, Pansarin ER, Veasey EA. Genetic variability within and among populations of an invasive, exotic orchid. AOB PLANTS 2015; 7:plv077. [PMID: 26162896 PMCID: PMC4564003 DOI: 10.1093/aobpla/plv077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
Despite the fact that invasive species are of great evolutionary interest because of their success in colonizing and spreading into new areas, the factors underlying this success often remain obscure. In this sense, studies on population genetics and phylogenetic relationships of invasive species could offer insights into mechanisms of invasions. Originally from Africa, the terrestrial orchid Oeceoclades maculata, considered an invasive plant, is the only species of the genus throughout the Americas. Considering the lack of information on population genetics of this species, the aim of this study was to evaluate the genetic diversity and structure of Brazilian populations of O. maculata. We used 13 inter-simple sequence repeat primers to assess the genetic diversity of 152 individuals of O. maculata distributed in five sampled sites from three Brazilian states (São Paulo, Mato Grosso and Paraná). Low diversity was found within samples, with estimates of the Shannon index (H) ranging from 0.0094 to 0.1054 and estimates of Nei's gene diversity (He) ranging from 0.0054 to 0.0668. However, when evaluated together, the sampling locations showed substantially higher diversity estimates (H = 0.3869, He = 0.2556), and most of the genetic diversity was found among populations (ΦST = 0.933). Both clustering and principal coordinate analysis indicate the existence of five distinct groups, corresponding to the sampled localities, and which were also recovered in the Bayesian analysis. A substructure was observed in one of the localities, suggesting a lack of gene flow even between very small distances. The patterns of genetic structure found in this study may be understood considering the interaction of several probable reproductive strategies with its history of colonization involving possible genetic drift, selective pressures and multiple introductions.
Collapse
Affiliation(s)
- Sueme Ueno
- Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, CP 83, Piracicaba, São Paulo 13418-900, Brazil
| | - Jucelene Fernandes Rodrigues
- Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, CP 83, Piracicaba, São Paulo 13418-900, Brazil
| | - Alessandro Alves-Pereira
- Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, CP 83, Piracicaba, São Paulo 13418-900, Brazil
| | - Emerson Ricardo Pansarin
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, CP 83, Piracicaba, São Paulo 13418-900, Brazil
| |
Collapse
|
28
|
ArchMiller AA, Bauer EF, Koch RE, Wijayawardena BK, Anil A, Kottwitz JJ, Munsterman AS, Wilson AE. Formalizing the definition of meta-analysis inMolecular Ecology. Mol Ecol 2015; 24:4042-51. [DOI: 10.1111/mec.13264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Althea A. ArchMiller
- School of Forestry and Wildlife Sciences; Auburn University; 3301 Duncan Dr. Auburn AL 36849 USA
| | - Eric F. Bauer
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | | | - Ammu Anil
- School of Fisheries, Aquaculture, and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Jack J. Kottwitz
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL 36849 USA
| | - Amelia S. Munsterman
- Department of Clinical Sciences; College of Veterinary Medicine; Auburn University; Auburn AL 36849 USA
| | - Alan E. Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| |
Collapse
|
29
|
Breitkopf H, Onstein RE, Cafasso D, Schlüter PM, Cozzolino S. Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids. THE NEW PHYTOLOGIST 2015; 207:377-389. [PMID: 25521237 DOI: 10.1111/nph.13219] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/31/2014] [Indexed: 05/03/2023]
Abstract
Episodes of rapid speciation provide unique insights into evolutionary processes underlying species radiations and patterns of biodiversity. Here we investigated the radiation of sexually deceptive bee orchids (Ophrys). Based on a time-calibrated phylogeny and by means of ancestral character reconstruction and divergence time estimation, we estimated the tempo and mode of this radiation within a state-dependent evolutionary framework. It appears that, in the Pleistocene, the evolution of Ophrys was marked by episodes of rapid diversification coinciding with shifts to different pollinator types: from wasps to Eucera bees to Andrena and other bees. An abrupt increase in net diversification rate was detected in three clades. Among these, two phylogenetically distant lineages switched from Eucera to Andrena and other bees in a parallel fashion and at about the same time in their evolutionary history. Lack of early radiation associated with the evolution of the key innovation of sexual deception suggests that Ophrys diversification was mainly driven by subsequent ecological opportunities provided by the exploitation of novel pollinator groups, encompassing many bee species slightly differing in their sex pheromone communication systems, and by spatiotemporal fluctuations in the pollinator mosaic.
Collapse
Affiliation(s)
- Hendrik Breitkopf
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute of Biochemistry and Biology, Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Renske E Onstein
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - Donata Cafasso
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Philipp M Schlüter
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
30
|
Smouse PE, Whitehead MR, Peakall R. An informational diversity framework, illustrated with sexually deceptive orchids in early stages of speciation. Mol Ecol Resour 2015; 15:1375-84. [PMID: 25916981 DOI: 10.1111/1755-0998.12422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
Reconstructing evolutionary history for emerging species complexes is notoriously difficult, with newly isolated taxa often morphologically cryptic and the signature of reproductive isolation often restricted to a few genes. Evidence from multiple loci and genomes is highly desirable, but multiple inputs require 'common currency' translation. Here we deploy a Shannon information framework, converting into diversity analogue, which provides a common currency analysis for maternally inherited haploid and bi-parentally inherited diploid nuclear markers, and then extend that analysis to construction of minimum-spanning networks for both genomes. The new approach is illustrated with a quartet of cryptic congeners from the sexually deceptive Australian orchid genus Chiloglottis, still in the early stages of speciation. Divergence is more rapid for haploid plastids than for nuclear markers, consistent with the effective population size differential (N(ep) < (N(en)), but divergence patterns are broadly correlated for the two genomes. There are nevertheless intriguing discrepancies between the emerging plastid and nuclear signals of early phylogenetic radiation of these taxa, and neither pattern is entirely consistent with the available information on the sexual cues used by the orchids to lure the pollinators enforcing reproductive isolation. We describe possible extensions of this methodology to multiple ploidy levels and other types of markers, which should increase the range of application to any taxonomic assemblage in the very early stages of reproductive isolation and speciation.
Collapse
Affiliation(s)
- Peter E Smouse
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901-8551, USA
| | - Michael R Whitehead
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Rod Peakall
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
31
|
Zhang SB, Dai Y, Hao GY, Li JW, Fu XW, Zhang JL. Differentiation of water-related traits in terrestrial and epiphytic Cymbidium species. FRONTIERS IN PLANT SCIENCE 2015; 6:260. [PMID: 25954289 PMCID: PMC4406080 DOI: 10.3389/fpls.2015.00260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/02/2015] [Indexed: 05/11/2023]
Abstract
Epiphytes that grow in the canopies of tropical and subtropical forests experience different water regimes when compared with terrestrial plants. However, the differences in adaptive strategies between epiphytic and terrestrial plants with respect to plant water relations remain poorly understood. To understand how water-related traits contrast between epiphytic and terrestrial growth forms within the Cymbidium (Orchidaceae), we assessed leaf anatomy, hydraulics, and physiology of seven terrestrial and 13 epiphytic species using a common garden experiment. Compared with terrestrial species, epiphytic species had higher values for leaf mass per unit area (LMA), leaf thickness (LT), epidermal thickness, saturated water content (SWC) and the time required to dry saturated leaves to 70% relative water content (T70). However, vein density (Dvein), stomatal density (SD), and photosynthetic capacity (Amax) did not differ significantly between the two forms. T70 was positively correlated with LT, LMA, and SWC, and negatively correlated with stomatal index (SI). Amax showed positive correlations with SD and SI, but not with Dvein. Vein density was marginally correlated with SD, and significantly correlated with SI. Overall, epiphytic orchids exhibited substantial ecophysiological differentiations from terrestrial species, with the former type showing trait values indicative of greater drought tolerance and increased water storage capacity. The ability to retain water in the leaves plays a key role in maintaining a water balance in those epiphytes. Therefore, the process of transpiration depends less upon the current substrate water supply and enables epiphytic Cymbidium species to adapt more easily to canopy habitats.
Collapse
Affiliation(s)
- Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
| | - Yan Dai
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesKunming, China
| | - Guang-You Hao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of SciencesShenyang, China
- The Arnold Arboretum of Harvard UniversityBoston, MA, USA
| | - Jia-Wei Li
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Xue-Wei Fu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesKunming, China
| |
Collapse
|
32
|
Leles B, Chaves AV, Russo P, Batista JAN, Lovato MB. Genetic structure is associated with phenotypic divergence in floral traits and reproductive investment in a high-altitude orchid from the Iron Quadrangle, southeastern Brazil. PLoS One 2015; 10:e0120645. [PMID: 25756994 PMCID: PMC4355488 DOI: 10.1371/journal.pone.0120645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/25/2015] [Indexed: 12/03/2022] Open
Abstract
Knowledge of the role of Neotropical montane landscapes in shaping genetic connectivity and local adaptation is essential for understanding the evolutionary processes that have shaped the extraordinary species diversity in these regions. In the present study, we examined the landscape genetics, estimated genetic diversity, and explored genetic relationships with morphological variability and reproductive strategies in seven natural populations of Cattleya liliputana (Orchidaceae). Nuclear microsatellite markers were used for genetic analyses. Spatial Bayesian clustering and population-based analyses revealed significant genetic structuring and high genetic diversity (He = 0.733 ± 0.03). Strong differentiation was found between populations over short spatial scales (FST = 0.138, p < 0.001), reflecting the landscape discontinuity and isolation. Monmonier´s maximum difference algorithm, Bayesian analysis on STRUCTURE and principal component analysis identified one major genetic discontinuity between populations. Divergent genetic groups showed phenotypic divergence in flower traits and reproductive strategies. Increased sexual reproductive effort was associated with rock outcrop type and may be a response to adverse conditions for growth and vegetative reproduction. Here we discuss the effect of restricted gene flow, local adaptation and phenotypic plasticity as drivers of population differentiation in Neotropical montane rock outcrops.
Collapse
Affiliation(s)
- Bruno Leles
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Anderson V. Chaves
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Philip Russo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - João A. N. Batista
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Maria Bernadete Lovato
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
33
|
Phillips RD, Bohman B, Anthony JM, Krauss SL, Dixon KW, Peakall R. Mismatch in the distribution of floral ecotypes and pollinators: insights into the evolution of sexually deceptive orchids. J Evol Biol 2015; 28:601-12. [PMID: 25619237 DOI: 10.1111/jeb.12593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 12/09/2014] [Accepted: 01/20/2015] [Indexed: 01/01/2023]
Abstract
Plants are predicted to show floral adaptation to geographic variation in the most effective pollinator, potentially leading to reproductive isolation and genetic divergence. Many sexually deceptive orchids attract just a single pollinator species, limiting opportunities to experimentally investigate pollinator switching. Here, we investigate Drakaea concolor, which attracts two pollinator species. Using pollinator choice tests, we detected two morphologically similar ecotypes within D. concolor. The common ecotype only attracted Zaspilothynnus gilesi, whereas the rare ecotype also attracted an undescribed species of Pogonothynnus. The rare ecotype occurred at populations nested within the distribution of the common ecotype, with no evidence of ecotypes occurring sympatrically. Surveying for pollinators at over 100 sites revealed that ecotype identity was not correlated with wasp availability, with most orchid populations only attracting the rare Z. gilesi. Using microsatellite markers, genetic differentiation among populations was very low (GST = 0.011) regardless of ecotype, suggestive of frequent gene flow. Taken together, these results may indicate that the ability to attract Pogonothynnus has evolved recently, but this ecotype is yet to spread. The nested distribution of ecotypes, rather than the more typical formation of ecotypes in allopatry, illustrates that in sexually deceptive orchids, pollinator switching could occur throughout a species' range, resulting from multiple potentially suitable but unexploited pollinators occurring in sympatry. This unusual case of sympatric pollinators highlights D. concolor as a promising study system for further understanding the process of pollinator switching from ecological, chemical and genetic perspectives.
Collapse
Affiliation(s)
- R D Phillips
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia; Kings Park and Botanic Garden, The Botanic Garden and Parks Authority, West Perth, 6005, Western Australia, Australia; School of Plant Biology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Vanden Broeck A, Van Landuyt W, Cox K, De Bruyn L, Gyselings R, Oostermeijer G, Valentin B, Bozic G, Dolinar B, Illyés Z, Mergeay J. High levels of effective long-distance dispersal may blur ecotypic divergence in a rare terrestrial orchid. BMC Ecol 2014; 14:20. [PMID: 24998243 PMCID: PMC4099500 DOI: 10.1186/1472-6785-14-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. RESULTS We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) 'outlier' loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. CONCLUSIONS The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe.
Collapse
Affiliation(s)
- An Vanden Broeck
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, Geraardsbergen B-9500, Belgium
| | - Wouter Van Landuyt
- Research Institute for Nature and Forest (INBO), Kliniekstraat 25, Brussels B-1070, Belgium
| | - Karen Cox
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, Geraardsbergen B-9500, Belgium
| | - Luc De Bruyn
- Research Institute for Nature and Forest (INBO), Kliniekstraat 25, Brussels B-1070, Belgium
- Evolutionary Ecology, University of Antwerp, Groenenborgerlaan 171, Antwerpen 2020, Belgium
| | - Ralf Gyselings
- Research Institute for Nature and Forest (INBO), Kliniekstraat 25, Brussels B-1070, Belgium
| | - Gerard Oostermeijer
- Instituut voor Biodiversiteit en Ecosysteem Dynamica (IBED), Universiteit van Amsterdam, Postbus 94248, Amsterdam 1090 GE, The Netherlands
| | - Bertille Valentin
- Conservatoire Botanique National de Bailleul, Hameau de Haendries, Bailleul F- 59 270, France
| | - Gregor Bozic
- Slovenian Forestry Institute, Vecna pot 2, Ljubljana SI-1000, Slovenia
| | - Branko Dolinar
- Botanical Society of Slovenia, Izanska cesta 15, Ljubljana SI-1000, Slovenia
| | | | - Joachim Mergeay
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, Geraardsbergen B-9500, Belgium
| |
Collapse
|
35
|
Chen YY, Bao ZX, Qu Y, Li W, Li ZZ. Genetic diversity and population structure of the medicinal orchid Gastrodia elata revealed by microsatellite analysis. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Whitehead MR, Peakall R. POLLINATOR SPECIFICITY DRIVES STRONG PREPOLLINATION REPRODUCTIVE ISOLATION IN SYMPATRIC SEXUALLY DECEPTIVE ORCHIDS. Evolution 2014; 68:1561-75. [DOI: 10.1111/evo.12382] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/31/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Whitehead
- Evolution, Ecology and Genetics; Research School of Biology; The Australian National University; Canberra Acton 0200 Australia
| | - Rod Peakall
- Evolution, Ecology and Genetics; Research School of Biology; The Australian National University; Canberra Acton 0200 Australia
| |
Collapse
|
37
|
Pinheiro F, Cozzolino S, Draper D, de Barros F, Félix LP, Fay MF, Palma-Silva C. Rock outcrop orchids reveal the genetic connectivity and diversity of inselbergs of northeastern Brazil. BMC Evol Biol 2014; 14:49. [PMID: 24629134 PMCID: PMC4004418 DOI: 10.1186/1471-2148-14-49] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/07/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Because of their fragmented nature, inselberg species are interesting biological models for studying the genetic consequences of disjoint populations. Inselbergs are commonly compared with oceanic islands, as most of them display a marked ecological isolation from the surrounding area. The isolation of these rock outcrops is reflected in the high number of recorded endemic species and the strong floristic differences between individual inselbergs and adjacent habitats. We examined the genetic connectivity of orchids Epidendrum cinnabarinum and E. secundum adapted to Neotropical inselbergs of northeastern Brazil. Our goals were to identify major genetic divergences or disjunctions across the range of the species and to investigate potential demographic and evolutionary mechanisms leading to lineage divergence in Neotropical mountain ecosystems. RESULTS Based on plastid markers, high genetic differentiation was found for E. cinnabarinum (FST = 0.644) and E. secundum (FST = 0.636). Haplotypes were not geographically structured in either taxon, suggesting that restricted gene flow and genetic drift may be significant factors influencing the diversification of these inselberg populations. Moreover, strong differentiation was found between populations over short spatial scales, indicating substantial periods of isolation among populations. For E. secundum, nuclear markers indicated higher gene flow by pollen than by seeds. CONCLUSIONS The comparative approach adopted in this study contributed to the elucidation of patterns in both species. Our results confirm the ancient and highly isolated nature of inselberg populations. Both species showed similar patterns of genetic diversity and structure, highlighting the importance of seed-restricted gene flow and genetic drift as drivers of plant diversification in terrestrial islands such as inselbergs.
Collapse
Affiliation(s)
- Fábio Pinheiro
- Instituto de Botânica, Núcleo de Pesquisa do Orquidário do Estado, Avenida Miguel Estéfano 3687, 04301-012 São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mallet B, Martos F, Blambert L, Pailler T, Humeau L. Evidence for isolation-by-habitat among populations of an epiphytic orchid species on a small oceanic island. PLoS One 2014; 9:e87469. [PMID: 24498329 PMCID: PMC3911949 DOI: 10.1371/journal.pone.0087469] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/27/2013] [Indexed: 11/19/2022] Open
Abstract
Identifying factors that promote population differentiation is of interest for understanding the early stages of speciation. Gene flow among populations inhabiting different environments can be reduced by geographical distance (isolation-by-distance) or by divergent selection resulting from local adaptation (isolation-by-ecology). Few studies have investigated the influence of these factors in small oceanic islands where the influence of geographic distance is expected to be null but where habitat diversity could have a strong effect on population differentiation. In this study, we tested for the spatial divergence of phenotypes (floral morphology and floral scent) and genotypes (microsatellites) among ten populations of Jumellea rossii, an epiphytic orchid endemic to Réunion growing in three different habitats. We found a significant genetic differentiation between populations that is structured by habitat heterogeneity rather than by geographic distance between populations. These results suggest that ecological factors might reduce gene flow among populations located in different habitats. This pattern of isolation-by-habitat may be the result of both isolation-by-ecology by habitat filtering and asynchrony in flowering phenology. Furthermore, data on floral morphology match these findings, with multivariate analysis grouping populations by habitat type but could be only due to phenotypic plasticity. Indeed floral scent compounds were not significantly different between populations indicating that specific plant-pollinator mutualism does not seem to play a major role in the population differentiation of J. rossii. In conclusion, the results from our study emphasize the importance of habitat diversity of small oceanic islands as a factor of population differentiation.
Collapse
Affiliation(s)
- Bertrand Mallet
- UMR Peuplements Végétaux et Bio-Agresseurs en Milieu Tropical, Université de La Réunion, Saint-Denis, Ile de La Réunion, France
| | - Florent Martos
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Laury Blambert
- UMR Peuplements Végétaux et Bio-Agresseurs en Milieu Tropical, Université de La Réunion, Saint-Denis, Ile de La Réunion, France
| | - Thierry Pailler
- UMR Peuplements Végétaux et Bio-Agresseurs en Milieu Tropical, Université de La Réunion, Saint-Denis, Ile de La Réunion, France
| | - Laurence Humeau
- UMR Peuplements Végétaux et Bio-Agresseurs en Milieu Tropical, Université de La Réunion, Saint-Denis, Ile de La Réunion, France
| |
Collapse
|
39
|
Peakall R, Whitehead MR. Floral odour chemistry defines species boundaries and underpins strong reproductive isolation in sexually deceptive orchids. ANNALS OF BOTANY 2014; 113:341-55. [PMID: 24052555 PMCID: PMC3890385 DOI: 10.1093/aob/mct199] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The events leading to speciation are best investigated in systems where speciation is ongoing or incomplete, such as incipient species. By examining reproductive barriers among incipient sister taxa and their congeners we can gain valuable insights into the relative timing and importance of the various barriers involved in the speciation process. The aim of this study was to identify the reproductive barriers among sexually deceptive orchid taxa in the genus Chiloglottis. METHODS The study targeted four closely related taxa with varying degrees of geographic overlap. Chemical, morphological and genetic evidence was combined to explore the basis of reproductive isolation. Of primary interest was the degree of genetic differentiation among taxa at both nuclear and chloroplast DNA markers. To objectively test whether or not species boundaries are defined by the chemistry that controls pollinator specificity, genetic analysis was restricted to samples of known odour chemistry. KEY RESULTS Floral odour chemical analysis was performed for 600+ flowers. The three sympatric taxa were defined by their specific chiloglottones, the semiochemicals responsible for pollinator attraction, and were found to be fully cross-compatible. Multivariate morphometric analysis could not reliably distinguish among the four taxa. Although varying from very low to moderate, significant levels of genetic differentiation were detected among all pairwise combinations of taxa at both nuclear and chloroplast loci. However, the levels of genetic differentiation were lower than expected for mature species. Critically, a lack of chloroplast DNA haplotype sharing among the morphologically indistinguishable and most closely related taxon pair confirmed that chemistry alone can define taxon boundaries. CONCLUSIONS The results confirmed that pollinator isolation, mediated by specific pollinator attraction, underpins strong reproductive isolation in these taxa. A combination of large effective population sizes, initial neutral mutations in the genes controlling floral scent, and a pool of available pollinators likely drives diversity in this system.
Collapse
|
40
|
Kartzinel TR, Shefferson RP, Trapnell DW. Relative importance of pollen and seed dispersal across a Neotropical mountain landscape for an epiphytic orchid. Mol Ecol 2013; 22:6048-59. [DOI: 10.1111/mec.12551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Tyler R. Kartzinel
- Odum School of Ecology; The University of Georgia; 140 East Green Street Athens GA 30602 USA
| | - Richard P. Shefferson
- Odum School of Ecology; The University of Georgia; 140 East Green Street Athens GA 30602 USA
| | - Dorset W. Trapnell
- Department of Plant Biology; The University of Georgia; Athens GA 30602 USA
| |
Collapse
|
41
|
Duchene D, Bromham L. Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae. BMC Evol Biol 2013; 13:65. [PMID: 23497266 PMCID: PMC3600047 DOI: 10.1186/1471-2148-13-65] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. RESULTS Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. CONCLUSIONS We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation. We find no significant differences in the ratio of non-synonymous to synonymous substitutions between lineages differing in net diversification rate, therefore we detect no signal of population size changes or alteration in selection pressures that might be causing this relationship.
Collapse
Affiliation(s)
- David Duchene
- Centre for Macroevolution and Macroecology, Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia.
| | | |
Collapse
|
42
|
Paul J, Budd C, Freeland JR. Conservation genetics of an endangered orchid in eastern Canada. CONSERV GENET 2013. [DOI: 10.1007/s10592-012-0443-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|