1
|
Melton AE, Faske TM, Sniezko RA, Thibault T, Williams W, Parchman T, Hamilton JA. Genomics-Driven Monitoring of Fraxinus latifolia (Oregon Ash) to Inform Conservation and EAB-Resistance Breeding. Mol Ecol 2025:e17640. [PMID: 39760274 DOI: 10.1111/mec.17640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/17/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Understanding the evolutionary processes underlying range-wide genomic variation is critical to designing effective conservation and restoration strategies. Evaluating the influence of connectivity, demographic change and environmental adaptation for threatened species can be invaluable to proactive conservation of evolutionary potential. In this study, we assessed genomic variation across the range of Fraxinus latifolia, a foundational riparian tree native to western North America recently exposed to the invasive emerald ash borer (Agrilus planipennis; EAB). Over 1000 individuals from 61 populations were sequenced using reduced representation (ddRAD-seq) across the species' range. Strong population structure was evident along a latitudinal gradient, with population connectivity largely maintained along central valley river systems, and a centre of genetic diversity coinciding with major river systems central to the species' range. Despite evidence of connectivity, estimates of nucleotide diversity and effective population size were low across all populations, suggesting the patchy distribution of F. latifolia populations may impact its long-term evolutionary potential. Range-wide estimates of genomic offset, which indicate genomic change required to adjust to future climate projections, were greatest in the eastern and lowest in the southern portions of the species' range, suggesting the regional distribution of genomic variation may impact evolutionary potential longer-term. To preserve evolutionary capacity across populations needed for the development of breeding and restoration programmes, prioritising conservation of range-wide genomic diversity will provide a foundation for long-term species management.
Collapse
Affiliation(s)
- Anthony E Melton
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Trevor M Faske
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
- Southwest Biological Science Center, United States Geological Survey, Flagstaff, Arizona, USA
| | - Richard A Sniezko
- Dorena Genetic Resource Center, USDA Forest Service, Cottage Grove, Oregon, USA
| | | | - Wyatt Williams
- Forests Resources Division, Oregon Department of Forestry, Salem, Oregon, USA
| | - Thomas Parchman
- Department of Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Jill A Hamilton
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Adams NE, Homola JJ, Sard NM, Nathan LR, Roth BM, Robinson JD, Scribner KT. Genomic Data Characterize Reproductive Ecology Patterns in Michigan Invasive Red Swamp Crayfish ( Procambarus clarkii). Evol Appl 2024; 17:e70007. [PMID: 39286761 PMCID: PMC11403126 DOI: 10.1111/eva.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
The establishment and spread of invasive species are directly related to intersexual interactions as dispersal and reproductive success are related to distribution, effective population size, and population growth. Accordingly, populations established by r-selected species are particularly difficult to suppress or eradicate. One such species, the red swamp crayfish (Procambarus clarkii) is established globally at considerable ecological and financial costs to natural and human communities. Here, we develop a single nucleotide polymorphism (SNP) loci panel for P. clarkii using restriction-associated DNA-sequencing data. We use the SNP panel to successfully genotype 1800 individuals at 930 SNPs in southeastern Michigan, USA. Genotypic data were used to reconstruct pedigrees, which enabled the characterization of P. clarkii's mating system and statistical tests for associations among environmental, demographic, and phenotypic predictors and adult reproductive success estimates. We identified juvenile cohorts using genotype-based pedigrees, body size, and sampling timing, which elucidated the breeding phenology of multiple introduced populations. We report a high prevalence of multiple paternity in each surveyed waterbody, indicating polyandry in this species. We highlight the use of newly developed rapid genomic assessment tools for monitoring population reproductive responses, effective population sizes, and dispersal during ongoing control efforts.
Collapse
Affiliation(s)
- Nicole E Adams
- Department of Fisheries and Wildlife Michigan State University East Lansing Michigan USA
| | - Jared J Homola
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural Resources University of Wisconsin-Stevens Point Stevens Point Wisconsin USA
| | - Nicholas M Sard
- Biological Sciences Department The State University of New York-Oswego Oswego New York USA
| | - Lucas R Nathan
- Michigan Department of Natural Resources Lansing Michigan USA
| | - Brian M Roth
- Department of Fisheries and Wildlife Michigan State University East Lansing Michigan USA
| | - John D Robinson
- Department of Fisheries and Wildlife Michigan State University East Lansing Michigan USA
| | - Kim T Scribner
- Department of Fisheries and Wildlife Michigan State University East Lansing Michigan USA
| |
Collapse
|
3
|
Myburgh AM, Barnes A, Henriques R, Daniels SR. Congruent patterns of cryptic cladogenesis revealed using RADseq and Sanger sequencing in a velvet worm species complex (Onychophora: Peripatopsidae: Peripatopsis sedgwicki). Mol Phylogenet Evol 2024; 198:108132. [PMID: 38909874 DOI: 10.1016/j.ympev.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
In the present study, first generation DNA sequencing (mitochondrial cytochrome c oxidase subunit one, COI) and reduced-representative genomic RADseq data were used to understand the patterns and processes of diversification of the velvet worm, Peripatopsis sedgwicki species complex across its distribution range in South Africa. For the RADseq data, three datasets (two primary and one supplementary) were generated corresponding to 1,259-11,468 SNPs, in order to assess the diversity and phylogeography of the species complex. Tree topologies for the two primary datasets were inferred using maximum likelihood and Bayesian inferences methods. Phylogenetic analyses using the COI datasets retrieved four distinct, well-supported clades within the species complex. Five species delimitation methods applied to the COI data (ASAP, bPTP, bGMYC, STACEY and iBPP) all showed support for the distinction of the Fort Fordyce Nature Reserve specimens. In the main P. sedgwicki species complex, the species delimitation methods revealed a variable number of operational taxonomic units and overestimated the number of putative taxa. Divergence time estimates coupled with the geographic exclusivity of species and phylogeographic results suggest recent cladogenesis during the Plio/Pleistocene. The RADseq data were subjected to a principal components analysis and a discriminant analysis of principal components, under a maximum-likelihood framework. The latter results corroborate the four main clades observed using the COI data, however, applying additional filtering revealed additional diversity. The high overall congruence observed between the RADseq data and COI data suggest that first generation sequence data remain a cheap and effective method for evolutionary studies, although RADseq does provide a far greater resolution of contemporary temporo-spatial patterns.
Collapse
Affiliation(s)
- Angus Macgregor Myburgh
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa
| | - Aaron Barnes
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa
| | - Romina Henriques
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Savel R Daniels
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa.
| |
Collapse
|
4
|
Longo A, Kurta K, Vanhala T, Jeuthe H, de Koning DJ, Palaiokostas C. Genetic diversity patterns in farmed rainbow trout (Oncorhynchus mykiss) populations using genome-wide SNP and haplotype data. Anim Genet 2024; 55:87-98. [PMID: 37994156 DOI: 10.1111/age.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
Rainbow trout is one of the most popular aquaculture species worldwide, with a long history of domestication. However, limited information exists about the genetic diversity of farmed rainbow trout populations globally, with most available reports relying on low-throughput genotyping technologies. Notably, no information exists about the genetic diversity status of farmed rainbow trout in Sweden. Double-digest restriction-site-associated DNA sequencing was performed on more than 500 broodfish from two leading producers in Sweden and from the country's national breeding program. Following the detection of single nucleotide polymorphisms (SNPs), genetic diversity was studied by using either individual SNPs (n = 8680; one SNP retained per 300 bp sequence reads) or through SNP haplotypes (n = 20 558; all SNPs retained in 300 bp sequence reads). Similar amounts of genetic diversity were found amongst the three populations when individual SNPs were used. Furthermore, principal component analysis and discriminant analysis of principal components suggested two genetic clusters with the two industry populations grouped together. Genetic differentiation based on the FST fixation index was ~0.01 between the industry populations and ~0.05 when those were compared with the breeding program. Preliminary estimates of effective population size (Ne ) and inbreeding (based on runs of homozygosity; FROH ) were similar amongst the three populations (Ne ≈ 50-80; median FROH ≈ 0.11). Finally, the haplotype-based analysis suggested that animals from the breeding program had higher shared coancestry levels than those from the other two populations. Overall, our study provides novel insights into the genetic diversity and structure of Sweden's three main farmed rainbow trout populations, which could guide their future management.
Collapse
Affiliation(s)
- Alessio Longo
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Khrystyna Kurta
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tytti Vanhala
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Jeuthe
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Aquaculture Center North, Kälarne, Sweden
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christos Palaiokostas
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Strait JT, Grummer JA, Hoffman NF, Muhlfeld CC, Narum SR, Luikart G. Local environments, not invasive hybridization, influence cardiac performance of native trout under acute thermal stress. Evol Appl 2024; 17:e13663. [PMID: 38390377 PMCID: PMC10883762 DOI: 10.1111/eva.13663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/08/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Climate-induced expansion of invasive hybridization (breeding between invasive and native species) poses a significant threat to the persistence of many native species worldwide. In the northern U.S. Rocky Mountains, hybridization between native cutthroat trout and non-native rainbow trout has increased in recent decades due, in part, to climate-driven increases in water temperature. It has been postulated that invasive hybridization may enhance physiological tolerance to climate-induced thermal stress because laboratory studies indicate that rainbow trout have a higher thermal tolerance than cutthroat trout. Here, we assessed whether invasive hybridization improves cardiac performance response to acute water temperature stress of native wild trout populations. We collected trout from four streams with a wide range of non-native admixture among individuals and with different temperature and streamflow regimes in the upper Flathead River drainage, USA. We measured individual cardiac performance (maximum heart rate, "MaxHR", and temperature at arrhythmia, "ArrTemp") during laboratory trials with increasing water temperatures (10-28°C). Across the study populations, we observed substantial variation in cardiac performance of individual trout when exposed to thermal stress. Notably, we found significant differences in the cardiac response to thermal regimes among native cutthroat trout populations, suggesting the importance of genotype-by-environment interactions in shaping the physiological performance of native cutthroat trout. However, rainbow trout admixture had no significant effect on cardiac performance (MaxHR and ArrTemp) within any of the three populations. Our results indicate that invasive hybridization with a warmer-adapted species does not enhance the cardiac performance of native trout under warming conditions. Maintaining numerous populations across thermally and hydrologically diverse stream environments will be crucial for native trout to adapt and persist in a warming climate.
Collapse
Affiliation(s)
- Jeffrey T Strait
- Flathead Lake Biological Station, Wildlife Biology Program University of Montana Polson Montana USA
| | - Jared A Grummer
- Flathead Lake Biological Station, Wildlife Biology Program University of Montana Polson Montana USA
| | | | - Clint C Muhlfeld
- U.S. Geological Survey, Northern Rocky Mountain Science Center West Glacier Montana USA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission Hagerman Idaho USA
| | - Gordon Luikart
- Flathead Lake Biological Station, Wildlife Biology Program University of Montana Polson Montana USA
| |
Collapse
|
6
|
Ghildiyal K, Nayak SS, Rajawat D, Sharma A, Chhotaray S, Bhushan B, Dutt T, Panigrahi M. Genomic insights into the conservation of wild and domestic animal diversity: A review. Gene 2023; 886:147719. [PMID: 37597708 DOI: 10.1016/j.gene.2023.147719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Due to environmental change and anthropogenic activities, global biodiversity has suffered an unprecedented loss, and the world is now heading toward the sixth mass extinction event. This urges the need to step up our efforts to promote the sustainable use of animal genetic resources and plan effective strategies for their conservation. Although habitat preservation and restoration are the primary means of conserving biodiversity, genomic technologies offer a variety of novel tools for identifying biodiversity hotspots and thus, support conservation efforts. Conservation genomics is a broad area of science that encompasses the application of genomic data from thousands or tens of thousands of genome-wide markers to address important conservation biology concerns. Genomic approaches have revolutionized the way we understand and manage animal populations, providing tools to identify and preserve unique genetic variants and alleles responsible for adaptive genetic variation, reducing the deleterious consequences of inbreeding, and increasing the adaptive potential of threatened species. The advancement of genomic technologies, particularly comparative genomic approaches, and the increased accessibility of genomic resources in the form of genome-enabled taxa for non-model organisms, provides a distinct advantage in defining conservation units over traditional genetics approaches. The objective of this review is to provide an exhaustive overview of the concept of conservation genomics, discuss the rationale behind the transition from conservation genetics to genomic approaches, and emphasize the potential applications of genomic techniques for conservation purposes. We also highlight interesting case studies in both livestock and wildlife species where genomic techniques have been used to accomplish conservation goals. Finally, we address some challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Supriya Chhotaray
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
7
|
Martins AB, Valença-Montenegro MM, Lima MGM, Lynch JW, Svoboda WK, Silva-Júnior JDSE, Röhe F, Boubli JP, Fiore AD. A New Assessment of Robust Capuchin Monkey ( Sapajus) Evolutionary History Using Genome-Wide SNP Marker Data and a Bayesian Approach to Species Delimitation. Genes (Basel) 2023; 14:genes14050970. [PMID: 37239330 DOI: 10.3390/genes14050970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Robust capuchin monkeys, Sapajus genus, are among the most phenotypically diverse and widespread groups of primates in South America, with one of the most confusing and often shifting taxonomies. We used a ddRADseq approach to generate genome-wide SNP markers for 171 individuals from all putative extant species of Sapajus to access their evolutionary history. Using maximum likelihood, multispecies coalescent phylogenetic inference, and a Bayes Factor method to test for alternative hypotheses of species delimitation, we inferred the phylogenetic history of the Sapajus radiation, evaluating the number of discrete species supported. Our results support the recognition of three species from the Atlantic Forest south of the São Francisco River, with these species being the first splits in the robust capuchin radiation. Our results were congruent in recovering the Pantanal and Amazonian Sapajus as structured into three monophyletic clades, though new morphological assessments are necessary, as the Amazonian clades do not agree with previous morphology-based taxonomic distributions. Phylogenetic reconstructions for Sapajus occurring in the Cerrado, Caatinga, and northeastern Atlantic Forest were less congruent with morphology-based phylogenetic reconstructions, as the bearded capuchin was recovered as a paraphyletic clade, with samples from the Caatinga biome being either a monophyletic clade or nested with the blond capuchin monkey.
Collapse
Affiliation(s)
- Amely Branquinho Martins
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade, Cabedelo 58310-000, PB, Brazil
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mônica Mafra Valença-Montenegro
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade, Cabedelo 58310-000, PB, Brazil
| | - Marcela Guimarães Moreira Lima
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66077-530, PA, Brazil
| | - Jessica W Lynch
- Institute for Society and Genetics, Department of Anthropology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Walfrido Kühl Svoboda
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Centro Interdisciplinar de Ciências da Vida, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu 85870-650, PR, Brazil
| | - José de Sousa E Silva-Júnior
- Museu Paraense Emílio Goeldi, Ministério da Ciência, Tecnologia, Inovações e Comunicações, Coordenação de Zoologia, Campus de Pesquisa, Setor de Mastozoologia, Belém 66077-830, PA, Brazil
| | - Fábio Röhe
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil
| | - Jean Philippe Boubli
- School of Science, Engineering and the Environment, University of Salford, Salford M5 4WT, UK
| | - Anthony Di Fiore
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, The University of Texas at Austin, Austin, TX 78712, USA
- Tiputini Biodiversity Station, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
8
|
Tibihika PD, Meimberg H, Curto M. Understanding the translocation dynamics of Nile tilapia ( Oreochromis niloticus) and its ecological consequences in East Africa. AFRICAN ZOOLOGY 2022. [DOI: 10.1080/15627020.2022.2154169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Papius Dias Tibihika
- National Fisheries Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria
| | - Manuel Curto
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria
- MARE−Marine and Environmental Sciences Centre, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
9
|
Martin Cerezo ML, Raval R, de Haro Reyes B, Kucka M, Chan FY, Bryk J. Identification and quantification of chimeric sequencing reads in a highly multiplexed RAD-seq protocol. Mol Ecol Resour 2022; 22:2860-2870. [PMID: 35668693 PMCID: PMC9796921 DOI: 10.1111/1755-0998.13661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023]
Abstract
Highly multiplexed approaches have become common in genomic studies. They have improved the cost-effectiveness of genotyping hundreds of individuals using combinatorially barcoded adapters. These strategies, however, can potentially misassigned reads to incorrect samples. Here, we used a modified quaddRAD protocol to analyse the occurrence of index hopping and PCR chimeras in a series of experiments with up to 100 multiplexed samples per sequencing lane (639 samples in total). We created two types of sequencing libraries: four libraries of type A, where PCRs were run on individual samples before multiplexing, and three libraries of type B, where PCRs were run on pooled samples. We used fixed pairs of inner barcodes to identify chimeric reads. Type B libraries show a higher percentage of misassigned reads (1.15%) than type A libraries (0.65%). We also quantify the commonly undetectable chimeric sequences that occur whenever multiplexed groups of samples with different outer barcodes are sequenced together on a single flow cell. Our results suggest that these types of chimeric sequences represent up to 1.56% and 1.29% of reads in type A and B libraries, respectively. We also show that increasing the number of mismatches allowed for barcode rescue to above 2 dramatically increases the number of recovered chimeric reads. We provide recommendations for developing highly multiplexed RAD-seq protocols and analysing the resulting data to minimize the generation of chimeric sequences, allowing their quantification and a finer control on the number of PCR cycles necessary to generate enough input DNA for library preparation.
Collapse
Affiliation(s)
- Maria Luisa Martin Cerezo
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK,IFM BiologyLinköping UniversityLinköpingSweden
| | - Rohan Raval
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Bernardo de Haro Reyes
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK,IFM BiologyLinköping UniversityLinköpingSweden
| | - Marek Kucka
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | | | - Jarosław Bryk
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| |
Collapse
|
10
|
Gunn JC, Berkman LK, Koppelman J, Taylor AT, Brewer SK, Long JM, Eggert LS. Genomic divergence, local adaptation, and complex demographic history may inform management of a popular sportfish species complex. Ecol Evol 2022; 12:e9370. [PMID: 36225830 PMCID: PMC9534746 DOI: 10.1002/ece3.9370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022] Open
Abstract
The Neosho Bass (Micropterus velox), a former subspecies of the keystone top-predator and globally popular Smallmouth Bass (M. dolomieu), is endemic and narrowly restricted to small, clear streams of the Arkansas River Basin in the Central Interior Highlands (CIH) ecoregion, USA. Previous studies have detected some morphological, genetic, and genomic differentiation between the Neosho and Smallmouth Basses; however, the extent of neutral and adaptive divergence and patterns of intraspecific diversity are poorly understood. Furthermore, lineage diversification has likely been impacted by gene flow in some Neosho populations, which may be due to a combination of natural biogeographic processes and anthropogenic introductions. We assessed: (1) lineage divergence, (2) local directional selection (adaptive divergence), and (3) demographic history among Smallmouth Bass populations in the CIH using population genomic analyses of 50,828 single-nucleotide polymorphisms (SNPs) obtained through ddRAD-seq. Neosho and Smallmouth Bass formed monophyletic clades with 100% bootstrap support. We identified two major lineages within each species. We discovered six Neosho Bass populations (two nonadmixed and four admixed) and three nonadmixed Smallmouth Bass populations. We detected 29 SNPs putatively under directional selection in the Neosho range, suggesting populations may be locally adapted. Two populations were admixed via recent asymmetric secondary contact, perhaps after anthropogenic introduction. Two other populations were likely admixed via combinations of ancient and recent processes. These species comprise independently evolving lineages, some having experienced historical and natural admixture. These results may be critical for management of Neosho Bass as a distinct species and may aid in the conservation of other species with complex biogeographic histories.
Collapse
Affiliation(s)
- Joe C. Gunn
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | | | | | - Andrew T. Taylor
- Department of BiologyUniversity of Central OklahomaEdmondOklahomaUSA
- Department of BiologyUniversity of North GeorgiaDahlonegaGeorgiaUSA
| | - Shannon K. Brewer
- U.S. Geological Survey, Alabama Cooperative Fish and Wildlife Research Unit, School of Fisheries, Aquaculture, and Aquatic SciencesAuburn UniversityAuburnAlabamaUSA
| | - James M. Long
- U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit, Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Lori S. Eggert
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
11
|
Jing M, Chen Y, Yao K, Wang Y, Huang L. Comparative phylogeography of two commensal rat species ( Rattus tanezumi and Rattus norvegicus) in China: Insights from mitochondrial DNA, microsatellite, and 2b-RAD data. Ecol Evol 2022; 12:e9409. [PMID: 36254297 PMCID: PMC9557235 DOI: 10.1002/ece3.9409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Rattus norvegicus and Rattus tanezumi are dominant species of Chinese house rats, but the colonization and demographic history of two species in China have not been thoroughly explored. Phylogenetic analyses with mitochondrial DNA including 486 individuals from 31 localities revealed that R. norvegicus is widely distributed in China, R. tanezumi is mainly distributed in southern China with currently invading northward; northeast China was the natal region of R. norvegicus, while the spread of R. tanezumi in China most likely started from the southeast coast. A total of 123 individuals from 18 localities were subjected to 2b-RAD analyses. In neighbor-joining tree, individuals of R. tanezumi grouped into geographic-specific branches, and populations from southeast coast were ancestral groups, which confirmed the colonization route from southeast coast to central and western China. However, individuals of R. norvegicus were generally grouped into two clusters instead of geographic-specific branches. One cluster comprised inland populations, and another cluster included both southeast coast and inland populations, which indicated that spread history of R. norvegicus in China was complex; in addition to on-land colonization, shipping transportation also have played great roles. ADMIXTURE and principal component analyses provided further supports for the colonization history. Demographic analyses revealed that climate changes at ~40,000 to 18,000 years ago and ~4000 years ago had led to population declines of both species; the R. norvegicus declined rapidly while the population of R. tanezumi continuously expanded since ~1500 years ago, indicating the importance of interspecies' competition in their population size changes. Our study provided a valuable framework for further investigation on phylogeography of two species in China.
Collapse
Affiliation(s)
- Meidong Jing
- School of Life SciencesNantong UniversityNantongChina
| | - Yingjie Chen
- School of Life SciencesNantong UniversityNantongChina
| | - Keying Yao
- School of Life SciencesNantong UniversityNantongChina
| | - Youming Wang
- School of Life SciencesNantong UniversityNantongChina
| | - Ling Huang
- School of Life SciencesNantong UniversityNantongChina
| |
Collapse
|
12
|
Amish SJ, Bernall S, DeHaan P, Miller M, O’Rourke S, Boyer MC, Muhlfeld C, Lodmell A, Leary RF, Luikart G. Rapid SNP genotyping, sex identification, and hybrid-detection in threatened bull trout. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Hemstrom W, Dauwalter D, Peacock MM, Leasure D, Wenger S, Miller MR, Neville H. Population genomic monitoring provides insight into conservation status but no correlation with demographic estimates of extinction risk in a threatened trout. Evol Appl 2022; 15:1449-1468. [PMID: 36187186 PMCID: PMC9488680 DOI: 10.1111/eva.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
The current extinction crisis requires effective assessment and monitoring tools. Genetic approaches are appealing given the relative ease of field sampling required to estimate genetic diversity characteristics assumed related to population size, evolutionary potential, and extinction risk, and to evaluate hybridization with non-native species simultaneously. However, linkages between population genetic metrics of diversity from survey-style field collections and demographic estimates of population size and extinction risk are still in need of empirical examples, especially for remotely distributed species of conservation concern where the approach might be most beneficial. We capitalized on an exceptional opportunity to evaluate congruence between genetic diversity metrics and demographic-based estimates of abundance and extinction risk from a comprehensive Multiple Population Viability Analysis (MPVA) in a threatened fish, the Lahontan cutthroat trout (LCT). We sequenced non-native trout reference samples and recently collected and archived tissue samples of most remaining populations of LCT (N = 60) and estimated common genetic assessment metrics, predicting minimal hybridization with non-native trout, low diversity, and declining diversity over time. We further hypothesized genetic metrics would correlate positively with MPVA-estimated abundance and negatively with extinction probability. We uncovered several instances of hybridization that pointed to immediate management needs. After removing hybridized individuals, cautious interpretation of low effective population sizes (2-63) suggested reduced evolutionary potential for many LCT populations. Other genetic metrics did not decline over time nor correlate with MPVA-based estimates of harmonic mean abundance or 30-year extinction probability. Our results demonstrate benefits of genetic monitoring for efficiently detecting hybridization and, though genetic results were disconnected from demographic assessment of conservation status, they suggest reduced evolutionary potential and likely a higher conservation risk than currently recognized for this threatened fish. We emphasize that genetic information provides essential complementary insight, in addition to demographic information, for evaluating species status.
Collapse
Affiliation(s)
- William Hemstrom
- Department of Animal ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | | | | - Douglas Leasure
- WorldPop, Geography and Environmental ScienceUniversity of SouthamptonSouthamptonUK
| | - Seth Wenger
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Michael R. Miller
- Department of Animal ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
14
|
Bernal MA, Yule DL, Stott W, Evrard L, Dowling TE, Krabbenhoft TJ. Concordant patterns of morphological, stable isotope, and genetic variation in a recent ecological radiation (Salmonidae: Coregonus spp.). Mol Ecol 2022; 31:4495-4509. [PMID: 35785504 DOI: 10.1111/mec.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Groups of sympatric taxa with low inter-specific genetic differentiation, but considerable ecological differences, offer great opportunities to study the dynamics of divergence and speciation. This is the case of ciscoes (Coregonus spp.) in the Laurentian Great Lakes, which are characterized by a complex evolutionary history and are commonly described as having undergone an adaptive radiation. In this study, morphometrics, stable isotopes and transcriptome sequencing were used to study the relationships within the Coregonus artedi complex in western Lake Superior. We observed general concordance for morphological, ecological and genomic variation, but the latter was more taxonomically informative as it showed less overlap among species in multivariate space. Low levels of genetic differentiation were observed between individuals morphologically identified as C. hoyi and C. zenithicus, which could be evidence of incomplete lineage sorting or recent hybridization between the two groups. Transcriptome-based single nucleotide polymorphisms exhibited significant divergence for genes associated with vision, development, metabolism and immunity among species that occupy different habitats. This study highlights the importance of using an integrative approach when studying groups of taxa with a complex evolutionary history, as individual-level analyses of multiple independent datasets can provide a clearer picture of the patterns and processes associated with the origins of biodiversity.
Collapse
Affiliation(s)
- Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, Alabama 36849, United States of America.,Department of Biological Sciences and RENEW Institute, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Daniel L Yule
- U.S. Geological Survey, Great Lakes Science Center - Lake Superior Biological Station, 2800 Lake Shore Drive E., Ashland, WI 54806, United States of America
| | - Wendylee Stott
- Michigan State University CESU working for U.S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, MI 48105-2807, United States of America
| | - Lori Evrard
- U.S. Geological Survey, Great Lakes Science Center - Lake Superior Biological Station, 2800 Lake Shore Drive E., Ashland, WI 54806, United States of America
| | - Thomas E Dowling
- Wayne State University, Department of Biological Sciences, Detroit, Michigan, 48202, United States of America
| | - Trevor J Krabbenhoft
- Department of Biological Sciences and RENEW Institute, University at Buffalo, Buffalo, NY 14260, United States of America
| |
Collapse
|
15
|
Geraerts M, Vangestel C, Artois T, Fernandes JMDO, Jorissen MWP, Chocha Manda A, Danadu Mizani C, Smeets K, Snoeks J, Sonet G, Tingbao Y, Van Steenberge M, Vreven E, Lunkayilakio Wamuini S, Vanhove MPM, Huyse T. Population genomics of introduced Nile tilapia Oreochromis niloticus (Linnaeus, 1758) in the Democratic Republic of the Congo: Repeated introductions since colonial times with multiple sources. Mol Ecol 2022; 31:3304-3322. [PMID: 35460297 DOI: 10.1111/mec.16479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
During colonial times, Nile tilapia Oreochromis niloticus (Linnaeus, 1758) was introduced into non-native parts of the Congo Basin (Democratic Republic of the Congo, DRC) for the first time. Currently, it is the most farmed cichlid in the DRC, and is present throughout the Congo Basin. Although Nile tilapia has been reported as an invasive species, documentation of historical introductions into this basin and its consequences are scant. Here, we study the genetic consequences of these introductions by genotyping 213 Nile tilapia from native and introduced regions, focusing on the Congo Basin. Additionally, 48 specimens from 16 other tilapia species were included to test for hybridization. Using RAD sequencing (27,611 single nucleotide polymorphisms), we discovered genetic admixture with other tilapia species in several morphologically identified Nile tilapia from the Congo Basin, reflecting their ability to interbreed and the potential threat they pose to the genetic integrity of native tilapias. Nile tilapia populations from the Upper Congo and those from the Middle-Lower Congo are strongly differentiated. The former show genetic similarity to Nile tilapia from the White Nile, while specimens from the Benue Basin and Lake Kariba are similar to Nile tilapia from the Middle-Lower Congo, suggesting independent introductions using different sources. We conclude that the presence of Nile tilapia in the Congo Basin results from independent introductions, reflecting the dynamic aquaculture history, and that their introduction probably leads to genetic interactions with native tilapias, which could lower their fitness. We therefore urge avoiding further introductions of Nile tilapia in non-native regions and to use native tilapias in future aquaculture efforts.
Collapse
Affiliation(s)
- Mare Geraerts
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Carl Vangestel
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Terrestrial Ecology Unit, Ghent University, Ghent, Belgium
| | - Tom Artois
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Michiel W P Jorissen
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Auguste Chocha Manda
- Unité de recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Célestin Danadu Mizani
- Département d'Ecologie et Biodiversité des Ressources Aquatique, Centre de Surveillance de la Biodiversité (CSB), Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Karen Smeets
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jos Snoeks
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Gontran Sonet
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Yang Tingbao
- Institute of Aquatic Economic Animals and Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Zhongshan University, Ghangzhou, China
| | - Maarten Van Steenberge
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Emmanuel Vreven
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Soleil Lunkayilakio Wamuini
- Département de Biologie, I.S.P. Mbanza-Ngungu, Mbanza-Ngungu, Democratic Republic of the Congo.,Functional and Evolutionary Morphology Laboratory, University of Liège, Liège, Belgium
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.,Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Campbell EO, MacDonald ZG, Gage EV, Gage RV, Sperling FAH. Genomics and ecological modelling clarify species integrity in a confusing group of butterflies. Mol Ecol 2022; 31:2400-2417. [PMID: 35212068 DOI: 10.1111/mec.16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Recent advances in both genomics and ecological modelling present new, multidisciplinary opportunities for resolving species boundaries and understanding the mechanisms that maintain their integrity in regions of contact. Here, we use a combination of high-throughput DNA sequencing and ecological niche modelling to resolve species boundaries and niche divergence within the Speyeria atlantis-hesperis (Lepidoptera: Nymphalidae) complex, a confusing group of North American butterflies. This complex is notorious for its muddled species delimitations, morphological ambiguity, and extensive mito-nuclear discordance. Our admixture and multispecies coalescent-based analyses of single nucleotide polymorphisms identified substantial divergences between S. atlantis and S. hesperis in areas of contact, as well as between distinct northern and southern lineages within S. hesperis. Our results also provide evidence of past introgression relating to another species, S. zerene, which previous work has shown to be more distantly related to the S. atlantis-hesperis complex. We then used ecological models to predict habitat suitability for each of the three recovered genomic lineages in the S. atlantis-hesperis complex and assess their pairwise niche divergence. These analyses resolved that these three lineages are significantly diverged in their respective niches and are not separated by discontinuities in suitable habitat that might present barriers to gene flow. We therefore infer that ecologically-mediated selection resulting in disparate habitat associations is a principal mechanism reinforcing their genomic integrity. Overall, our results unambiguously support significant evolutionary and ecological divergence between the northern and southern lineages of S. hesperis, sufficient to recognize the southern evolutionary lineage as a distinct species, called S. nausicaa based on taxonomic priority.
Collapse
Affiliation(s)
- E O Campbell
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| | - Z G MacDonald
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada.,Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - E V Gage
- Texas Museum of Entomology, Pipe Creek, TX, U.S.A
| | | | - F A H Sperling
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Oswald JA, Roth B, Faske TM, Allen JM, Mestre C, Rivers-Pankratz D, Van Norman K, Guralnick RP. Population genomics of Monadenia (Gastropoda: Stylommatophora: Xanthonychidae) land snails reveals structuring but gene-flow across distinct species and morphotypes. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Hierarchical genetic structure and implications for conservation of the world's largest salmonid, Hucho taimen. Sci Rep 2021; 11:20508. [PMID: 34654859 PMCID: PMC8520000 DOI: 10.1038/s41598-021-99530-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
Population genetic analyses can evaluate how evolutionary processes shape diversity and inform conservation and management of imperiled species. Taimen (Hucho taimen), the world’s largest freshwater salmonid, is threatened, endangered, or extirpated across much of its range due to anthropogenic activity including overfishing and habitat degradation. We generated genetic data using high throughput sequencing of reduced representation libraries for taimen from multiple drainages in Mongolia and Russia. Nucleotide diversity estimates were within the range documented in other salmonids, suggesting moderate diversity despite widespread population declines. Similar to other recent studies, our analyses revealed pronounced differentiation among the Arctic (Selenge) and Pacific (Amur and Tugur) drainages, suggesting historical isolation among these systems. However, we found evidence for finer-scale structure within the Pacific drainages, including unexpected differentiation between tributaries and the mainstem of the Tugur River. Differentiation across the Amur and Tugur basins together with coalescent-based demographic modeling suggests the ancestors of Tugur tributary taimen likely diverged in the eastern Amur basin, prior to eventual colonization of the Tugur basin. Our results suggest the potential for differentiation of taimen at different geographic scales, and suggest more thorough geographic and genomic sampling may be needed to inform conservation and management of this iconic salmonid.
Collapse
|
19
|
Su Y, Huang Q, Wang Z, Wang T. High genetic and epigenetic variation of transposable elements: Potential drivers to rapid adaptive evolution for the noxious invasive weed Mikania micrantha. Ecol Evol 2021; 11:13501-13517. [PMID: 34646486 PMCID: PMC8495827 DOI: 10.1002/ece3.8075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE-based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty-five transposon-inserted genes were sequenced and homology-based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE-associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Qiqi Huang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
20
|
Christiansen H, Heindler FM, Hellemans B, Jossart Q, Pasotti F, Robert H, Verheye M, Danis B, Kochzius M, Leliaert F, Moreau C, Patel T, Van de Putte AP, Vanreusel A, Volckaert FAM, Schön I. Facilitating population genomics of non-model organisms through optimized experimental design for reduced representation sequencing. BMC Genomics 2021; 22:625. [PMID: 34418978 PMCID: PMC8380342 DOI: 10.1186/s12864-021-07917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genome-wide data are invaluable to characterize differentiation and adaptation of natural populations. Reduced representation sequencing (RRS) subsamples a genome repeatedly across many individuals. However, RRS requires careful optimization and fine-tuning to deliver high marker density while being cost-efficient. The number of genomic fragments created through restriction enzyme digestion and the sequencing library setup must match to achieve sufficient sequencing coverage per locus. Here, we present a workflow based on published information and computational and experimental procedures to investigate and streamline the applicability of RRS. RESULTS In an iterative process genome size estimates, restriction enzymes and size selection windows were tested and scaled in six classes of Antarctic animals (Ostracoda, Malacostraca, Bivalvia, Asteroidea, Actinopterygii, Aves). Achieving high marker density would be expensive in amphipods, the malacostracan target taxon, due to the large genome size. We propose alternative approaches such as mitogenome or target capture sequencing for this group. Pilot libraries were sequenced for all other target taxa. Ostracods, bivalves, sea stars, and fish showed overall good coverage and marker numbers for downstream population genomic analyses. In contrast, the bird test library produced low coverage and few polymorphic loci, likely due to degraded DNA. CONCLUSIONS Prior testing and optimization are important to identify which groups are amenable for RRS and where alternative methods may currently offer better cost-benefit ratios. The steps outlined here are easy to follow for other non-model taxa with little genomic resources, thus stimulating efficient resource use for the many pressing research questions in molecular ecology.
Collapse
Affiliation(s)
- Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.
| | - Franz M Heindler
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Quentin Jossart
- Marine Biology Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Henri Robert
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Marie Verheye
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Bruno Danis
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Kochzius
- Marine Biology Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frederik Leliaert
- Marine Biology Research Group, Ghent University, Ghent, Belgium.,Meise Botanic Garden, Meise, Belgium
| | - Camille Moreau
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Université de Bourgogne Franche-Comté (UBFC) UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Tasnim Patel
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Anton P Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.,OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ann Vanreusel
- Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Isa Schön
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
21
|
Forsdick NJ, Martini D, Brown L, Cross HB, Maloney RF, Steeves TE, Knapp M. Genomic sequencing confirms absence of introgression despite past hybridisation between a critically endangered bird and its common congener. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
22
|
Unravelling hybridization in Phytophthora using phylogenomics and genome size estimation. IMA Fungus 2021; 12:16. [PMID: 34193315 PMCID: PMC8246709 DOI: 10.1186/s43008-021-00068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is therefore essential for adequate plant protection but this is hampered by the limitations of morphological and traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614 Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid species and discover 16 new hybrid species. Our method was also valuable for species identification at an unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.
Collapse
|
23
|
Seaborn T, Andrews KR, Applestein CV, Breech TM, Garrett MJ, Zaiats A, Caughlin TT. Integrating genomics in population models to forecast translocation success. Restor Ecol 2021. [DOI: 10.1111/rec.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Travis Seaborn
- Department of Fish and Wildlife Sciences University of Idaho Moscow ID U.S.A
| | - Kimberly R. Andrews
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID U.S.A
| | | | - Tyler M. Breech
- Department of Biological Sciences Idaho State University Pocatello ID U.S.A
| | - Molly J. Garrett
- Department of Fish and Wildlife Sciences University of Idaho Moscow ID U.S.A
| | - Andrii Zaiats
- Biological Sciences Boise State University Boise ID U.S.A
| | | |
Collapse
|
24
|
Hardy BM, Pope KL, Latch EK. Genomic signatures of demographic declines in an imperiled amphibian inform conservation action. Anim Conserv 2021. [DOI: 10.1111/acv.12695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- B. M. Hardy
- Behavioral and Molecular Ecology Research Group Department of Biological Sciences University of Wisconsin‐Milwaukee Milwaukee WI USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - K. L. Pope
- United States Forest Service Pacific Southwest Research Station Arcata CA USA
| | - E. K. Latch
- Behavioral and Molecular Ecology Research Group Department of Biological Sciences University of Wisconsin‐Milwaukee Milwaukee WI USA
| |
Collapse
|
25
|
Wierzbicki H, Zatoń-Dobrowolska M, Mucha A, Moska M. Insight into the Genetic Population Structure of Wild Red Foxes in Poland Reveals Low Risk of Genetic Introgression from Escaped Farm Red Foxes. Genes (Basel) 2021; 12:genes12050637. [PMID: 33922932 PMCID: PMC8146073 DOI: 10.3390/genes12050637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
In this study we assessed the level of genetic introgression between red foxes bred on fur farms in Poland and the native wild population. We also evaluated the impact of a geographic barrier and isolation by distance on gene flow between two isolated subpopulations of the native red fox and their genetic differentiation. Nuclear and mitochondrial DNA was collected from a total of 308 individuals (200 farm and 108 wild red foxes) to study non-native allele flow from farm into wild red fox populations. Genetic structure analyses performed using 24 autosomal microsatellites showed two genetic clusters as being the most probable number of distinct populations. No strong admixture signals between farm and wild red foxes were detected, and significant genetic differentiation was identified between the two groups. This was also apparent from the mtDNA analysis. None of the concatenated haplotypes detected in farm foxes was found in wild animals. The consequence of this was that the haplotype network displayed two genetically distinct groups: farm foxes were completely separated from native ones. Neither the River Vistula nor isolation by distance had a significant impact on gene flow between the separated wild red fox subpopulations. The results of our research indicate a low probability of genetic introgression between farm and native red foxes, and no threat to the genetic integrity of this species.
Collapse
|
26
|
Bootsma ML, Miller L, Sass GG, Euclide PT, Larson WA. The ghosts of propagation past: haplotype information clarifies the relative influence of stocking history and phylogeographic processes on contemporary population structure of walleye ( Sander vitreus). Evol Appl 2021; 14:1124-1144. [PMID: 33897825 PMCID: PMC8061267 DOI: 10.1111/eva.13186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Stocking of fish is an important tool for maintaining fisheries but can also significantly alter population genetic structure and erode the portfolio of within-species diversity that is important for promoting resilience and adaptability. Walleye (Sander vitreus) are a highly valued sportfish in the midwestern United States, a region characterized by postglacial recolonization from multiple lineages and an extensive history of stocking. We leveraged genomic data and recently developed analytical approaches to explore the population structure of walleye from two midwestern states, Minnesota and Wisconsin. We genotyped 954 walleye from 23 populations at ~20,000 loci using genotyping by sequencing and tested for patterns of population structure with single-SNP and microhaplotype data. Populations from Minnesota and Wisconsin were highly differentiated from each other, with additional substructure found in each state. Population structure did not consistently adhere to drainage boundaries, as cases of high intra-drainage and low inter-drainage differentiation were observed. Low genetic structure was observed between populations from the upper Wisconsin and upper Chippewa river watersheds, which are found as few as 50 km apart and were likely homogenized through historical stocking. Nevertheless, we were able to differentiate these populations using microhaplotype-based co-ancestry analysis, providing increased resolution over previous microsatellite studies and our other single SNP-based analyses. Although our results illustrate that walleye population structure has been influenced by past stocking practices, native ancestry still exists in most populations and walleye populations may be able to purge non-native alleles and haplotypes in the absence of stocking. Our study is one of the first to use genomic tools to investigate the influence of stocking on population structure in a nonsalmonid fish and outlines a workflow leveraging recently developed analytical methods to improve resolution of complex population structure that will be highly applicable in many species and systems.
Collapse
Affiliation(s)
- Matthew L. Bootsma
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Loren Miller
- Minnesota Department of Natural ResourcesUniversity of MinnesotaSt. PaulMNUSA
| | - Greg G. Sass
- Office of Applied ScienceWisconsin Department of Natural ResourcesEscanaba Lake Research StationBoulder JunctionWIUSA
| | - Peter T. Euclide
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
- Present address:
Ted Stevens Marine Research InstituteAlaska Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationJuneauAKUSA
| |
Collapse
|
27
|
Graham CF, Eberts RL, Goncin U, Somers CM. Spontaneous hybridization and introgression between walleye ( Sander vitreus) and sauger ( Sander canadensis) in two large reservoirs: Insights from genotyping by sequencing. Evol Appl 2021; 14:965-982. [PMID: 33897814 PMCID: PMC8061268 DOI: 10.1111/eva.13174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Anthropogenic activities may facilitate undesirable hybridization and genomic introgression between fish species. Walleye (Sander vitreus) and sauger (Sander canadensis) are economically valuable freshwater species that can spontaneously hybridize in areas of sympatry. Levels of genomic introgression between walleye and sauger may be increased by modifications to waterbodies (e.g., reservoir development) and inadvertent propagation of hybrids in stocking programs. We used genotyping by sequencing (GBS) to examine 217 fish from two large reservoirs with mixed populations of walleye and sauger in Saskatchewan, Canada (Lake Diefenbaker, Tobin Lake). Analyses with 20,038 (r90) and 478 (r100) single nucleotide polymorphisms clearly resolved walleye and sauger, and classified hybrids with high confidence. F1, F2, and multigeneration hybrids were detected in Lake Diefenbaker, indicating potentially high levels of genomic introgression. In contrast, only F1 hybrids were detected in Tobin Lake. Field classification of fish was unreliable; 7% of fish were misidentified based on broad species categories. Important for activities such as brood stock selection, 12 of 173 (7%) fish field identified as pure walleye, and one of 24 (4%) identified as pure sauger were actually hybrids. In addition, two of 15 (13%) field-identified hybrids were actually pure walleye or sauger. We conclude that hybridization and introgression are occurring in Saskatchewan reservoirs and that caution is warranted when using these populations in stocking programs. GBS offers a powerful and flexible tool for examining hybridization without preidentification of informative loci, eliminating some of the key challenges associated with other marker types.
Collapse
Affiliation(s)
| | - Rebecca L. Eberts
- Fish, Wildlife, and Lands Branch, Ministry of EnvironmentGovernment of SaskatchewanPrince AlbertSKCanada
| | - Una Goncin
- Department of BiologyUniversity of ReginaReginaSKCanada
| | | |
Collapse
|
28
|
Stewart KA, Taylor SA. Leveraging eDNA to expand the study of hybrid zones. Mol Ecol 2020; 29:2768-2776. [PMID: 32557920 PMCID: PMC7496085 DOI: 10.1111/mec.15514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/18/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Hybrid zones are important windows into ecological and evolutionary processes. Our understanding of the significance and prevalence of hybridization in nature has expanded with the generation and analysis of genome‐spanning data sets. That said, most hybridization research still has restricted temporal and spatial resolution, which limits our ability to draw broad conclusions about evolutionary and conservation related outcomes. Here, we argue that rapidly advancing environmental DNA (eDNA) methodology could be adopted for studies of hybrid zones to increase temporal sampling (contemporary and historical), refine and geographically expand sampling density, and collect data for taxa that are difficult to directly sample. Genomic data in the environment offer the potential for near real‐time biological tracking of hybrid zones, and eDNA provides broad, but as yet untapped, potential to address eco‐evolutionary questions.
Collapse
Affiliation(s)
- Kathryn A Stewart
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Scott A Taylor
- Department Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
29
|
Martin Cerezo ML, Kucka M, Zub K, Chan YF, Bryk J. Population structure of Apodemus flavicollis and comparison to Apodemus sylvaticus in northern Poland based on RAD-seq. BMC Genomics 2020; 21:241. [PMID: 32183700 PMCID: PMC7079423 DOI: 10.1186/s12864-020-6603-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Background Mice of the genus Apodemus are one the most common mammals in the Palaearctic region. Despite their broad range and long history of ecological observations, there are no whole-genome data available for Apodemus, hindering our ability to further exploit the genus in evolutionary and ecological genomics context. Results Here we present results from the double-digest restriction site-associated DNA sequencing (ddRAD-seq) on 72 individuals of A. flavicollis and 10 A. sylvaticus from four populations, sampled across 500 km distance in northern Poland. Our data present clear genetic divergence of the two species, with average p-distance, based on 21377 common loci, of 1.51% and a mutation rate of 0.0011 - 0.0019 substitutions per site per million years. We provide a catalogue of 117 highly divergent loci that enable genetic differentiation of the two species in Poland and to a large degree of 20 unrelated samples from several European countries and Tunisia. We also show evidence of admixture between the three A. flavicollis populations but demonstrate that they have negligible average population structure, with largest pairwise FST<0.086. Conclusion Our study demonstrates the feasibility of ddRAD-seq in Apodemus and provides the first insights into the population genomics of the species.
Collapse
Affiliation(s)
- Maria Luisa Martin Cerezo
- School of Applied Sciences, University of Huddersfield, Quennsgate, Huddersfield, UK.,AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Department of Zoology, Linköping University, Linköping, Sweden
| | - Marek Kucka
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Karol Zub
- The Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | | | - Jarosław Bryk
- School of Applied Sciences, University of Huddersfield, Quennsgate, Huddersfield, UK.
| |
Collapse
|
30
|
McFarlane SE, Hunter DC, Senn HV, Smith SL, Holland R, Huisman J, Pemberton JM. Increased genetic marker density reveals high levels of admixture between red deer and introduced Japanese sika in Kintyre, Scotland. Evol Appl 2020; 13:432-441. [PMID: 31993087 PMCID: PMC6976951 DOI: 10.1111/eva.12880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/01/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Hybridization is a natural process at species range boundaries, but increasing numbers of species are hybridizing due to direct or indirect human activities. In such cases of anthropogenic hybridization, subsequent introgression can threaten the survival of native species. To date, many such systems have been studied with too few genetic markers to assess the level of threat resulting from advanced backcrossing. Here, we use 44,999 single nucleotide polymorphisms (SNPs) and the ADMIXTURE program to study two areas of Scotland where a panel of 22 diagnostic microsatellites previously identified introgression between native red deer (Cervus elaphus) and introduced Japanese sika (Cervus nippon). In Kintyre, we reclassify 26% of deer from the pure species categories to the hybrid category whereas in the NW Highlands we only reclassify 2%. As expected, the reclassified individuals are mostly advanced backcrosses. We also investigate the ability of marker panels selected on different posterior allele frequency criteria to find hybrids assigned by the full marker set and show that in our data, ancestry informative markers (i.e. those that are highly differentiated between the species, but not fixed) are better than diagnostic markers (those markers that are fixed between the species) because they are more evenly distributed in the genome. Diagnostic loci are concentrated on the X chromosome to the detriment of autosomal coverage.
Collapse
Affiliation(s)
- S. Eryn McFarlane
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of EdinburghEdinburghUK
- Department of BiologyLund UniversityLundSweden
| | - Darren C. Hunter
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of EdinburghEdinburghUK
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Helen V. Senn
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of EdinburghEdinburghUK
- WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghUK
| | - Stephanie L. Smith
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of EdinburghEdinburghUK
- The Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEaster Bush CampusMidlothian, EdinburghUK
| | - Rebecca Holland
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of EdinburghEdinburghUK
| | - Jisca Huisman
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of EdinburghEdinburghUK
| | - Josephine M. Pemberton
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of EdinburghEdinburghUK
| |
Collapse
|
31
|
Sard NM, Smith SR, Homola JJ, Kanefsky J, Bravener G, Adams JV, Holbrook CM, Hrodey PJ, Tallon K, Scribner KT. RAPTURE (RAD capture) panel facilitates analyses characterizing sea lamprey reproductive ecology and movement dynamics. Ecol Evol 2020; 10:1469-1488. [PMID: 32076528 PMCID: PMC7029094 DOI: 10.1002/ece3.6001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Genomic tools are lacking for invasive and native populations of sea lamprey (Petromyzon marinus). Our objective was to discover single nucleotide polymorphism (SNP) loci to conduct pedigree analyses to quantify reproductive contributions of adult sea lampreys and dispersion of sibling larval sea lampreys of different ages in Great Lakes tributaries. Additional applications of data were explored using additional geographically expansive samples. We used restriction site-associated DNA sequencing (RAD-Seq) to discover genetic variation in Duffins Creek (DC), Ontario, Canada, and the St. Clair River (SCR), Michigan, USA. We subsequently developed RAD capture baits to genotype 3,446 RAD loci that contained 11,970 SNPs. Based on RAD capture assays, estimates of variance in SNP allele frequency among five Great Lakes tributary populations (mean F ST 0.008; range 0.00-0.018) were concordant with previous microsatellite-based studies; however, outlier loci were identified that contributed substantially to spatial population genetic structure. At finer scales within streams, simulations indicated that accuracy in genetic pedigree reconstruction was high when 200 or 500 independent loci were used, even in situations of high spawner abundance (e.g., 1,000 adults). Based on empirical collections of larval sea lamprey genotypes, we found that age-1 and age-2 families of full and half-siblings were widely but nonrandomly distributed within stream reaches sampled. Using the genomic scale set of SNP loci developed in this study, biologists can rapidly genotype sea lamprey in non-native and native ranges to investigate questions pertaining to population structuring and reproductive ecology at previously unattainable scales.
Collapse
Affiliation(s)
- Nicholas M. Sard
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
- Biology DepartmentSUNY OswegoOswegoNew York
| | - Seth R. Smith
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | - Jared J. Homola
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | - Jeannette Kanefsky
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | | | - Jean V. Adams
- Great Lakes Science CenterU.S. Geological SurveyAnn ArborMichigan
| | - Christopher M. Holbrook
- Great Lakes Science CenterHammond Bay Biological StationU.S. Geological SurveyMillersburgMichigan
| | | | - Kevin Tallon
- Fisheries and Oceans CanadaSault Ste. MarieONCanada
| | - Kim T. Scribner
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
- Department of Integrative BiologyState UniversityEast LansingMichigan
| |
Collapse
|
32
|
Graham CF, Boreham DR, Manzon RG, Stott W, Wilson JY, Somers CM. How "simple" methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: A case study using the lake whitefish. PLoS One 2020; 15:e0226608. [PMID: 31978053 PMCID: PMC6980518 DOI: 10.1371/journal.pone.0226608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
Reduced representation (RRL) sequencing approaches (e.g., RADSeq, genotyping by sequencing) require decisions about how much to invest in genome coverage and sequencing depth, as well as choices of values for adjustable bioinformatics parameters. To empirically explore the importance of these “simple” methodological decisions, we generated two independent sequencing libraries for the same 142 individual lake whitefish (Coregonus clupeaformis) using a nextRAD RRL approach: (1) a larger number of loci at low sequencing depth based on a 9mer (library A); and (2) fewer loci at higher sequencing depth based on a 10mer (library B). The fish were selected from populations with different levels of expected genetic subdivision. Each library was analyzed using the STACKS pipeline followed by three types of population structure assessment (FST, DAPC and ADMIXTURE) with iterative increases in the stringency of sequencing depth and missing data requirements, as well as more specific a priori population maps. Library B was always able to resolve strong population differentiation in all three types of assessment regardless of the selected parameters, largely due to retention of more loci in analyses. In contrast, library A produced more variable results; increasing the minimum sequencing depth threshold (-m) resulted in a reduced number of retained loci, and therefore lost resolution at high -m values for FST and ADMIXTURE, but not DAPC. When detecting fine population differentiation, the population map influenced the number of loci and missing data, which generated artefacts in all downstream analyses tested. Similarly, when examining fine scale population subdivision, library B was robust to changing parameters but library A lost resolution depending on the parameter set. We used library B to examine actual subdivision in our study populations. All three types of analysis found complete subdivision among populations in Lake Huron, ON and Dore Lake, SK, Canada using 10,640 SNP loci. Weak population subdivision was detected in Lake Huron with fish from sites in the north-west, Search Bay, North Point and Hammond Bay, showing slight differentiation. Overall, we show that apparently simple decisions about library construction and bioinformatics parameters can have important impacts on the interpretation of population subdivision. Although potentially more costly on a per-locus basis, early investment in striking a balance between the number of loci and sequencing effort is well worth the reduced genomic coverage for population genetics studies. More conservative stringency settings on STACKS parameters lead to a final dataset that was more consistent and robust when examining both weak and strong population differentiation. Overall, we recommend that researchers approach “simple” methodological decisions with caution, especially when working on non-model species for the first time.
Collapse
Affiliation(s)
- Carly F. Graham
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Douglas R. Boreham
- Medical Sciences, Northern Ontario School of Medicine, Greater Sudbury, Ontario, Canada
| | - Richard G. Manzon
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Wendylee Stott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Joanna Y. Wilson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
33
|
Rochette NC, Rivera‐Colón AG, Catchen JM. Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Mol Ecol 2019; 28:4737-4754. [DOI: 10.1111/mec.15253] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Nicolas C. Rochette
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Angel G. Rivera‐Colón
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Julian M. Catchen
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana IL USA
| |
Collapse
|
34
|
Guo L, Yao H, Shepherd B, Sepulveda-Villet OJ, Zhang DC, Wang HP. Development of a Genomic Resource and Identification of Nucleotide Diversity of Yellow Perch by RAD Sequencing. Front Genet 2019; 10:992. [PMID: 31681426 PMCID: PMC6802114 DOI: 10.3389/fgene.2019.00992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 09/18/2019] [Indexed: 01/28/2023] Open
Affiliation(s)
- Liang Guo
- Aquatic Genetics and Breeding Laboratory, Ohio State University South Centers, Piketon, OH, United States.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institutes, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hong Yao
- Aquatic Genetics and Breeding Laboratory, Ohio State University South Centers, Piketon, OH, United States
| | - Brian Shepherd
- USDA-ARS-School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Osvaldo J Sepulveda-Villet
- USDA-ARS-School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institutes, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Han-Ping Wang
- Aquatic Genetics and Breeding Laboratory, Ohio State University South Centers, Piketon, OH, United States
| |
Collapse
|
35
|
Euclide PT, McKinney GJ, Bootsma M, Tarsa C, Meek MH, Larson WA. Attack of the PCR clones: Rates of clonality have little effect on RAD‐seq genotype calls. Mol Ecol Resour 2019; 20:66-78. [DOI: 10.1111/1755-0998.13087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Peter T. Euclide
- Wisconsin Cooperative Fishery Research Unit College of Natural Resources University of Wisconsin‐Stevens Point Stevens Point WI USA
| | - Garrett J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Matthew Bootsma
- Wisconsin Cooperative Fishery Research Unit College of Natural Resources University of Wisconsin‐Stevens Point Stevens Point WI USA
| | - Charlene Tarsa
- Department of Integrative Biology and AgBio Research Michigan State University East Lansing MI USA
| | - Mariah H. Meek
- Department of Integrative Biology and AgBio Research Michigan State University East Lansing MI USA
| | - Wesley A. Larson
- U.S. Geological Survey Wisconsin Cooperative Fishery Research Unit College of Natural Resources University of Wisconsin‐Stevens Point Stevens Point WI USA
| |
Collapse
|
36
|
Mattucci F, Galaverni M, Lyons LA, Alves PC, Randi E, Velli E, Pagani L, Caniglia R. Genomic approaches to identify hybrids and estimate admixture times in European wildcat populations. Sci Rep 2019; 9:11612. [PMID: 31406125 PMCID: PMC6691104 DOI: 10.1038/s41598-019-48002-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
The survival of indigenous European wildcat (Felis silvestris silvestris) populations can be locally threatened by introgressive hybridization with free-ranging domestic cats. Identifying pure wildcats and investigating the ancestry of admixed individuals becomes thus a conservation priority. We analyzed 63k cat Single Nucleotide Polymorphisms (SNPs) with multivariate, Bayesian and gene-search tools to better evaluate admixture levels between domestic and wild cats collected in Europe, timing and ancestry proportions of their hybrids and backcrosses, and track the origin (wild or domestic) of the genomic blocks carried by admixed cats, also looking for possible deviations from neutrality in their inheritance patterns. Small domestic ancestry blocks were detected in the genomes of most admixed cats, which likely originated from hybridization events occurring from 6 to 22 generations in the past. We identified about 1,900 outlier coding genes with excess of wild or domestic ancestry compared to random expectations in the admixed individuals. More than 600 outlier genes were significantly enriched for Gene Ontology (GO) categories mainly related to social behavior, functional and metabolic adaptive processes (wild-like genes), involved in cognition and neural crest development (domestic-like genes), or associated with immune system functions and lipid metabolism (parental-like genes). These kinds of genomic ancestry analyses could be reliably applied to unravel the admixture dynamics in European wildcats, as well as in other hybridizing populations, in order to design more efficient conservation plans.
Collapse
Affiliation(s)
- Federica Mattucci
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy.
| | | | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, USA
| | - Paulo C Alves
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio - Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, USA
| | - Ettore Randi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, University of Aalborg, Aalborg, Denmark
| | - Edoardo Velli
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| | - Luca Pagani
- Dipartimento di Biologia, Università degli Studi di Padova, Padua, Italy
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Romolo Caniglia
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| |
Collapse
|
37
|
Mandeville EG, Walters AW, Nordberg BJ, Higgins KH, Burckhardt JC, Wagner CE. Variable hybridization outcomes in trout are predicted by historical fish stocking and environmental context. Mol Ecol 2019; 28:3738-3755. [PMID: 31294488 DOI: 10.1111/mec.15175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co-occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first-generation hybrids. Later-generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual-based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.
Collapse
Affiliation(s)
- Elizabeth G Mandeville
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Annika W Walters
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Brittany J Nordberg
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Karly H Higgins
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Quantitative and Systems Biology, University of California Merced, Merced, CA, USA
| | | | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Biodiversity Institute, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
38
|
Species-diagnostic SNP markers for the black basses (Micropterus spp.): a new tool for black bass conservation and management. CONSERV GENET RESOUR 2019. [DOI: 10.1007/s12686-019-01109-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Hotaling S, Shain DH, Lang SA, Bagley RK, Tronstad LM, Weisrock DW, Kelley JL. Long-distance dispersal, ice sheet dynamics and mountaintop isolation underlie the genetic structure of glacier ice worms. Proc Biol Sci 2019; 286:20190983. [PMID: 31213183 DOI: 10.1098/rspb.2019.0983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disentangling the contemporary and historical factors underlying the spatial distributions of species is a central goal of biogeography. For species with broad distributions but little capacity to actively disperse, disconnected geographical distributions highlight the potential influence of passive, long-distance dispersal (LDD) on their evolutionary histories. However, dispersal alone cannot completely account for the biogeography of any species, and other factors-e.g. habitat suitability, life history-must also be considered. North American ice worms ( Mesenchytraeus solifugus) are ice-obligate annelids that inhabit coastal glaciers from Oregon to Alaska. Previous studies identified a complex biogeographic history for ice worms, with evidence for genetic isolation, unexpectedly close relationships among geographically disjunct lineages, and contemporary migration across large (e.g. greater than 1500 km) areas of unsuitable habitat. In this study, we analysed genome-scale sequence data for individuals from most of the known ice worm range. We found clear support for divergence between populations along the Pacific Coast and the inland flanks of the Coast Mountains (mean FST = 0.60), likely precipitated by episodic ice sheet expansion and contraction during the Pleistocene. We also found support for LDD of ice worms from Alaska to Vancouver Island, perhaps mediated by migrating birds. Our results highlight the power of genomic data for disentangling complex biogeographic patterns, including the presence of LDD.
Collapse
Affiliation(s)
- Scott Hotaling
- 1 School of Biological Sciences, Washington State University , Pullman, WA , USA
| | - Daniel H Shain
- 2 Department of Biology, Rutgers University , Camden, NJ , USA
| | - Shirley A Lang
- 3 Graduate School of Biomedical Sciences, Rowan University , Stratford, NJ , USA
| | - Robin K Bagley
- 4 Department of Biology, University of Iowa , Iowa City, IA , USA
| | - Lusha M Tronstad
- 5 Wyoming Natural Diversity Database, University of Wyoming , Laramie, WY , USA
| | - David W Weisrock
- 6 Department of Biology, University of Kentucky , Lexington, KY , USA
| | - Joanna L Kelley
- 1 School of Biological Sciences, Washington State University , Pullman, WA , USA
| |
Collapse
|
40
|
Rutherford S, van der Merwe M, Wilson PG, Kooyman RM, Rossetto M. Managing the risk of genetic swamping of a rare and restricted tree. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01201-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Bay RA, Taylor EB, Schluter D. Parallel introgression and selection on introduced alleles in a native species. Mol Ecol 2019; 28:2802-2813. [PMID: 30980778 DOI: 10.1111/mec.15097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
Abstract
As humans cause the redistribution of species ranges, hybridization between previously allopatric species is on the rise. Such hybridization can have complex effects on overall fitness of native species as new allelic combinations are tested. Widespread species introductions provide a unique opportunity to study selection on introgressed alleles in independent, replicated populations. We examined selection on alleles that repeatedly introgressed from introduced rainbow trout (Oncorhynchus mykiss) into native westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations in western Canada. We found that the degree of introgression of individual single nucleotide polymorphisms from the invasive species into the native is correlated between independent watersheds. A number of rainbow trout alleles have repeatedly swept to high frequency in native populations, suggesting parallel adaptive advantages. Using simulations, we estimated large selection coefficients up to 0.05 favoring several rainbow trout alleles in the native background. Although previous studies have found reduced hybrid fitness and genome-wide resistance to introgression in westslope cutthroat trout, our results suggest that some introduced genomic regions are strongly favored by selection. Our study demonstrates the utility of replicated introductions as case studies for understanding parallel adaptation and the interactions between selection and introgression across the genome. We suggest that understanding this variation, including consideration of beneficial alleles, can inform management strategies for hybridizing species.
Collapse
Affiliation(s)
- Rachael A Bay
- Department of Evolution and Ecology, University of California, Davis, Davis, California
| | - Eric B Taylor
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dolph Schluter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Amish SJ, Ali O, Peacock M, Miller M, Robinson M, Smith S, Luikart G, Neville H. Assessing thermal adaptation using family‐based association and
F
ST
outlier tests in a threatened trout species. Mol Ecol 2019; 28:2573-2593. [DOI: 10.1111/mec.15100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Stephen J. Amish
- Conservation Genomics Group, Division of Biological Sciences University of Montana Missoula Montana
- Flathead Biological Station University of Montana Polson Montana
| | - Omar Ali
- Department of Animal Science University of California Davis California
| | - Mary Peacock
- Department of Biology University of Nevada Reno Nevada
| | - Michael Miller
- Department of Animal Science University of California Davis California
| | | | - Seth Smith
- Flathead Biological Station University of Montana Polson Montana
| | - Gordon Luikart
- Conservation Genomics Group, Division of Biological Sciences University of Montana Missoula Montana
- Flathead Biological Station University of Montana Polson Montana
| | | |
Collapse
|
43
|
Larson WA, Dann TH, Limborg MT, McKinney GJ, Seeb JE, Seeb LW. Parallel signatures of selection at genomic islands of divergence and the major histocompatibility complex in ecotypes of sockeye salmon across Alaska. Mol Ecol 2019; 28:2254-2271. [DOI: 10.1111/mec.15082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wesley A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Tyler H. Dann
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
- Gene Conservation Laboratory Alaska Department of Fish and Game Anchorage Alaska
| | - Morten T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Garrett J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - James E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| |
Collapse
|
44
|
Abstract
Introgression is emerging as an important source of novel genetic variation, alongside standing variation and mutation. It is adaptive when such introgressed alleles are maintained by natural selection. Recently, there has been an explosion in the number of studies on adaptive introgression. In this review, we take a plant perspective centred on four lines of evidence: (i) introgression, (ii) selection, (iii) phenotype and (iv) fitness. While advances in genomics have contributed to our understanding of introgression and porous species boundaries (task 1), and the detection of signatures of selection in introgression (task 2), the investigation of adaptive introgression critically requires links to phenotypic variation and fitness (tasks 3 and 4). We also discuss the conservation implications of adaptive introgression in the face of climate change. Adaptive introgression is particularly important in rapidly changing environments, when standing genetic variation and mutation alone may only offer limited potential for adaptation. We conclude that clarifying the magnitude and fitness effects of introgression with improved statistical techniques, coupled with phenotypic evidence, has great potential for conservation and management efforts.
Collapse
Affiliation(s)
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
45
|
McFarlane SE, Pemberton JM. Detecting the True Extent of Introgression during Anthropogenic Hybridization. Trends Ecol Evol 2019; 34:315-326. [DOI: 10.1016/j.tree.2018.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
|
46
|
|
47
|
Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, Billot C, Vigouroux Y, Berthouly-Salazar C. Adaptive Introgression: An Untapped Evolutionary Mechanism for Crop Adaptation. FRONTIERS IN PLANT SCIENCE 2019; 10:4. [PMID: 30774638 PMCID: PMC6367218 DOI: 10.3389/fpls.2019.00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/04/2019] [Indexed: 05/18/2023]
Abstract
Global environmental changes strongly impact wild and domesticated species biology and their associated ecosystem services. For crops, global warming has led to significant changes in terms of phenology and/or yield. To respond to the agricultural challenges of this century, there is a strong need for harnessing the genetic variability of crops and adapting them to new conditions. Gene flow, from either the same species or a different species, may be an immediate primary source to widen genetic diversity and adaptions to various environments. When the incorporation of a foreign variant leads to an increase of the fitness of the recipient pool, it is referred to as "adaptive introgression". Crop species are excellent case studies of this phenomenon since their genetic variability has been considerably reduced over space and time but most of them continue exchanging genetic material with their wild relatives. In this paper, we review studies of adaptive introgression, presenting methodological approaches and challenges to detecting it. We pay particular attention to the potential of this evolutionary mechanism for the adaptation of crops. Furthermore, we discuss the importance of farmers' knowledge and practices in shaping wild-to-crop gene flow. Finally, we argue that screening the wild introgression already existing in the cultivated gene pool may be an effective strategy for uncovering wild diversity relevant for crop adaptation to current environmental changes and for informing new breeding directions.
Collapse
Affiliation(s)
- Concetta Burgarella
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
- *Correspondence: Concetta Burgarella, Cécile Berthouly-Salazar,
| | - Adeline Barnaud
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
| | - Ndjido Ardo Kane
- Laboratoire National de Recherches sur les Productions Végétales, Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Dakar, Senegal
| | - Frédérique Jankowski
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UPR GREEN, Montpellier, France
- GREEN, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Université de Montpellier, Montpellier, France
- Bureau d’Analyses Macro-Economiques, Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
| | - Nora Scarcelli
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
| | - Claire Billot
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Yves Vigouroux
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
| | - Cécile Berthouly-Salazar
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Dakar, Senegal
- *Correspondence: Concetta Burgarella, Cécile Berthouly-Salazar,
| |
Collapse
|
48
|
Andrews KR, Adams JR, Cassirer EF, Plowright RK, Gardner C, Dwire M, Hohenlohe PA, Waits LP. A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from RADseq data. Mol Ecol Resour 2018; 18:1263-1281. [PMID: 29870119 PMCID: PMC6207459 DOI: 10.1111/1755-0998.12910] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022]
Abstract
The development of high-throughput sequencing technologies is dramatically increasing the use of single nucleotide polymorphisms (SNPs) across the field of genetics, but most parentage studies of wild populations still rely on microsatellites. We developed a bioinformatic pipeline for identifying SNP panels that are informative for parentage analysis from restriction site-associated DNA sequencing (RADseq) data. This pipeline includes options for analysis with or without a reference genome, and provides methods to maximize genotyping accuracy and select sets of unlinked loci that have high statistical power. We test this pipeline on small populations of Mexican gray wolf and bighorn sheep, for which parentage analyses are expected to be challenging due to low genetic diversity and the presence of many closely related individuals. We compare the results of parentage analysis across SNP panels generated with or without the use of a reference genome, and between SNPs and microsatellites. For Mexican gray wolf, we conducted parentage analyses for 30 pups from a single cohort where samples were available from 64% of possible mothers and 53% of possible fathers, and the accuracy of parentage assignments could be estimated because true identities of parents were known a priori based on field data. For bighorn sheep, we conducted maternity analyses for 39 lambs from five cohorts where 77% of possible mothers were sampled, but true identities of parents were unknown. Analyses with and without a reference genome produced SNP panels with ≥95% parentage assignment accuracy for Mexican gray wolf, outperforming microsatellites at 78% accuracy. Maternity assignments were completely consistent across all SNP panels for the bighorn sheep, and were 74.4% consistent with assignments from microsatellites. Accuracy and consistency of parentage analysis were not reduced when using as few as 284 SNPs for Mexican gray wolf and 142 SNPs for bighorn sheep, indicating our pipeline can be used to develop SNP genotyping assays for parentage analysis with relatively small numbers of loci.
Collapse
Affiliation(s)
- Kimberly R. Andrews
- Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844, USA
- Current address: Genetics and Genomics Group, University of Washington JISAO and NOAA Pacific Marine Environmental Lab, Seattle, WA 98115, USA
| | - Jennifer R. Adams
- Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844, USA
| | - E. Frances Cassirer
- Idaho Department of Fish and Game, 3316 16th Street, Lewiston, ID 83501, USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | - Colby Gardner
- U.S. Fish and Wildlife Service, 2105 Osuna Road NE, Albuquerque, NM 87113, USA
| | - Maggie Dwire
- U.S. Fish and Wildlife Service, 2105 Osuna Road NE, Albuquerque, NM 87113, USA
| | - Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lisette P. Waits
- Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844, USA
| |
Collapse
|
49
|
Gilbert JR, Losee JE, Mooney MP, Cray JJ, Gustafson J, Cunningham ML, Cooper GM. Genetic associations and phenotypic heterogeneity in the craniosynostotic rabbit. PLoS One 2018; 13:e0204086. [PMID: 30235265 PMCID: PMC6147457 DOI: 10.1371/journal.pone.0204086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022] Open
Abstract
Craniosynostosis (CS) is a disorder that involves the premature ossification of one or more cranial sutures. Our research team has described a naturally occurring rabbit model of CS with a variable phenotype and unknown etiology. Restriction-site associated DNA (RAD) sequencing is a genomic sampling method for identifying genetic variants in species with little or no existing sequence data. RAD sequencing data was analyzed using a mixed linear model to identify single nucleotide polymorphisms (SNPs) associated with disease occurrence and onset in the rabbit model of CS. SNPs achieving a genome-wide significance of p ≤ 5 x 10-8 were identified on chromosome 2 in association with disease occurrence and on chromosomes 14 and 19 in association with disease onset. Genotyping identified a coding variant in fibroblast growth factor binding protein 1 (FGFBP-1) on chromosome 2 and a non-coding variant upstream of integrin alpha 3 (ITGA3) on chromosome 19 that associated with disease occurrence and onset, respectively. Retrospective analysis of patient data revealed a significant inverse correlation between FGFBP-1 and ITGA3 transcript levels in patients with coronal CS. FGFBP-1 and ITGA3 are genes with roles in early development that warrant functional study to further understand suture biology.
Collapse
Affiliation(s)
- James R. Gilbert
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph E. Losee
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark P. Mooney
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthodontics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James J. Cray
- Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jennifer Gustafson
- Center for Developmental Biology and Regenerative Medicine and the Craniofacial Center Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Michael L. Cunningham
- Center for Developmental Biology and Regenerative Medicine and the Craniofacial Center Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Gregory M. Cooper
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
50
|
Wu Q, Miao G, Li X, Liu W, Ikhwanuddin M, Ma H. De novo assembly of genome and development of polymorphic microsatellite loci in the blue swimming crab (Portunus pelagicus) using RAD approach. Mol Biol Rep 2018; 45:1913-1918. [DOI: 10.1007/s11033-018-4339-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022]
|