1
|
Laurich JR, Reid CG, Biel C, Wu T, Knox C, Frederickson ME. Genetic architecture of multiple mutualisms and mating system in Turnera ulmifolia. J Evol Biol 2023; 36:280-295. [PMID: 36196911 DOI: 10.1111/jeb.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/11/2023]
Abstract
Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance-covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma-anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.
Collapse
Affiliation(s)
- Jason R Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher G Reid
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Biel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Tianbi Wu
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Faculty of the Environment, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher Knox
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
A single introduction of wild rabbits triggered the biological invasion of Australia. Proc Natl Acad Sci U S A 2022; 119:e2122734119. [PMID: 35994668 PMCID: PMC9436340 DOI: 10.1073/pnas.2122734119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological invasions are a major cause of environmental and economic disruption. While ecological factors are key determinants of their success, the role of genetics has been more challenging to demonstrate. The colonization of Australia by the European rabbit is one of the most iconic and devastating biological invasions in recorded history. Here, we show that despite numerous introductions over a 70-y period, this invasion was triggered by a single release of a few animals that spread thousands of kilometers across the continent. We found genetic support for historical accounts that these were English rabbits imported in 1859 by a settler named Thomas Austin and traced the origin of the invasive population back to his birthplace in England. We also find evidence of additional introductions that established local populations but have not spread geographically. Combining genomic and historical data we show that, contrary to the earlier introductions, which consisted mostly of domestic animals, the invasive rabbits had wild ancestry. In New Zealand and Tasmania, rabbits also became a pest several decades after being introduced. We argue that the common denominator of these invasions was the arrival of a new genotype that was better adapted to the natural environment. These findings demonstrate how the genetic composition of invasive individuals can determine the success of an introduction and provide a mechanism by which multiple introductions can be required for a biological invasion.
Collapse
|
3
|
Limberger R, Fussmann GF. Adaptation and competition in deteriorating environments. Proc Biol Sci 2021; 288:20202967. [PMID: 33715427 PMCID: PMC7944114 DOI: 10.1098/rspb.2020.2967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
Evolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for approximately 180 generations. When assayed in monoculture, two of the five species showed signatures of adaptation, that is, lines with a history of salt stress had higher population growth rates at high salt than lines without prior exposure to salt. When assayed in mixtures of species, however, only one of these two species had increased population size at high salt, indicating that competition can alter how adaptation to abiotic change influences population dynamics. In a second experiment, we cultivated two species in monocultures and in pairs, with and without increasing salt. While we found no effect of competition on adaptation to salt, our experiment revealed that evolutionary responses to salt can influence competition. Specifically, one of the two species had reduced competitive ability in the no-salt environment after long-term exposure to salt stress. Collectively, our results highlight the complex interplay of adaptation to abiotic change and competitive interactions.
Collapse
Affiliation(s)
- Romana Limberger
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | |
Collapse
|
4
|
Geladi I, De León LF, Torchin ME, Hendry AP, González R, Sharpe DM. 100-year time series reveal little morphological change following impoundment and predator invasion in two Neotropical characids. Evol Appl 2019; 12:1385-1401. [PMID: 31417622 PMCID: PMC6691216 DOI: 10.1111/eva.12763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023] Open
Abstract
Human activities are dramatically altering ecosystems worldwide, often resulting in shifts in selection regimes. In response, natural populations sometimes undergo rapid phenotypic changes, which, if adaptive, can increase their probability of persistence. However, in many instances, populations fail to undergo any phenotypic change, which might indicate a variety of possibilities, including maladaptation. In freshwater ecosystems, the impoundment of rivers and the introduction of exotic species are among the leading threats to native fishes. We examined how the construction of the Panama Canal, which formed Lake Gatun, and the subsequent invasion of the predatory Cichla monoculus influenced the morphology of two native fishes: Astyanax ruberrimus and Roeboides spp. Using a 100-year time series, we studied variation in overall body shape over time (before vs. after impoundment and invasion) as well as across space (between an invaded and an uninvaded reservoir). In addition, we examined variation in linear morphological traits associated with swim performance and predator detection/avoidance. Notwithstanding a few significant changes in particular traits in particular comparisons, we found only limited evidence for morphological change associated with these two stressors. Most observed changes were subtle, and tended to be site- and species-specific. The lack of a strong morphological response to these stressors, coupled with dramatic population declines in both species, suggests they may be maladapted to the anthropogenically perturbed environment of Lake Gatun, but direct measures of fitness would be needed to test this. In general, our results suggest that morphological responses to anthropogenic disturbances can be very limited and, when they do occur, are often complex and context-dependent.
Collapse
Affiliation(s)
- Ilke Geladi
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Luis Fernando De León
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusetts
- Centro de Biodiversidad y Descubrimiento de DrogasInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT‐AIP)PanamaRepublic of Panama
| | - Mark E. Torchin
- Smithsonian Tropical Research InstituteBalboa, Ancon, PanamaRepublic of Panama
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rigoberto González
- Smithsonian Tropical Research InstituteBalboa, Ancon, PanamaRepublic of Panama
| | - Diana M.T. Sharpe
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
- Smithsonian Tropical Research InstituteBalboa, Ancon, PanamaRepublic of Panama
| |
Collapse
|
5
|
Lyytinen A, Lindström L. Responses of a native plant species from invaded and uninvaded areas to allelopathic effects of an invader. Ecol Evol 2019; 9:6116-6123. [PMID: 31161023 PMCID: PMC6540692 DOI: 10.1002/ece3.5195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/12/2022] Open
Abstract
Invaders exert new selection pressures on the resident species, for example, through competition for resources or by using novel weapons. It has been shown that novel weapons aid invasion but it is unclear whether native species co-occurring with invaders have adapted to tolerate these novel weapons. Those resident species which are able to adapt to new selective agents can co-occur with an invader while others face a risk of local extinction. We ran a factorial common garden experiment to study whether a native plant species, Anthriscus sylvestris, has been able to evolve a greater tolerance to the allelochemicals exerted by the invader, Lupinus polyphyllus. Lupinus polyphyllus produces allelochemicals which potentially act as a novel, strong selective agent on A. sylvestris. We grew A. sylvestris seedlings collected from uninvaded (naïve) and invaded (experienced) sites growing alone and in competition with L. polyphyllus in pots filled with soil with and without activated carbon. Because activated carbon absorbs allelochemicals, its addition should improve especially naïve A. sylvestris performance in the presence of the invader. To distinguish the allelochemicals absorption and fertilizing effects of activated carbon, we grew plants also in a mixture of soil and fertilizer. A common garden experiment indicated that the performances of naïve and experienced A. sylvestris seedlings did not differ when grown with L. polyphyllus. The addition of activated carbon, which reduces interference by allelochemicals, did not induce differences in their performances although it had a positive effect on the aboveground biomass of A. sylvestris. Together, these results suggest that naïve and experienced A. sylvestris plants tolerated equally the invader L. polyphyllus and thus the tolerance has not occurred over the course of invasion.
Collapse
Affiliation(s)
- Anne Lyytinen
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions ResearchUniversity of JyväskyläJyväskyläFinland
| | - Leena Lindström
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions ResearchUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
6
|
Introduction history and genetic diversity of the invasive ant Solenopsis geminata in the Galápagos Islands. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1769-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Bourne SD, Hudson J, Holman LE, Rius M. Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
terHorst CP, Zee PC, Heath KD, Miller TE, Pastore AI, Patel S, Schreiber SJ, Wade MJ, Walsh MR. Evolution in a Community Context: Trait Responses to Multiple Species Interactions. Am Nat 2018. [DOI: 10.1086/695835] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Viard F, David P, Darling JA. Marine invasions enter the genomic era: three lessons from the past, and the way forward. Curr Zool 2016; 62:629-642. [PMID: 29491950 PMCID: PMC5804250 DOI: 10.1093/cz/zow053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/15/2016] [Indexed: 01/22/2023] Open
Abstract
The expanding scale and increasing rate of marine biological invasions have been documented since the early 20th century. Besides their global ecological and economic impacts, non-indigenous species (NIS) also have attracted much attention as opportunities to explore important eco-evolutionary processes such as rapid adaptation, long-distance dispersal and range expansion, and secondary contacts between divergent evolutionary lineages. In this context, genetic tools have been extensively used in the past 20 years. Three important issues appear to have emerged from such studies. First, the study of NIS has revealed unexpected cryptic diversity in what had previously been assumed homogeneous entities. Second, there has been surprisingly little evidence of strong founder events accompanying marine introductions, a pattern possibly driven by large propagule loads. Third, the evolutionary processes leading to successful invasion have been difficult to ascertain due to faint genetic signals. Here we explore the potential of novel tools associated with high-throughput sequencing (HTS) to address these still pressing issues. Dramatic increase in the number of loci accessible via HTS has the potential to radically increase the power of analyses aimed at species delineation, exploring the population genomic consequences of range expansions, and examining evolutionary processes such as admixture, introgression, and adaptation. Nevertheless, the value of this new wealth of genomic data will ultimately depend on the ability to couple it with expanded "traditional" efforts, including exhaustive sampling of marine populations over large geographic scales, integrated taxonomic analyses, and population level exploration of quantitative trait differentiation through common-garden and other laboratory experiments.
Collapse
Affiliation(s)
- Frédérique Viard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Lab. Adaptation Et Diversité En Milieu Marin, Team Div&Co, Station Biologique De Roscoff, Roscoff 29682, France
| | - Patrice David
- CEFE UMR 5175, CNRS-Université De Montpellier-UM III-EPHE, 1919 Route De Mende, Montpellier Cedex 34293, France
| | - John A. Darling
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
10
|
Kelly MW, DeBiasse MB, Villela VA, Roberts HL, Cecola CF. Adaptation to climate change: trade-offs among responses to multiple stressors in an intertidal crustacean. Evol Appl 2016; 9:1147-1155. [PMID: 27695522 PMCID: PMC5039327 DOI: 10.1111/eva.12394] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/12/2016] [Indexed: 01/06/2023] Open
Abstract
Trade-offs may influence both physiological and evolutionary responses to co-occurring stressors, but their effects on both plastic and adaptive responses to climate change are poorly understood. To test for genetic and physiological trade-offs incurred in tolerating multiple stressors, we hybridized two populations of the intertidal copepod Tigriopus californicus that were divergent for both heat and salinity tolerance. Starting in the F2 generation, we selected for increased tolerance of heat, low salinity, and high salinity in replicate lines. After five generations of selection, heat-selected lines had greater heat tolerance but lower fecundity, indicating an energetic cost to tolerance. Lines selected for increased salinity tolerance did not show evidence of adaptation to their respective environments; however, hypo-osmotic selection lines showed substantial loss of tolerance to hyperosmotic stress. Neither of the salinity selection regimes resulted in diminished heat tolerance at ambient salinity; however, simultaneous exposure to heat and hypo-osmotic stress led to decreased heat tolerance, implying a physiological trade-off in tolerance to the two stressors. When we quantified the transcriptomic response to heat and salinity stress via RNA sequencing, we observed little overlap in the stress responses, suggesting the observed synergistic effects of heat and salinity stress were driven by competing energetic demands, rather than shared stress response pathways.
Collapse
Affiliation(s)
- Morgan W Kelly
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Melissa B DeBiasse
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Vidal A Villela
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Hope L Roberts
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Colleen F Cecola
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| |
Collapse
|
11
|
Rieseberg L, Geraldes A. Editorial 2016. Mol Ecol 2016; 25:433-49. [DOI: 10.1111/mec.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|