1
|
Yang M, Werth S, Wang L, Scheidegger C. Phylogeographic analyses of an epiphytic foliose lichen show multiple dispersal events westward from the Hengduan Mountains of Yunnan into the Himalayas. Ecol Evol 2022; 12:e9308. [PMID: 36177127 PMCID: PMC9475131 DOI: 10.1002/ece3.9308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Lobaria pindarensis is an endemic species of the Himalayas and the Hengduan Mountains. Little information is available on the phylogeography genetics and colonization history of this species or how its distribution patterns changed in response to the orographic history of the Himalayas and Hengduan Mountains. Based on samples covering a major part of the species' distribution range, we used 443 newly generated sequences of nine loci for molecular coalescent analyses in order to reconstruct the evolutionary history of L. pindarensis, and to reconstruct the species' ancestral phylogeographic distributions using Bayesian binary MCMC analyses. The results suggest that current populations originated from the Yunnan region of the Hengduan Mountains in the middle Pliocene, and that the Himalayas of Bhutan were colonized by a lineage that diverged from Yunnan ca. 2.72 Ma. The analysis additionally indicates that the Nepal and Xizang areas of the Himalayas were colonized from Yunnan as well, and that there was later a second dispersal event from Yunnan to Bhutan. We conclude that the change in climate and habitat related to the continuous uplift of the Himalayas and the Hengduan Mountains in the late Pliocene and middle Pleistocene influenced the geographic distribution pattern of L. pindarensis.
Collapse
Affiliation(s)
- Mei‐Xia Yang
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Division of Life Science and Center for Chinese MedicineThe Hong Kong University of Science and TechnologyHong KongChina
| | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University MunichMunichGermany
| | - Li‐Song Wang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Christoph Scheidegger
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
2
|
Moya P, Molins A, Škaloud P, Divakar PK, Chiva S, Dumitru C, Molina MC, Crespo A, Barreno E. Biodiversity Patterns and Ecological Preferences of the Photobionts Associated With the Lichen-Forming Genus Parmelia. Front Microbiol 2021; 12:765310. [PMID: 35003003 PMCID: PMC8739953 DOI: 10.3389/fmicb.2021.765310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The worldwide, ecologically relevant lichen-forming genus Parmelia currently includes 41 accepted species, of which the Parmelia sulcata group (PSULgp) and the Parmelia saxatilis group (PSAXgp) have received considerable attention over recent decades; however, phycobiont diversity is poorly known in Parmelia s. lat. Here, we studied the diversity of Trebouxia microalgae associated with 159 thalli collected from 30 locations, including nine Parmelia spp.: P. barrenoae, P. encryptata, P. ernstiae, P. mayi, P. omphalodes, P. saxatilis, P. serrana, P. submontana, and P. sulcata. The mycobionts were studied by carrying out phylogenetic analyses of the nrITS. Microalgae genetic diversity was examined by using both nrITS and LSU rDNA markers. To evaluate putative species boundaries, three DNA species delimitation analyses were performed on Trebouxia and Parmelia. All analyses clustered the mycobionts into two main groups: PSULgp and PSAXgp. Species delimitation identified 13 fungal and 15 algal species-level lineages. To identify patterns in specificity and selectivity, the diversity and abundance of the phycobionts were identified for each Parmelia species. High specificity of each Parmelia group for a given Trebouxia clade was observed; PSULgp associated only with clade I and PSAXgp with clade S. However, the degree of specificity is different within each group, since the PSAXgp mycobionts were less specific and associated with 12 Trebouxia spp., meanwhile those of PSULgp interacted only with three Trebouxia spp. Variation-partitioning analyses were conducted to detect the relative contributions of climate, geography, and symbiotic partner to phycobiont and mycobiont distribution patterns. Both analyses explained unexpectedly high portions of variability (99 and 98%) and revealed strong correlations between the fungal and algal diversity. Network analysis discriminated seven ecological clusters. Even though climatic conditions explained the largest proportion of the variation among these clusters, they seemed to show indifference relative to climatic parameters. However, the cluster formed by P. saxatilis A/P. saxatilis B/Trebouxia sp. 2/Trebouxia sp. S02/Trebouxia sp. 3A was identified to prefer cold-temperate as well as humid summer environments.
Collapse
Affiliation(s)
- Patricia Moya
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Arantzazu Molins
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Pradeep K. Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Salvador Chiva
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Cristina Dumitru
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Maria Carmen Molina
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Eva Barreno
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| |
Collapse
|
3
|
Werth S, Meidl P, Scheidegger C. Deep divergence between island populations in lichenized fungi. Sci Rep 2021; 11:7428. [PMID: 33795714 PMCID: PMC8016866 DOI: 10.1038/s41598-021-86448-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Macaronesia is characterized by a high degree of endemism and represents a noteworthy system to study the evolutionary history of populations and species. Here, we compare the population-genetic structure in three lichen-forming fungi, the widespread Lobaria pulmonaria and two Macaronesian endemics, L. immixta and L. macaronesica, based on microsatellites. We utilize population genetic approaches to explore population subdivision and evolutionary history of these taxa on the Canary Islands, Madeira, Azores, and the western Iberian Peninsula. A common feature in all species was the deep divergence between populations on the Azores, a pattern expected by the large geographic distance among islands. For both endemic species, there was a major split between archipelagos. In contrast, in the widespread L. pulmonaria, divergent individuals were distributed across multiple archipelagos, suggesting a complex evolutionary history involving repeated migration between islands and mainland.
Collapse
Affiliation(s)
- Silke Werth
- Systematic Botany and Mycology, Ludwig-Maximilians Universität München, Menzingerstraße 67, 80638, Munich, Germany.
- Department of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
| | - Peter Meidl
- Systematic Botany and Mycology, Ludwig-Maximilians Universität München, Menzingerstraße 67, 80638, Munich, Germany
| | - Christoph Scheidegger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Browne L. Victoria L. Sork—Recipient of the 2020 Molecular Ecology Prize. Mol Ecol 2020. [DOI: 10.1111/mec.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke Browne
- School of the Environment Yale University New Haven CT USA
| |
Collapse
|
5
|
|
6
|
Doering JA, Booth T, Wiersma YF, Piercey-Normore MD. How do genes flow? Identifying potential dispersal mode for the semi-aquatic lichen Dermatocarpon luridum using spatial modelling and photobiont markers. BMC Ecol 2020; 20:56. [PMID: 33059667 PMCID: PMC7565318 DOI: 10.1186/s12898-020-00324-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background Landscape genetics is an interdisciplinary field that combines tools and techniques from population genetics with the spatially explicit principles from landscape ecology. Spatial variation in genotypes is used to test hypotheses about how landscape pattern affects dispersal in a wide range of taxa. Lichens, symbiotic associations between mycobionts and photobionts, are an entity for which little is known about their dispersal mechanism. Our objective was to infer the dispersal mechanism in the semi-aquatic lichen Dermatocarpon luridum using spatial models and the spatial variation of the photobiont, Diplosphaera chodatii. We sequenced the ITS rDNA and the β-actin gene regions of the photobiont and mapped the haplotype spatial distribution in Payuk Lake. We subdivided Payuk Lake into subpopulations and applied four spatial models based on the topography and hydrology to infer the dispersal mechanism. Results Genetic variation corresponded with the topography of the lake and the net flow of water through the waterbody. A lack of isolation-by-distance suggests high gene flow or dispersal within the lake. We infer the dispersal mechanism in D. luridum could either be by wind and/or water based on the haplotype spatial distribution of its photobiont using the ITS rDNA and β-actin markers. Conclusions We inferred that the dispersal mechanism could be either wind and/or water dispersed due to the conflicting interpretations of our landscape hypotheses. This is the first study to use spatial modelling to infer dispersal in semi-aquatic lichens. The results of this study may help to understand lichen dispersal within aquatic landscapes, which can have implications in the conservation of rare or threatened lichens.
Collapse
Affiliation(s)
- Jennifer A Doering
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Tom Booth
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Michele D Piercey-Normore
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,School of Science and Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada
| |
Collapse
|
7
|
Spjut R, Simon A, Guissard M, Magain N, Sérusiaux E. The fruticose genera in the Ramalinaceae (Ascomycota, Lecanoromycetes): their diversity and evolutionary history. MycoKeys 2020; 73:1-68. [PMID: 32994702 PMCID: PMC7501315 DOI: 10.3897/mycokeys.73.47287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 07/19/2020] [Indexed: 02/08/2023] Open
Abstract
We present phylogenetic analyses of the fruticose Ramalinaceae based on extensive collections from many parts of the world, with a special focus on the Vizcaíno deserts in north-western Mexico and the coastal desert in Namibia. We generate a four-locus DNA sequence dataset for accessions of Ramalina and two additional loci for Niebla and Vermilacinia. Four genera are strongly supported: the subcosmopolitan Ramalina, the new genus Namibialina endemic to SW Africa, and a duo formed by Niebla and Vermilacinia, endemic to the New World except the sorediate V. zebrina that disjunctly occurs in Namibia. The latter three genera are restricted to coastal desert and chaparral where vegetation depends on moisture from ocean fog. Ramalina is subcosmopolitan and much more diverse in its ecology. We show that Ramalina and its sister genus Namibialina diverged from each other at c. 48 Myrs, whereas Vermilacinia and Niebla split at c. 30 Myrs. The phylogeny of the fruticose genera remains unresolved to their ancestral crustose genera. Species delimitation within Namibialina and Ramalina is rather straightforward. The phylogeny and taxonomy of Vermilacinia are fully resolved, except for the two youngest clades of corticolous taxa, and support current taxonomy, including four new taxa described here. Secondary metabolite variation in Niebla generally coincides with major clades which are comprised of species complexes with still unresolved phylogenetic relationships. A micro-endemism pattern of allopatric species is strongly suspected for both genera, except for the corticolous taxa within Vermilacinia. Both Niebla and saxicolous Vermilacinia have chemotypes unique to species clades that are largely endemic to the Vizcaíno deserts. The following new taxa are described: Namibialina gen. nov. with N. melanothrix (comb. nov.) as type species, a single new species of Ramalina (R. krogiae) and four new species of Vermilacinia (V. breviloba, V. lacunosa, V. pustulata and V. reticulata). The new combination V. granulans is introduced. Two epithets are re-introduced for European Ramalina species: R. crispans (= R. peruviana auct. eur.) and R. rosacea (= R. bourgeana auct. p.p). A lectotype is designated for Vermilacinia procera. A key to saxicolous species of Vermilacinia is presented.
Collapse
Affiliation(s)
- Richard Spjut
- World Botanical Associates, PO Box 81145, Bakersfield, California 93380, USA World Botanical Associates Bakersfield, CA United States of America
| | - Antoine Simon
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| | - Martin Guissard
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| | - Nicolas Magain
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| | - Emmanuël Sérusiaux
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| |
Collapse
|
8
|
Fačkovcová Z, Slovák M, Vďačný P, Melichárková A, Zozomová-Lihová J, Guttová A. Spatio-temporal formation of the genetic diversity in the Mediterranean dwelling lichen during the Neogene and Quaternary epochs. Mol Phylogenet Evol 2019; 144:106704. [PMID: 31821879 DOI: 10.1016/j.ympev.2019.106704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023]
Abstract
Genetic patterns of lichenized fungi often display a mosaic-like and difficult to interpret structure blurring their evolutionary history. The genetic diversity and phylogeographic pattern of a mycobiont of the predominantly Mediterranean dwelling lichen Solenopsora candicans were investigated on the base of extensive sampling (361 individuals, 77 populations) across its entire distribution range. We tested whether the genetic pattern of S. candicans mirrors paleoclimatic and paleogeological events in the Mediterranean and adjacent regions. The divergence time estimates indicated a Tertiary origin for S. candicans, with formation of intraspecific diversity initiated in the Late Miocene. The distribution of the most divergent haplotypes, mostly of a pre-Pleistocene origin, was restricted to the eastern or western extremities of the Mediterranean exhibiting Kiermack disjunction. The population genetic diversity analyses indicated multiple diversity centres and refugia for S. candicans across the entire Mediterranean Basin. While the south Mediterranean regions harboured both the Tertiary and Quaternary born diversity, conforming to the 'cumulative refugia' paradigm, the Apennine and Balkan Peninsulas in the north hosted mostly younger Pleistocene haplotypes and lineages. The recent population expansion of S. candicans might have occurred in the middle Pleistocene with a population burst in the Apennine and Balkan peninsulas. The presence of unique haplotypes in Central Europe indicates the existence of extra-Mediterranean microrefugia. This study presents the first comprehensive lichen phylogeography from the Mediterranean region and simultaneously reports for the first time the glacial survival of a warm-adapted lichen in the temperate zone.
Collapse
Affiliation(s)
- Zuzana Fačkovcová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| | - Marek Slovák
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Andrea Melichárková
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Anna Guttová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| |
Collapse
|
9
|
Oh SY, Woo JJ, Hur JS. Distribution of Foliicolous Lichen Strigula and Genetic Structure of S. multiformis on Jeju Island, South Korea. Microorganisms 2019; 7:E430. [PMID: 31658641 PMCID: PMC6843442 DOI: 10.3390/microorganisms7100430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022] Open
Abstract
Strigula is a pantropic foliicolous lichen living on the leaf surfaces of evergreen broadleaf plants. In South Korea, Strigula is the only genus of foliicolous lichen recorded from Jeju Island. Several Strigula species have been recorded, but the ecology of Strigula in South Korea has been largely unexplored. This study examined the distribution and genetic structure of Strigula on Jeju Island. The distribution was surveyed and the influence of environmental factors (e.g., elevation, forest availability, and bioclimate) on the distribution was analyzed using a species distribution modeling analysis. In addition, the genetic variations and differentiation of Strigula multiformis populations were analyzed using two nuclear ribosomal regions. The distribution of Strigula was largely restricted to a small portion of forest on Jeju Island, and the forest availability was the most important factor in the prediction of potential habitats. The genetic diversity and differentiation of the S. multiformis population were found to be high and were divided according to geography. On the other hand, geographic and environmental distance did not explain the population differentiation. Distribution and population genetic analysis suggested that the available habitat and genetic exchange of Strigula on Jeju Island are limited by the lack of available forest in the lowlands.
Collapse
Affiliation(s)
- Seung-Yoon Oh
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea.
| | - Jung-Jae Woo
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea.
- Division of Forest Biodiversity, Korea National Arboretum, 415 Gwangneungsumok-ro, Pocheon 11186, Korea.
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea.
| |
Collapse
|
10
|
Abstract
Phylogeography documents the spatial distribution of genetic lineages that result from demographic processes, such as population expansion, population contraction, and gene movement, shaped by climate fluctuations and the physical landscape. Because most phylogeographic studies have used neutral markers, the role of selection may have been undervalued. In this paper, we contend that plants provide a useful evolutionary lesson about the impact of selection on spatial patterns of neutral genetic variation, when the environment affects which individuals can colonize new sites, and on adaptive genetic variation, when environmental heterogeneity creates divergence at specific loci underlying local adaptation. Specifically, we discuss five characteristics found in plants that intensify the impact of selection: sessile growth form, high reproductive output, leptokurtic dispersal, isolation by environment, and the potential to evolve longevity. Collectively, these traits exacerbate the impact of environment on movement between populations and local selection pressures-both of which influence phylogeographic structure. We illustrate how these unique traits shape these processes with case studies of the California endemic oak, Quercus lobata, and the western North American lichen, Ramalina menziesii Obviously, the lessons we learn from plant traits are not unique to plants, but they highlight the need for future animal, plant, and microbe studies to incorporate its impact. Modern tools that generate genome-wide sequence data are now allowing us to decipher how evolutionary processes affect the spatial distribution of different kinds of genes and also to better model future spatial distribution of species in response to climate change.
Collapse
|
11
|
Onuţ-Brännström I, Tibell L, Johannesson H. A worldwide phylogeography of the whiteworm lichens Thamnolia reveals three lineages with distinct habitats and evolutionary histories. Ecol Evol 2017; 7:3602-3615. [PMID: 28515896 PMCID: PMC5433967 DOI: 10.1002/ece3.2917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
Thamnolia is a lichenized fungus with an extremely wide distribution, being encountered in arctic and alpine environments in most continents. In this study, we used molecular markers to investigate the population structure of the fungal symbiont and the associated photosynthetic partner of Thamnolia. By analyzing molecular, morphological, and chemical variation among 253 specimens covering the species distribution range, we revealed the existence of three mycobiont lineages. One lineage (Lineage A) is confined to the tundra region of Siberia and the Aleutian Islands, a second (Lineage B) is found in the high alpine region of the Alps and the Carpathians Mountains, and a third (Lineage C) has a worldwide distribution and covers both the aforementioned ecosystems. Molecular dating analysis indicated that the split of the three lineages is older than the last glacial maximum, but the distribution ranges and the population genetic analyses suggest an influence of last glacial period on the present‐day population structure of each lineage. We found a very low diversity of Lineage B, but a higher and similar one in Lineages A and C. Demographic analyses suggested that Lineage C has its origin in the Northern Hemisphere, possibly Scandinavia, and that it has passed through a bottleneck followed by a recent population expansion. While all three lineages reproduce clonally, recombination tests suggest rare or past recombination in both Lineages A and C. Moreover, our data showed that Lineage C has a comparatively low photobiont specificity, being found associated with four widespread Trebouxia lineages (three of them also shared with other lichens), while Lineages A and B exclusively harbor T. simplex s. lat. Finally, we did not find support for the recognition of taxa in Thamnolia based on either morphological or chemical characters.
Collapse
Affiliation(s)
- Ioana Onuţ-Brännström
- Department of Systematic Biology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Leif Tibell
- Department of Systematic Biology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Hanna Johannesson
- Department of Systematic Biology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
12
|
Dal Grande F, Sharma R, Meiser A, Rolshausen G, Büdel B, Mishra B, Thines M, Otte J, Pfenninger M, Schmitt I. Adaptive differentiation coincides with local bioclimatic conditions along an elevational cline in populations of a lichen-forming fungus. BMC Evol Biol 2017; 17:93. [PMID: 28359299 PMCID: PMC5374679 DOI: 10.1186/s12862-017-0929-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Background Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments. Results We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction. Conclusions Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0929-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - Rahul Sharma
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Anjuli Meiser
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Department, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Steinhäuser SS, Andrésson ÓS, Pálsson A, Werth S. Fungal and cyanobacterial gene expression in a lichen symbiosis: Effect of temperature and location. Fungal Biol 2016; 120:1194-208. [PMID: 27647237 DOI: 10.1016/j.funbio.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/27/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Organisms have evolved different cellular mechanisms to deal with environmental stress, primarily through complex molecular mechanisms including protein refolding and DNA repair. As mutualistic symbioses, lichens offer the possibility of analyzing molecular stress responses in a particularly tight interspecific relationship. We study the widespread cyanolichen Peltigera membranacea, a key player in carbon and nitrogen cycling in terrestrial ecosystems at northern latitudes. We ask whether increased temperature is reflected in mRNA levels of selected damage control genes, and do the response patterns show geographical associations? Using real-time PCR quantification of 38 transcripts, differential expression was demonstrated for nine cyanobacterial and nine fungal stress response genes (plus the fungal symbiosis-related lec2 gene) when the temperature was increased from 5 °C to 15 °C and 25 °C. Principle component analysis (PCA) revealed two gene groups with different response patterns. Whereas a set of cyanobacterial DNA repair genes and the fungal lec2 (PC1 group) showed an expression drop at 15 °C vs. 5 °C, most fungal candidates (PC2 group) showed increased expression at 25 °C vs. 5 °C. PC1 responses also correlated with elevation. The correlated downregulation of lec2 and cyanobacterial DNA repair genes suggests a possible interplay between the symbionts warranting further studies.
Collapse
Affiliation(s)
- Sophie S Steinhäuser
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Ólafur S Andrésson
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Silke Werth
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Institute of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria.
| |
Collapse
|
14
|
Sork VL. Gene flow and natural selection shape spatial patterns of genes in tree populations: implications for evolutionary processes and applications. Evol Appl 2016; 9:291-310. [PMID: 27087853 PMCID: PMC4780383 DOI: 10.1111/eva.12316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/02/2015] [Indexed: 02/03/2023] Open
Abstract
A central question in evolutionary biology is how gene flow and natural selection shape geographic patterns of genotypic and phenotypic variation. My overall research program has pursued this question in tree populations through complementary lines of inquiry. First, through studies of contemporary pollen and seed movement, I have studied how limited gene movement creates fine-scale genetic structure, while long-distance gene flow promotes connectivity. My collaborators and I have provided new tools to study these processes at a landscape scale as well as statistical tests to determine whether changes in landscape conditions or dispersal vectors affect gene movement. Second, my research on spatial patterns of genetic variation has investigated the interacting impacts of geography and climate on gene flow and selection. Third, using next-generation genomic tools, I am now studying genetic variation on the landscape to find initial evidence of climate-associated local adaptation and epigenetic variation to explore its role in plant response to the climate. By integrating these separate lines of inquiry, this research provides specific insight into real-world mechanisms shaping evolution in tree populations and potential impacts of landscape transformation and climate change on these populations, with the prospective goal of contributing to their management and conservation.
Collapse
Affiliation(s)
- Victoria L. Sork
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA
- Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
15
|
Ortego J, Noguerales V, Gugger PF, Sork VL. Evolutionary and demographic history of the Californian scrub white oak species complex: an integrative approach. Mol Ecol 2015; 24:6188-208. [PMID: 26547661 DOI: 10.1111/mec.13457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 01/17/2023]
Abstract
Understanding the factors promoting species formation is a major task in evolutionary research. Here, we employ an integrative approach to study the evolutionary history of the Californian scrub white oak species complex (genus Quercus). To infer the relative importance of geographical isolation and ecological divergence in driving the speciation process, we (i) analysed inter- and intraspecific patterns of genetic differentiation and employed an approximate Bayesian computation (ABC) framework to evaluate different plausible scenarios of species divergence. In a second step, we (ii) linked the inferred divergence pathways with current and past species distribution models (SDMs) and (iii) tested for niche differentiation and phylogenetic niche conservatism across taxa. ABC analyses showed that the most plausible scenario is the one considering the divergence of two main lineages followed by a more recent pulse of speciation. Genotypic data in conjunction with SDMs and niche differentiation analyses support that different factors (geography vs. environment) and modes of speciation (parapatry, allopatry and maybe sympatry) have played a role in the divergence process within this complex. We found no significant relationship between genetic differentiation and niche overlap, which probably reflects niche lability and/or that multiple factors, have contributed to speciation. Our study shows that different mechanisms can drive divergence even among closely related taxa representing early stages of species formation and exemplifies the importance of adopting integrative approaches to get a better understanding of the speciation process.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| | - Víctor Noguerales
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| | - Paul F Gugger
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA.,Institute of the Environment and Sustainability, University of California, Box 951496, Los Angeles, CA, 90095-1496, USA
| |
Collapse
|
16
|
Núñez-Zapata J, Cubas P, Hawksworth DL, Crespo A. Biogeography and Genetic Structure in Populations of a Widespread Lichen (Parmelina tiliacea, Parmeliaceae, Ascomycota). PLoS One 2015; 10:e0126981. [PMID: 25961726 PMCID: PMC4427293 DOI: 10.1371/journal.pone.0126981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
The genetic diversity and population structure of the foliose lichenized fungus Parmelina tiliacea has been analyzed through its geographical range, including samples from Macaronesia (Canary Islands), the Mediterranean, and Eurosiberia. DNA sequences from the nuclear ribosomal internal transcribed spacer, the mitochondrial large subunit ribosomal RNA gene, and the translation elongation factor 1-α were used as molecular markers. The haplotypes of the three markers and the molecular variance analyses of multilocus haplotypes showed the highest diversity in the Canary Islands, while restricted haplotypes occurred at high frequencies in Mediterranean coastal samples. The multilocus haplotypes formed three unevenly distributed clusters (clusters 1-3). In the Canary Islands all the haplotypes were present in a similar proportion, while the coastal Mediterranean sites had almost exclusively haplotypes of cluster 3; cluster 2 predominated in inland Mediterranean sites; and cluster 1 was more abundant in central and northern Europe (Eurosiberian area). The distribution of clusters is partially explained by climatic factors, and its interaction with local spatial structure, but much of the variation remains unexplained. The high frequency of individuals in the Canary Islands with haplotypes shared with other areas suggests that could be a refugium of genetic diversity, and the high frequency of individuals of the Mediterranean coastal sites with restricted haplotypes indicates that gene flow to contiguous areas may be restricted. This is significant for the selection of areas for conservation purposes, as those with most genetic variation may reflect historical factors and biological properties of the species.
Collapse
Affiliation(s)
- Jano Núñez-Zapata
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Paloma Cubas
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| | - David L. Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Davy CM, Martinez-Nunez F, Willis CKR, Good SV. Spatial genetic structure among bat hibernacula along the leading edge of a rapidly spreading pathogen. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0719-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Werth S, Sork VL. Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. AMERICAN JOURNAL OF BOTANY 2014; 101:1127-1140. [PMID: 25016008 DOI: 10.3732/ajb.1400025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
• Premise of the study: Many lichens exhibit extensive ranges spanning several ecoregions. It has been hypothesized that this wide ecological amplitude is facilitated by fungal association with locally adapted photobiont strains.• Methods: We studied the identity and geographic distribution of photobionts of the widely distributed North American lichen Ramalina menziesii based on rbcL (chloroplast DNA) and nuclear ribosomal ITS DNA sequences. To test for ecological specialization, we associate photobiont genotypes with local climate and phorophyte.• Key results: Of the photobiont lineages of R. menziesii, 94% belong to a clade including Trebouxia decolorans. The remaining are related to T. jamesii. The photobionts showed (1) significant structure according to ecoregion and phorophyte species and (2) genetic associations with phorophyte species and climate.• Conclusions: Geography, climate, and ecological specialization shape genetic differentiation of lichen photobionts. One great advantage of independent dispersal of the fungus is symbiotic association with locally adapted photobiont strains.
Collapse
Affiliation(s)
- Silke Werth
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, California 90095-7239 USA Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, California 90095-7239 USA Institute of the Environment and Sustainability, University of California Los Angeles, Box 951496, Los Angeles, California 90095-1496 USA
| |
Collapse
|