1
|
Da-Anoy J, Posadas N, Conaco C. Interspecies differences in the transcriptome response of corals to acute heat stress. PeerJ 2024; 12:e18627. [PMID: 39677947 PMCID: PMC11639872 DOI: 10.7717/peerj.18627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Rising sea surface temperatures threaten the survival of corals worldwide, with coral bleaching events becoming more commonplace. However, different coral species are known to exhibit variable levels of susceptibility to thermal stress. To elucidate genetic mechanisms that may underlie these differences, we compared the gene repertoire of four coral species, Favites colemani, Montipora digitata, Acropora digitifera, and Seriatopora caliendrum, that were previously demonstrated to have differing responses to acute thermal stress. We found that more tolerant species, like F. colemani and M. digitata, possess a greater abundance of antioxidant protein families and chaperones. Under acute thermal stress conditions, only S. caliendrum showed a significant bleaching response, which was accompanied by activation of the DNA damage response network and drastic upregulation of stress response genes (SRGs). This suggests that differences in SRG orthologs, as well as the mechanisms that control SRG expression response, contribute to the ability of corals to maintain stability of physiological functions required to survive shifts in seawater temperature.
Collapse
Affiliation(s)
- Jeric Da-Anoy
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
- Department of Biology, Boston University, Boston, MA, United States of America
| | - Niño Posadas
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
2
|
Khen A, Fox MD, Johnson MD, Wall CB, Smith JE. Inter- and intraspecific responses of coral colonies to thermal anomalies on Palmyra Atoll, central Pacific. PLoS One 2024; 19:e0312409. [PMID: 39585823 PMCID: PMC11588205 DOI: 10.1371/journal.pone.0312409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/04/2024] [Indexed: 11/27/2024] Open
Abstract
Long-term monitoring of individual coral colonies is important for understanding variability between and within species over time in the context of thermal stress. Here, we analyze an 11-year time series of permanent benthic photoquadrats taken on Palmyra Atoll, central Pacific, from 2009 to 2019 to track the growth (i.e., increase in live planar area), pigmentation or lack thereof ("discoloration"), partial or whole-colony mortality, survival, and regrowth of 314 individual coral colonies of nine focal species from two reef habitat types. During this period, thermal anomalies occurred on Palmyra in conjunction with El Niño-Southern Oscillation events in both 2009 and 2015, of which the latter heatwave was longer-lasting and more thermally-severe. We found that coral responses varied by habitat, within and among species, and/or according to the degree of accumulated thermal stress. Nearly all species, particularly Stylophora pistillata and Pocillopora damicornis, responded more negatively to the 2015 heatwave in terms of colony-specific discoloration and reduction in live planar area. While discoloration was more prominent at the shallower reef terrace compared to the fore reef for this subset of colonies, the reef terrace exhibited greater stability of community-wide coral cover. Colony fate was associated with severity of discoloration at the time of warming: one year following the 2009 heatwave, more severely discolored colonies were more likely to grow, yet following the second heatwave in 2015, colonies were more likely to experience shrinkage or mortality. However, colonies that were more severely discolored in 2009 were not necessarily more discolored in 2015, suggesting that colony-specific factors may be more influential in governing responses to thermal stress.
Collapse
Affiliation(s)
- Adi Khen
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Michael D. Fox
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maggie D. Johnson
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christopher B. Wall
- Department of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, California, United States of America
- Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii, United States of America
| | - Jennifer E. Smith
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Tisthammer KH, Martinez JA, Downs CA, Richmond RH. Differential molecular biomarker expression in corals over a gradient of water quality stressors in Maunalua Bay, Hawaii. Front Physiol 2024; 15:1346045. [PMID: 38476143 PMCID: PMC10928694 DOI: 10.3389/fphys.2024.1346045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Coral reefs globally face unprecedented challenges from anthropogenic stressors, necessitating innovative approaches for effective assessment and management. Molecular biomarkers, particularly those related to protein expressions, provide a promising avenue for diagnosing coral health at the cellular level. This study employed enzyme-linked immunosorbent assays to evaluate stress responses in the coral Porites lobata along an environmental gradient in Maunalua Bay, Hawaii. The results revealed distinct protein expression patterns correlating with anthropogenic stressor levels across the bay. Some proteins, such as ubiquitin and Hsp70, emerged as sensitive biomarkers, displaying a linear decrease in response along the environmental gradient, emphasizing their potential as indicators of stress. Our findings highlighted the feasibility of using protein biomarkers for real-time assessment of coral health and the identification of stressors. The identified biomarkers can aid in establishing stress thresholds and evaluating the efficacy of management interventions. Additionally, we assessed sediment and water quality from the inshore areas in the bay and identified organic contaminants, including polycyclic aromatic hydrocarbons and pesticides, in bay sediments and waters.
Collapse
Affiliation(s)
- Kaho H. Tisthammer
- Kewalo Marine Laboratory, University of Hawaii at Manoa, Honolulu, HI, United States
| | | | - Craig A. Downs
- Haereticus Environmental Laboratory, Clifford, VA, United States
| | - Robert H. Richmond
- Kewalo Marine Laboratory, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
4
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
5
|
Sun F, Yang H, Zhang X, Shi Q. Metabolic and metatranscriptional characteristics of corals bleaching induced by the most severe marine heatwaves in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160019. [PMID: 36356778 DOI: 10.1016/j.scitotenv.2022.160019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Coral bleaching significantly affects the function and health of coral reef ecosystems; however, the mechanisms underlying metabolism and transcription in corals remain unclear. In this study, untargeted metabolomics and metatranscriptomic analyses were performed to analyze the differences between unbleached and bleached Pocillopora corals during the most severe marine heatwaves. Difference analysis showed that bleached corals had significant metabolomic characteristics compared with those in unbleached corals. These differences were significant (p < 0.05) according to partial least squares discriminant analysis (PLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the metabolites were significantly enriched in numerous pathways in bleached or unbleached corals, such as steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, and pyrimidine metabolism. Bleaching greatly affects coral reproduction as well as the tolerance of coral symbionts to heat stress. In metatranscriptomic analysis, we observed large gene expression differences between unbleached and bleached corals. Three Gene Ontology directed acyclic graphs (DAGs) were constructed to show the significantly differentially expressed genes (DEGs). Many biological and molecular processes were significantly enriched between bleached corals to unbleached corals, such as metabolic processes, lipid metabolic processes, oxidation-reduction processes, single-organism metabolic processes, and protein metabolic processes. Metabolome and metatranscriptome analyses showed that bleaching caused substantial physiological damage to corals. This study provides insight into the metabolic and transcriptional changes that occur in corals during bleaching.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Hongqiang Yang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China.
| | - Xiyang Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Qi Shi
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
6
|
Walker NS, Nestor V, Golbuu Y, Palumbi SR. Coral bleaching resistance variation is linked to differential mortality and skeletal growth during recovery. Evol Appl 2023; 16:504-517. [PMID: 36793702 PMCID: PMC9923480 DOI: 10.1111/eva.13500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of global coral bleaching has focused much attention on the possibility of interventions to increase heat resistance. However, if high heat resistance is linked to fitness tradeoffs that may disadvantage corals in other areas, then a more holistic view of heat resilience may be beneficial. In particular, overall resilience of a species to heat stress is likely to be the product of both resistance to heat and recovery from heat stress. Here, we investigate heat resistance and recovery among individual Acropora hyacinthus colonies in Palau. We divided corals into low, moderate, and high heat resistance categories based on the number of days (4-9) needed to reach significant pigmentation loss due to experimental heat stress. Afterward, we deployed corals back onto a reef in a common garden 6-month recovery experiment that monitored chlorophyll a, mortality, and skeletal growth. Heat resistance was negatively correlated with mortality during early recovery (0-1 month) but not late recovery (4-6 months), and chlorophyll a concentration recovered in heat-stressed corals by 1-month postbleaching. However, moderate-resistance corals had significantly greater skeletal growth than high-resistance corals by 4 months of recovery. High- and low-resistance corals on average did not exhibit skeletal growth within the observed recovery period. These data suggest complex tradeoffs may exist between coral heat resistance and recovery and highlight the importance of incorporating multiple aspects of resilience into future reef management programs.
Collapse
Affiliation(s)
- Nia S. Walker
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawai‘i at MānoaKāneʻoheHawaiiUSA
| | | | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| |
Collapse
|
7
|
Snead AA, Clark RD. The Biological Hierarchy, Time, and Temporal 'Omics in Evolutionary Biology: A Perspective. Integr Comp Biol 2022; 62:1872-1886. [PMID: 36057775 DOI: 10.1093/icb/icac138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sequencing data-genomics, transcriptomics, epigenomics, proteomics, and metabolomics-have revolutionized biological research, enabling a more detailed study of processes, ranging from subcellular to evolutionary, that drive biological organization. These processes, collectively, are responsible for generating patterns of phenotypic variation and can operate over dramatically different timescales (milliseconds to billions of years). While researchers often study phenotypic variation at specific levels of biological organization to isolate processes operating at that particular scale, the varying types of sequence data, or 'omics, can also provide complementary inferences to link molecular and phenotypic variation to produce an integrated view of evolutionary biology, ranging from molecular pathways to speciation. We briefly describe how 'omics has been used across biological levels and then demonstrate the utility of integrating different types of sequencing data across multiple biological levels within the same study to better understand biological phenomena. However, single-time-point studies cannot evaluate the temporal dynamics of these biological processes. Therefore, we put forward temporal 'omics as a framework that can better enable researchers to study the temporal dynamics of target processes. Temporal 'omics is not infallible, as the temporal sampling regime directly impacts inferential ability. Thus, we also discuss the role the temporal sampling regime plays in deriving inferences about the environmental conditions driving biological processes and provide examples that demonstrate the impact of the sampling regime on biological inference. Finally, we forecast the future of temporal 'omics by highlighting current methodological advancements that will enable temporal 'omics to be extended across species and timescales. We extend this discussion to using temporal multi-omics to integrate across the biological hierarchy to evaluate and link the temporal dynamics of processes that generate phenotypic variation.
Collapse
Affiliation(s)
- Anthony A Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - René D Clark
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Rouan A, Pousse M, Tambutté E, Djerbi N, Zozaya W, Capasso L, Zoccola D, Tambutté S, Gilson E. Telomere dysfunction is associated with dark-induced bleaching in the reef coral Stylophora pistillata. Mol Ecol 2022; 31:6087-6099. [PMID: 34587336 DOI: 10.1111/mec.16199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 01/31/2023]
Abstract
Telomere DNA length is a complex trait controlled by both multiple loci and environmental factors. A growing number of studies are focusing on the impact of stress and stress accumulation on telomere length and the link with survival and fitness in ecological contexts. Here, we investigated the telomere changes occurring in a symbiotic coral, Stylophora pistillata, that has experienced continuous darkness over 6 months. This stress condition led to the loss of its symbionts in a similar manner to that observed during large-scale bleaching events due to climate changes and anthropogenic activities, threatening reef ecosystems worldwide. We found that continuous darkness was associated with telomere length shortening. This result, together with a phylogenetic analysis of the telomere coral proteins and a transcriptome survey of the continuous darkness condition, paves the way for future studies on the role of telomeres in the coral stress response and the importance of environmentally induced telomere shortening in endangered coral species.
Collapse
Affiliation(s)
- Alice Rouan
- Université Côte d'Azur-CNRS-Inserm, IRCAN, Nice, France
| | | | - Eric Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | - Nadir Djerbi
- Université Côte d'Azur-CNRS-Inserm, IRCAN, Nice, France
| | | | - Laura Capasso
- Department of Marine Biology, Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Didier Zoccola
- Department of Marine Biology, Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | - Sylvie Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | - Eric Gilson
- Université Côte d'Azur-CNRS-Inserm, IRCAN, Nice, France.,Department of Medical Genetics, CHU, Nice, France
| |
Collapse
|
9
|
Walker NS, Cornwell BH, Nestor V, Armstrong KC, Golbuu Y, Palumbi SR. Persistence of phenotypic responses to short-term heat stress in the tabletop coral Acropora hyacinthus. PLoS One 2022; 17:e0269206. [PMID: 36084033 PMCID: PMC9462741 DOI: 10.1371/journal.pone.0269206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/23/2022] [Indexed: 12/26/2022] Open
Abstract
Widespread mapping of coral thermal resilience is essential for developing effective management strategies and requires replicable and rapid multi-location assays of heat resistance and recovery. One- or two-day short-term heat stress experiments have been previously employed to assess heat resistance, followed by single assays of bleaching condition. We tested the reliability of short-term heat stress resistance, and linked resistance and recovery assays, by monitoring the phenotypic response of fragments from 101 Acropora hyacinthus colonies located in Palau (Micronesia) to short-term heat stress. Following short-term heat stress, bleaching and mortality were recorded after 16 hours, daily for seven days, and after one and two months of recovery. To follow corals over time, we utilized a qualitative, non-destructive visual bleaching score metric that correlated with standard symbiont retention assays. The bleaching state of coral fragments 16 hours post-heat stress was highly indicative of their state over the next 7 days, suggesting that symbiont population sizes within corals may quickly stabilize post-heat stress. Bleaching 16 hours post-heat stress predicted likelihood of mortality over the subsequent 3–5 days, after which there was little additional mortality. Together, bleaching and mortality suggested that rapid assays of the phenotypic response following short-term heat stress were good metrics of the total heat treatment effect. Additionally, our data confirm geographic patterns of intraspecific variation in Palau and show that bleaching severity among colonies was highly correlated with mortality over the first week post-stress. We found high survival (98%) and visible recovery (100%) two months after heat stress among coral fragments that survived the first week post-stress. These findings help simplify rapid, widespread surveys of heat sensitivity in Acropora hyacinthus by showing that standardized short-term experiments can be confidently assayed after 16 hours, and that bleaching sensitivity may be linked to subsequent survival using experimental assessments.
Collapse
Affiliation(s)
- Nia S. Walker
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, California, United States of America
- * E-mail:
| | - Brendan H. Cornwell
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, California, United States of America
| | | | - Katrina C. Armstrong
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, California, United States of America
| | | | - Stephen R. Palumbi
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, California, United States of America
| |
Collapse
|
10
|
Grabb KC, Pardis WA, Kapit J, Wankel SD, Hayden EB, Hansel CM. Design Optimization of a Submersible Chemiluminescent Sensor (DISCO) for Improved Quantification of Reactive Oxygen Species (ROS) in Surface Waters. SENSORS (BASEL, SWITZERLAND) 2022; 22:6683. [PMID: 36081142 PMCID: PMC9460491 DOI: 10.3390/s22176683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) are key drivers of biogeochemical cycling while also exhibiting both positive and negative effects on marine ecosystem health. However, quantification of the ROS superoxide (O2-) within environmental systems is hindered by its short half-life. Recently, the development of the diver-operated submersible chemiluminescent sensor (DISCO), a submersible, handheld instrument, enabled in situ superoxide measurements in real time within shallow coral reef ecosystems. Here, we present a redesigned and improved instrument, DISCO II. Similar to the previous DISCO, DISCO II is a self-contained, submersible sensor, deployable to 30 m depth and capable of measuring reactive intermediate species in real time. DISCO II is smaller, lighter, lower cost, and more robust than its predecessor. Laboratory validation of DISCO II demonstrated an average limit of detection in natural seawater of 133.1 pM and a percent variance of 0.7%, with stable photo multiplier tube (PMT) counts, internal temperature, and flow rates. DISCO II can also be optimized for diverse environmental conditions by adjustment of the PMT supply voltage and integration time. Field tests showed no drift in the data with a percent variance of 3.0%. Wand tip adaptations allow for in situ calibrations and decay rates of superoxide using a chemical source of superoxide (SOTS-1). Overall, DISCO II is a versatile, user-friendly sensor that enables measurements in diverse environments, thereby improving our understanding of the cycling of reactive intermediates, such as ROS, across various marine ecosystems.
Collapse
Affiliation(s)
- Kalina C. Grabb
- MIT-WHOI Joint Program in Oceanography, Cambridge, MA 02139, USA
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543, USA
| | - William A. Pardis
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering, Woods Hole, MA 02543, USA
| | - Jason Kapit
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering, Woods Hole, MA 02543, USA
| | - Scott D. Wankel
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543, USA
| | - Eric B. Hayden
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering, Woods Hole, MA 02543, USA
| | - Colleen M. Hansel
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543, USA
| |
Collapse
|
11
|
Al-Hammady MA, Silva TF, Hussein HN, Saxena G, Modolo LV, Belasy MB, Westphal H, Farag MA. How do algae endosymbionts mediate for their coral host fitness under heat stress? A comprehensive mechanistic overview. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Cziesielski MJ, Liew YJ, Cui G, Aranda M. Increased incompatibility of heterologous algal symbionts under thermal stress in the cnidarian-dinoflagellate model Aiptasia. Commun Biol 2022; 5:760. [PMID: 35902758 PMCID: PMC9334593 DOI: 10.1038/s42003-022-03724-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Rising ocean temperatures are increasing the rate and intensity of coral mass bleaching events, leading to the collapse of coral reef ecosystems. To better understand the dynamics of coral-algae symbioses, it is critical to decipher the role each partner plays in the holobiont's thermotolerance. Here, we investigated the role of the symbiont by comparing transcriptional heat stress responses of anemones from two thermally distinct locations, Florida (CC7) and Hawaii (H2) as well as a heterologous host-symbiont combination composed of CC7 host anemones inoculated with the symbiont Breviolum minutum (SSB01) from H2 anemones (CC7-B01). We find that oxidative stress and apoptosis responses are strongly influenced by symbiont type, as further confirmed by caspase-3 activation assays, but that the overall response to heat stress is dictated by the compatibility of both partners. Expression of genes essential to symbiosis revealed a shift from a nitrogen- to a carbon-limited state only in the heterologous combination CC7-B01, suggesting a bioenergetic disruption of symbiosis during stress. Our results indicate that symbiosis is highly fine-tuned towards particular partner combinations and that heterologous host-symbiont combinations are metabolically less compatible under stress. These results are essential for future strategies aiming at increasing coral resilience using heterologous thermotolerant symbionts.
Collapse
Affiliation(s)
- Maha J Cziesielski
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yi Jin Liew
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,CSIRO Health & Biosecurity, North Ryde, NSW, Australia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia. .,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
13
|
van Woesik R, Shlesinger T, Grottoli AG, Toonen RJ, Vega Thurber R, Warner ME, Marie Hulver A, Chapron L, McLachlan RH, Albright R, Crandall E, DeCarlo TM, Donovan MK, Eirin‐Lopez J, Harrison HB, Heron SF, Huang D, Humanes A, Krueger T, Madin JS, Manzello D, McManus LC, Matz M, Muller EM, Rodriguez‐Lanetty M, Vega‐Rodriguez M, Voolstra CR, Zaneveld J. Coral-bleaching responses to climate change across biological scales. GLOBAL CHANGE BIOLOGY 2022; 28:4229-4250. [PMID: 35475552 PMCID: PMC9545801 DOI: 10.1111/gcb.16192] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/26/2023]
Abstract
The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.
Collapse
Affiliation(s)
- Robert van Woesik
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | - Tom Shlesinger
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | | | - Rob J. Toonen
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | | | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Ann Marie Hulver
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Leila Chapron
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Rowan H. McLachlan
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
- Department of MicrobiologyOregon State UniversityCorvallisOregonUSA
| | | | - Eric Crandall
- Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Mary K. Donovan
- Center for Global Discovery and Conservation Science and School of Geographical Sciences and Urban PlanningArizona State UniversityTempeArizonaUSA
| | - Jose Eirin‐Lopez
- Institute of EnvironmentFlorida International UniversityMiamiFloridaUSA
| | - Hugo B. Harrison
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Scott F. Heron
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Physics and Marine Geophysical LaboratoryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Adriana Humanes
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Thomas Krueger
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Joshua S. Madin
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Derek Manzello
- Center for Satellite Applications and ResearchSatellite Oceanography & Climate DivisionNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Lisa C. McManus
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Mikhail Matz
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | | | | | | | - Jesse Zaneveld
- Division of Biological SciencesUniversity of WashingtonBothellWashingtonUSA
| |
Collapse
|
14
|
Woo S, Yum S. Transcriptional response of the azooxanthellate octocoral Scleronephthya gracillimum to seawater acidification and thermal stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100978. [PMID: 35259638 DOI: 10.1016/j.cbd.2022.100978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The stress responses to increased seawater temperature and marine acidification were investigated using a microarray to reveal transcriptional changes in S. gracillimum. For the study, corals were exposed to different stress experiments; high temperature only (26 °C, 28 °C and 30 °C), low-pH only (pH 7.5, pH 7.0 and pH 6.5) and dual stress experiments (28 °C + pH 7.8, 28 °C + pH 7.5 and 28 °C + pH 7.0), mortality and morphological changes in 24 h exposure experiments were investigated. The survival rates of each experimental group were observed. The gene expression changes in single and dual stress exposed coals were measured and the differentially expressed genes were classified with gene ontology analysis. The top three enriched gene ontology terms of DEGs in response to dual stress were metal ion binding (23.4%), extracellular region (17.2%), and calcium ion binding (12.8%). The gene showing the greatest increase in expression as a response to the dual stress was hemagglutinin/amebocyte aggregation factor, followed by interferon-inducible GTPase 5 and the gene showing the greatest decrease as a response to the dual stress was Fas-associating death domain-containing protein, followed by oxidase 2. These results represented the transcriptomic study focused on the stress responses of the temperate asymbiotic soft coral exposed to single and dual stresses. The combined effect of thermal and acidification stress on corals triggered the negative regulation of ion binding and extracellular matrix coding genes and these genes might serve as a basis for research into coral-specific adaptations to stress responses and global climate change.
Collapse
Affiliation(s)
- Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Sciences and Technology, Geoje 53201, South Korea; KIOST School, University of Science and Technology, Geoje 53201, South Korea.
| |
Collapse
|
15
|
Thomas L, Underwood JN, Rose NH, Fuller ZL, Richards ZT, Dugal L, Grimaldi CM, Cooke IR, Palumbi SR, Gilmour JP. Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. SCIENCE ADVANCES 2022; 8:eabl9185. [PMID: 35476443 PMCID: PMC9045720 DOI: 10.1126/sciadv.abl9185] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
At the Rowley Shoals in Western Australia, the prominent reef flat becomes exposed on low tide and the stagnant water in the shallow atoll lagoons heats up, creating a natural laboratory for characterizing the mechanisms of coral resilience to climate change. To explore these mechanisms in the reef coral Acropora tenuis, we collected samples from lagoon and reef slope habitats and combined whole-genome sequencing, ITS2 metabarcoding, experimental heat stress, and transcriptomics. Despite high gene flow across the atoll, we identified clear shifts in allele frequencies between habitats at relatively small linked genomic islands. Common garden heat stress assays showed corals from the lagoon to be more resistant to bleaching, and RNA sequencing revealed marked differences in baseline levels of gene expression between habitats. Our results provide new insight into the complex mechanisms of coral resilience to climate change and highlight the potential for spatially varying selection across complex coral reef seascapes to drive pronounced ecological divergence in climate-related traits.
Collapse
Affiliation(s)
- Luke Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
- Corresponding author.
| | - Jim N. Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - Noah H. Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Zachary L. Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Zoe T. Richards
- Coral Conservation and Research Group, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Collections and Research, Western Australian Museum, Welshpool, Australia
| | - Laurence Dugal
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Camille M. Grimaldi
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Ira R. Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Stephen R. Palumbi
- Hopkins Marine Station, Biology Department, Stanford University, Pacific Grove, CA, USA
| | - James P. Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| |
Collapse
|
16
|
Zhang Y, Ip JCH, Xie JY, Yeung YH, Sun Y, Qiu JW. Host-symbiont transcriptomic changes during natural bleaching and recovery in the leaf coral Pavona decussata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150656. [PMID: 34597574 DOI: 10.1016/j.scitotenv.2021.150656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Coral bleaching has become a major threat to coral reefs worldwide, but for most coral species little is known about their resilience to environmental changes. We aimed to understand the gene expressional regulation underlying natural bleaching and recovery in Pavona decussata, a dominant species of scleractinian coral in the northern South China Sea. Analyzing samples collected in 2017 from the field revealed distinct zooxanthellae density, chlorophyll a concentration and transcriptomic signatures corresponding to changes in health conditions of the coral holobiont. In the host, normal-looking tissues of partially bleached colonies were frontloaded with stress responsive genes, as indicated by upregulation of immune defense, response to endoplasmic reticulum, and oxidative stress genes. Bleaching was characterized by upregulation of apoptosis-related genes which could cause a reduction in algal symbionts, and downregulation of genes involved in stress responses and metabolic processes. The transcription factors stat5b and irf1 played key roles in bleaching by regulating immune and apoptosis pathways. Recovery from bleaching was characterized by enrichment of pathways involved in mitosis, DNA replication, and recombination for tissue repairing, as well as restoration of energy and metabolism. In the symbionts, bleaching corresponded to imbalance in photosystems I and II activities which enhanced oxidative stress and limited energy production and nutrient assimilation. Overall, our study revealed distinct gene expressional profiles and regulation in the different phases of the bleaching and recovery process, and provided new insight into the molecular mechanisms underlying the holobiont's resilience that may determine the species' fate in response to global and regional environmental changes.
Collapse
Affiliation(s)
- Yanjie Zhang
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Jack Chi-Ho Ip
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - James Y Xie
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Yip Hung Yeung
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Yanan Sun
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
17
|
Vargas S, Zimmer T, Conci N, Lehmann M, Wörheide G. Transcriptional response of the calcification and stress response toolkits in an octocoral under heat and pH stress. Mol Ecol 2021; 31:798-810. [PMID: 34748669 DOI: 10.1111/mec.16266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Up to one-third of all described marine species inhabit coral reefs, but the future of these hyperdiverse ecosystems is insecure due to local and global threats, such as overfishing, eutrophication, ocean warming and acidification. Although these impacts are expected to have a net detrimental effect on reefs, it has been shown that some organisms such as octocorals may remain unaffected, or benefit from, anthropogenically induced environmental change, and may replace stony corals in future reefs. Despite their potential importance in future shallow-water coastal environments, the molecular mechanisms leading to the resilience to anthropogenically induced stress observed in octocorals remain unknown. Here, we use manipulative experiments, proteomics and transcriptomics to show that the molecular toolkit used by Pinnigorgia flava, a common Indo-Pacific gorgonian octocoral, to deposit its calcium carbonate skeleton is resilient to heat and seawater acidification stress. Sublethal heat stress triggered a stress response in P. flava but did not affect the expression of 27 transcripts encoding skeletal organic matrix (SOM) proteins. Exposure to seawater acidification did not cause a stress response but triggered the downregulation of many transcripts, including an osteonidogen homologue present in the SOM. The observed transcriptional decoupling of the skeletogenic and stress-response toolkits provides insights into the mechanisms of resilience to anthropogenically driven environmental change observed in octocorals.
Collapse
Affiliation(s)
- Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Thorsten Zimmer
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Lehmann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany.,SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
18
|
Bollati E, Rosenberg Y, Simon-Blecher N, Tamir R, Levy O, Huang D. Untangling the molecular basis of coral response to sedimentation. Mol Ecol 2021; 31:884-901. [PMID: 34738686 DOI: 10.1111/mec.16263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022]
Abstract
Urbanized coral reefs are often chronically affected by sedimentation and reduced light levels, yet many species of corals appear to be able to thrive under these highly disturbed conditions. Recently, these marginal ecosystems have gained attention as potential climate change refugia due to the shading effect of suspended sediment, as well as potential reservoirs for stress-tolerant species. However, little research exists on the impact of sedimentation on coral physiology, particularly at the molecular level. Here, we investigated the transcriptomic response to sediment stress in corals of the family Merulinidae from a chronically turbid reef (one genet each of Goniastrea pectinata and Mycedium elephantotus from Singapore) and a clear-water reef (multiple genets of G. pectinata from the Gulf of Aqaba/Eilat). In two ex-situ experiments, we exposed corals to either natural sediment or artificial sediment enriched with organic matter and used whole-transcriptome sequencing (RNA sequencing) to quantify gene expression. Analysis revealed a shared basis for the coral transcriptomic response to sediment stress, which involves the expression of genes broadly related to energy metabolism and immune response. In particular, sediment exposure induced upregulation of anaerobic glycolysis and glyoxylate bypass enzymes, as well as genes involved in hydrogen sulphide metabolism and in pathogen pattern recognition. Our results point towards hypoxia as a probable driver of this transcriptomic response, providing a molecular basis to previous work that identified hypoxia as a primary cause of tissue necrosis in sediment-stressed corals. Potential metabolic and immunity trade-offs of corals living under chronic sedimentation should be considered in future studies on the ecology and conservation of turbid reefs.
Collapse
Affiliation(s)
- Elena Bollati
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Simon-Blecher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Raz Tamir
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore.,Centre for Nature-based Climate Solutions, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Abbott E, Dixon G, Matz M. Shuffling between Cladocopium and Durusdinium extensively modifies the physiology of each symbiont without stressing the coral host. Mol Ecol 2021; 30:6585-6595. [PMID: 34551161 DOI: 10.1111/mec.16190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
As sea surface temperatures increase, many coral species that used to harbour symbionts of the genus Cladocopium have become colonized with the thermally tolerant genus, Durusdinium. Here, we asked how gene expression in the symbionts of one genus changes depending on the abundance of another symbiont genus within the same coral host, and what effect this interaction has on the host. Symbiont gene expression was overwhelmingly driven by whether the genus was the minority or the majority within the host, which affected 79% (Durusdinium) and 96% (Cladocopium) of all genes. Particularly strong effects in both genera were observed for photosynthesis components (upregulated in the minority state) and proteins putatively associated with cell motility (upregulated in the majority state). Importantly, there was no distinct gene expression signature associated with the mixed symbiosis state when both genera were represented in comparable proportions within the host, which could lead to more intense competition. The mixed symbiosis was also not associated with elevated host stress: in fact, after heat treatment, stress signatures were the lowest in mixed-symbiosis corals compared to both Cladocopium- and Durusdinium-dominated corals. In conclusion, during shuffling between Cladocopium and Durusdinium both symbiont genera go through extensive and largely reciprocal physiological transitions, but there is no evidence of intensifying antagonistic interactions that are detrimental to the host. Unless the mixed-symbiosis corals in this study are not representative of the typical transition between Cladocopium and Durusdinium, the process of shuffling from one symbiont genus to another appears to be cost-free for the coral host, and even appears to be associated with lower stress susceptibility. This raises optimism for the future corals, which will probably have to rely on symbiont shuffling more and more to withstand environmental challenges.
Collapse
Affiliation(s)
- Evelyn Abbott
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
20
|
Cross-Linked Regulation of Coral-Associated Dinoflagellates and Bacteria in Pocillopora sp. during High-Temperature Stress and Recovery. Microorganisms 2021; 9:microorganisms9091972. [PMID: 34576867 PMCID: PMC8468813 DOI: 10.3390/microorganisms9091972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
As the problem of ocean warming worsens, the environmental adaptation potential of symbiotic Symbiodiniaceae and bacteria is directly related to the future and fate of corals. This study aimed to analyse the comprehensive community dynamics and physiology of these two groups of organisms in the coral Pocillopora sp. through indoor simulations of heat stress (which involved manually adjusting the temperature between both 26 °C and 34 °C). Heat treatment (≥30 °C) significantly reduced the abundance of Symbiodiniaceae and bacteria by more than 70%. After the temperature was returned to 26 °C for one month, the Symbiodiniaceae density was still low, while the absolute number of bacteria quickly recovered to 55% of that of the control. At this time point, the Fv/Fm value rose to 91% of the pretemperature value. The content of chlorophyll b associated with Cyanobacteria increased by 50% compared with that under the control conditions. Moreover, analysis of the Symbiodiniaceae subclade composition suggested that the relative abundance of C1c.C45, C1, and C1ca increased during heat treatment, indicating that they might constitute heat-resistant subgroups. We suggest that the increase in the absolute number of bacteria during the recovery period could be an important indicator of coral holobiont recovery after heat stress. This study provides insight into the cross-linked regulation of key symbiotic microbes in the coral Pocillopora sp. during high-temperature stress and recovery and provides a scientific basis for exploring the mechanism underlying coral adaptation to global warming.
Collapse
|
21
|
Wuitchik DM, Almanzar A, Benson BE, Brennan S, Chavez JD, Liesegang MB, Reavis JL, Reyes CL, Schniedewind MK, Trumble IF, Davies SW. Title: Characterizing environmental stress responses of aposymbiotic Astrangia poculata to divergent thermal challenges. Mol Ecol 2021; 30:5064-5079. [PMID: 34379848 DOI: 10.1111/mec.16108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Anthropogenic climate change threatens corals globally and both high and low temperatures are known to induce coral bleaching. However, coral stress responses across wide thermal breadths remain understudied. Disentangling the role of symbiosis on the stress response in obligately symbiotic corals is challenging because this response is inherently coupled with nutritional stress. Here, we leverage aposymbiotic colonies of the facultatively symbiotic coral, Astrangia poculata, which lives naturally with and without its algal symbionts, to examine how broad thermal challenges influence coral hosts in the absence of symbiosis. A. poculata were collected from their northern range limit and thermally challenged in two independent 16-day common garden experiments (heat and cold challenge) and behavioral responses to food stimuli and genome-wide gene expression profiling (TagSeq) were performed. Both thermal challenges elicited significant reductions in polyp extension. However, there were five times as many differentially expressed genes (DEGs) under cold challenge compared to heat challenge. Despite an overall stronger response to cold challenge, there was significant overlap in DEGs between thermal challenges. We contrasted these responses to a previously identified module of genes associated with the environmental stress response (ESR) in tropical reef-building corals. Cold challenged corals exhibited a pattern consistent with more severe stressors while the heat challenge response was consistent with lower intensity stressors. Given that these responses were observed in aposymbiotic colonies, many genes previously implicated in ESRs in tropical symbiotic species may represent the coral host's stress response in or out of symbiosis.
Collapse
Affiliation(s)
- D M Wuitchik
- Department of Biology, Boston University, Boston, MA, USA
| | - A Almanzar
- Department of Biology, Boston University, Boston, MA, USA
| | - B E Benson
- Department of Biology, Boston University, Boston, MA, USA
| | - S Brennan
- Department of Biology, Boston University, Boston, MA, USA
| | - J D Chavez
- Department of Biology, Boston University, Boston, MA, USA
| | - M B Liesegang
- Department of Biology, Boston University, Boston, MA, USA.,Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - J L Reavis
- Department of Biology, Boston University, Boston, MA, USA
| | - C L Reyes
- Department of Biology, Boston University, Boston, MA, USA
| | | | - I F Trumble
- Department of Biology, Boston University, Boston, MA, USA
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
22
|
Hackerott S, Martell HA, Eirin-Lopez JM. Coral environmental memory: causes, mechanisms, and consequences for future reefs. Trends Ecol Evol 2021; 36:1011-1023. [PMID: 34366170 DOI: 10.1016/j.tree.2021.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
The apparent ability of corals to acquire and maintain enhanced stress tolerance through a dose-dependent environmental memory, which may persist for multiple years, has critical implications for coral reef conservation research. Such responses are variable across coral species and environmental stressors, with primed corals exhibiting a modified response to secondary stress exposures. While the mechanisms underlying coral memory responses are poorly understood, they likely involve both the coral host and microbiome. With advances in molecular technologies, it is now possible to investigate potential memory mechanisms in non-model organisms, including transcriptional regulation through epigenetic modifications. We integrate evidence of coral environmental memory and suggest future research directions to evaluate the potential for this process to enhance coral resilience under climate change.
Collapse
Affiliation(s)
- Serena Hackerott
- Environmental Epigenetics Laboratory, Institute of Environment, Biological Sciences Department, Florida International University, North Miami, FL, 33181, USA
| | - Harmony A Martell
- Climate and Coastal Ecosystem Laboratory, Department of Geography & Institute of Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Biological Sciences Department, Florida International University, North Miami, FL, 33181, USA.
| |
Collapse
|
23
|
Innis T, Allen-Waller L, Brown KT, Sparagon W, Carlson C, Kruse E, Huffmyer AS, Nelson CE, Putnam HM, Barott KL. Marine heatwaves depress metabolic activity and impair cellular acid-base homeostasis in reef-building corals regardless of bleaching susceptibility. GLOBAL CHANGE BIOLOGY 2021; 27:2728-2743. [PMID: 33784420 DOI: 10.1111/gcb.15622] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching-resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular-level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching-resistant and bleaching-susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching-susceptible corals had lower intracellular pH than bleaching-resistant corals at the peak of bleaching for both symbiont-hosting and symbiont-free cells, indicating greater disruption of acid-base homeostasis in bleaching-susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid-base regulation was significantly impaired at the cellular level even in bleaching-resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid-base regulation may further exacerbate the physiological effects of climate change.
Collapse
Affiliation(s)
- Teegan Innis
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kristen T Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Qld, Australia
| | - Wesley Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Elisa Kruse
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ariana S Huffmyer
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Savary R, Barshis DJ, Voolstra CR, Cárdenas A, Evensen NR, Banc-Prandi G, Fine M, Meibom A. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proc Natl Acad Sci U S A 2021; 118:e2023298118. [PMID: 33941698 PMCID: PMC8126839 DOI: 10.1073/pnas.2023298118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Corals from the northern Red Sea and Gulf of Aqaba exhibit extreme thermal tolerance. To examine the underlying gene expression dynamics, we exposed Stylophora pistillata from the Gulf of Aqaba to short-term (hours) and long-term (weeks) heat stress with peak seawater temperatures ranging from their maximum monthly mean of 27 °C (baseline) to 29.5 °C, 32 °C, and 34.5 °C. Corals were sampled at the end of the heat stress as well as after a recovery period at baseline temperature. Changes in coral host and symbiotic algal gene expression were determined via RNA-sequencing (RNA-Seq). Shifts in coral microbiome composition were detected by complementary DNA (cDNA)-based 16S ribosomal RNA (rRNA) gene sequencing. In all experiments up to 32 °C, RNA-Seq revealed fast and pervasive changes in gene expression, primarily in the coral host, followed by a return to baseline gene expression for the majority of coral (>94%) and algal (>71%) genes during recovery. At 34.5 °C, large differences in gene expression were observed with minimal recovery, high coral mortality, and a microbiome dominated by opportunistic bacteria (including Vibrio species), indicating that a lethal temperature threshold had been crossed. Our results show that the S. pistillata holobiont can mount a rapid and pervasive gene expression response contingent on the amplitude and duration of the thermal stress. We propose that the transcriptomic resilience and transcriptomic acclimation observed are key to the extraordinary thermal tolerance of this holobiont and, by inference, of other northern Red Sea coral holobionts, up to seawater temperatures of at least 32 °C, that is, 5 °C above their current maximum monthly mean.
Collapse
Affiliation(s)
- Romain Savary
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | | | - Anny Cárdenas
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nicolas R Evensen
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | - Guilhem Banc-Prandi
- The Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Laboratory for Coral Reef Ecology, Interuniversity Institute for Marine Sciences, 88103 Eilat, Israel
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Laboratory for Coral Reef Ecology, Interuniversity Institute for Marine Sciences, 88103 Eilat, Israel
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
McGaughran A, Laver R, Fraser C. Evolutionary Responses to Warming. Trends Ecol Evol 2021; 36:591-600. [PMID: 33726946 DOI: 10.1016/j.tree.2021.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
Climate change is predicted to dramatically alter biological diversity and distributions, driving extirpations, extinctions, and extensive range shifts across the globe. Warming can also, however, lead to phenotypic or behavioural plasticity, as species adapt to new conditions. Recent genomic research indicates that some species are capable of rapid evolution as selection favours adaptive responses to environmental change and altered or novel niche spaces. New advances are providing mechanistic insights into how temperature might accelerate evolution in the Anthropocene. These discoveries highlight intriguing new research directions - such as using geothermal and polar systems combined with powerful genomic tools - that will help us to understand the processes underpinning adaptive evolution and better project how ecosystems will change in a warming world.
Collapse
Affiliation(s)
- Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Rebecca Laver
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ceridwen Fraser
- Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
26
|
Abstract
Climate-driven reef decline has prompted the development of next-generation coral conservation strategies, many of which hinge on the movement of adaptive variation across genetic and environmental gradients. This process is limited by our understanding of how genetic and genotypic drivers of coral bleaching will manifest in different environmental conditions. We reciprocally transplanted 10 genotypes of Acropora cervicornis across eight sites along a 60 km span of the Florida Reef Tract and documented significant genotype × environment interactions in bleaching response during the severe 2015 bleaching event. Performance relative to site mean was significantly different between genotypes and can be mostly explained by ensemble models of correlations with genetic markers. The high explanatory power was driven by significant enrichment of loci associated DNA repair, cell signalling and apoptosis. No genotypes performed above (or below) bleaching average at all sites, so genomic predictors can provide practitioners with 'confidence intervals' about the chance of success in novel habitats. These data have important implications for assisted gene flow and managed relocation, and their integration with traditional active restoration.
Collapse
Affiliation(s)
- Crawford Drury
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
27
|
Onyango CA, Glassom D, MacDonald A. De novo assembly of the transcriptome of scleractinian coral, Anomastraea irregularis and analyses of its response to thermal stress. Mol Biol Rep 2021; 48:2083-2092. [PMID: 33660094 DOI: 10.1007/s11033-021-06184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Rising seawater temperatures cause coral bleaching. The molecular responses of the coral holobiont under stress conditions, determine the success of the symbiosis. Anomastraea irregularis is a hard coral commonly found in the harsh intertidal zones of the south coast of KwaZulu-Natal (KZN), South Africa, where it thrives at the very margins of hard coral distribution in the Western Indian Ocean. To identify the possible molecular and cellular mechanisms underlying its resilience to heat stress, experimental and control nubbins were exposed to temperatures of 29 and 19 °C respectively for 24 h. The transcriptome was assembled de novo from 42.8 million quality controlled 63 bp paired-end short sequence reads obtained via RNA sequencing (RNA-seq). The assembly yielded 333,057 contigs (> 500 bp = 55,626, Largest = 6341 bp N50 = 747 bp). 1362 (1.23%) of the transcripts were significantly differentially expressed between heat stressed and control samples. Log fold change magnitudes among individual genes ranged from - 4.6 to 7.2. Overall, the heat stress response in the A. irregularis constituted a protective response involving up regulation of apoptosis and SUMOylation. Gene ontology (GO) analyses revealed that heat stress in the coral affected the metabolism, protein synthesis, photosynthesis, transport and cytoskeleton. This is the first study to produce a reference transcriptome of this coral species and analyze its response to heat stress. The assembled transcriptome also presents a valuable resource for further transcriptomic and genomic studies.
Collapse
Affiliation(s)
- Christine A Onyango
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa. .,School of Natural Sciences, Masinde Muliro University of Science and Technology, Kakamega, 50100, Kenya.
| | - David Glassom
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Angus MacDonald
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
28
|
Rivera HE, Aichelman HE, Fifer JE, Kriefall NG, Wuitchik DM, Wuitchik SJS, Davies SW. A framework for understanding gene expression plasticity and its influence on stress tolerance. Mol Ecol 2021; 30:1381-1397. [PMID: 33503298 DOI: 10.1111/mec.15820] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Phenotypic plasticity can serve as a stepping stone towards adaptation. Recently, studies have shown that gene expression contributes to emergent stress responses such as thermal tolerance, with tolerant and susceptible populations showing distinct transcriptional profiles. However, given the dynamic nature of gene expression, interpreting transcriptomic results in a way that elucidates the functional connection between gene expression and the observed stress response is challenging. Here, we present a conceptual framework to guide interpretation of gene expression reaction norms in the context of stress tolerance. We consider the evolutionary and adaptive potential of gene expression reaction norms and discuss the influence of sampling timing, transcriptomic resilience, as well as complexities related to life history when interpreting gene expression dynamics and how these patterns relate to host tolerance. We highlight corals as a case study to demonstrate the value of this framework for non-model systems. As species face rapidly changing environmental conditions, modulating gene expression can serve as a mechanistic link from genetic and cellular processes to the physiological responses that allow organisms to thrive under novel conditions. Interpreting how or whether a species can employ gene expression plasticity to ensure short-term survival will be critical for understanding the global impacts of climate change across diverse taxa.
Collapse
Affiliation(s)
- Hanny E Rivera
- Department of Biology, Boston University, Boston, MA, USA
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Sara J S Wuitchik
- Department of Biology, Boston University, Boston, MA, USA.,FAS Informatics, Harvard University, Cambridge, MA, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
29
|
Tracy AM, Weil E, Burge CA. Ecological Factors Mediate Immunity and Parasitic Co-Infection in Sea Fan Octocorals. Front Immunol 2021; 11:608066. [PMID: 33505396 PMCID: PMC7829190 DOI: 10.3389/fimmu.2020.608066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The interplay among environment, demography, and host-parasite interactions is a challenging frontier. In the ocean, fundamental changes are occurring due to anthropogenic pressures, including increased disease outbreaks on coral reefs. These outbreaks include multiple parasites, calling into question how host immunity functions in this complex milieu. Our work investigates the interplay of factors influencing co-infection in the Caribbean sea fan octocoral, Gorgonia ventalina, using metrics of the innate immune response: cellular immunity and expression of candidate immune genes. We used existing copepod infections and live pathogen inoculation with the Aspergillus sydowii fungus, detecting increased expression of the immune recognition gene Tachylectin 5A (T5A) in response to both parasites. Cellular immunity increased by 8.16% in copepod infections compared to controls and single Aspergillus infections. We also detected activation of cellular immunity in reef populations, with a 13.6% increase during copepod infections. Cellular immunity was similar in the field and in the lab, increasing with copepod infections and not the fungus. Amoebocyte density and the expression of T5A and a matrix metalloproteinase (MMP) gene were also positively correlated across all treatments and colonies, irrespective of parasitic infection. We then assessed the scaling of immune metrics to population-level disease patterns and found random co-occurrence of copepods and fungus across 15 reefs in Puerto Rico. The results suggest immune activation by parasites may not alter parasite co-occurrence if factors other than immunity prevail in structuring parasite infection. We assessed non-immune factors in the field and found that sea fan colony size predicted infection by the copepod parasite. Moreover, the effect of infection on immunity was small relative to that of site differences and live coral cover, and similar to the effect of reproductive status. While additional immune data would shed light on the extent of this pattern, ecological factors may play a larger role than immunity in controlling parasite patterns in the wild. Parsing the effects of immunity and ecological factors in octocoral co-infection shows how disease depends on more than one host and one parasite and explores the application of co-infection research to a colonial marine organism.
Collapse
Affiliation(s)
- Allison M. Tracy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, PR, United States
| | - Colleen A. Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
30
|
Wong JM, Hofmann GE. Gene expression patterns of red sea urchins (Mesocentrotus franciscanus) exposed to different combinations of temperature and pCO 2 during early development. BMC Genomics 2021; 22:32. [PMID: 33413121 PMCID: PMC7792118 DOI: 10.1186/s12864-020-07327-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The red sea urchin Mesocentrotus franciscanus is an ecologically important kelp forest herbivore and an economically valuable wild fishery species. To examine how M. franciscanus responds to its environment on a molecular level, differences in gene expression patterns were observed in embryos raised under combinations of two temperatures (13 °C or 17 °C) and two pCO2 levels (475 μatm or 1050 μatm). These combinations mimic various present-day conditions measured during and between upwelling events in the highly dynamic California Current System with the exception of the 17 °C and 1050 μatm combination, which does not currently occur. However, as ocean warming and acidification continues, warmer temperatures and higher pCO2 conditions are expected to increase in frequency and to occur simultaneously. The transcriptomic responses of the embryos were assessed at two developmental stages (gastrula and prism) in light of previously described plasticity in body size and thermotolerance under these temperature and pCO2 treatments. RESULTS Although transcriptomic patterns primarily varied by developmental stage, there were pronounced differences in gene expression as a result of the treatment conditions. Temperature and pCO2 treatments led to the differential expression of genes related to the cellular stress response, transmembrane transport, metabolic processes, and the regulation of gene expression. At each developmental stage, temperature contributed significantly to the observed variance in gene expression, which was also correlated to the phenotypic attributes of the embryos. On the other hand, the transcriptomic response to pCO2 was relatively muted, particularly at the prism stage. CONCLUSIONS M. franciscanus exhibited transcriptomic plasticity under different temperatures, indicating their capacity for a molecular-level response that may facilitate red sea urchins facing ocean warming as climate change continues. In contrast, the lack of a robust transcriptomic response, in combination with observations of decreased body size, under elevated pCO2 levels suggest that this species may be negatively affected by ocean acidification. High present-day pCO2 conditions that occur due to coastal upwelling may already be influencing populations of M. franciscanus.
Collapse
Affiliation(s)
- Juliet M Wong
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Present address: Department of Biological Sciences, Florida International University, North Miami, FL, 33181, USA.
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
31
|
Alderdice R, Suggett DJ, Cárdenas A, Hughes DJ, Kühl M, Pernice M, Voolstra CR. Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility. GLOBAL CHANGE BIOLOGY 2021; 27:312-326. [PMID: 33197302 DOI: 10.1111/gcb.15436] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Exposure of marine life to low oxygen is accelerating worldwide via climate change and localized pollution. Mass coral bleaching and mortality have recently occurred where reefs have experienced chronic low oxygen events. However, the mechanistic basis of tolerance to oxygen levels inadequate to sustain normal functioning (i.e. hypoxia) and whether it contributes to bleaching susceptibility, remain unknown. We therefore experimentally exposed colonies of the environmentally resilient Acropora tenuis, a common reef-building coral from the Great Barrier Reef, to deoxygenation-reoxygenation stress that was aligned to their natural night-day light cycle. Specifically, the treatment involved removing the 'night-time O2 buffer' to challenge the inherent hypoxia thresholds. RNA-Seq analysis revealed that coral possess a complete and active hypoxia-inducible factor (HIF)-mediated hypoxia response system (HRS) homologous to other metazoans. As expected, A. tenuis exhibited bleaching resistance and showed a strong inducibility of HIF target genes in response to deoxygenation stress. We applied this same approach in parallel to a colony of Acropora selago, known to be environmnetally susceptible, which conversely exhibited a bleaching phenotype response. This phenotypic divergence of A. selago was accompanied by contrasting gene expression profiles indicative of varied effectiveness of their HIF-HRS. Based on our RNA-Seq analysis, we propose (a) that the HIF-HRS is central for corals to manage deoxygenation stress and (b) that key genes of this system (and the wider gene network) may contribute to variation in coral bleaching susceptibility. Our analysis suggests that heat shock protein (hsp) 70 and 90 are important for low oxygen stress tolerance and further highlights how hsp90 expression might also affect the inducibility of coral HIF-HRS in overcoming a metabolic crisis under deoxygenation stress. We propose that differences in coral HIF-HRS could be central in regulating sensitivity to other climate change stressors-notably thermal stress-that commonly drive bleaching.
Collapse
Affiliation(s)
- Rachel Alderdice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David J Hughes
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Michael Kühl
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Mathieu Pernice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | |
Collapse
|
32
|
Cleves PA, Krediet CJ, Lehnert EM, Onishi M, Pringle JR. Insights into coral bleaching under heat stress from analysis of gene expression in a sea anemone model system. Proc Natl Acad Sci U S A 2020; 117:28906-28917. [PMID: 33168733 PMCID: PMC7682557 DOI: 10.1073/pnas.2015737117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Loss of endosymbiotic algae ("bleaching") under heat stress has become a major problem for reef-building corals worldwide. To identify genes that might be involved in triggering or executing bleaching, or in protecting corals from it, we used RNAseq to analyze gene-expression changes during heat stress in a coral relative, the sea anemone Aiptasia. We identified >500 genes that showed rapid and extensive up-regulation upon temperature increase. These genes fell into two clusters. In both clusters, most genes showed similar expression patterns in symbiotic and aposymbiotic anemones, suggesting that this early stress response is largely independent of the symbiosis. Cluster I was highly enriched for genes involved in innate immunity and apoptosis, and most transcript levels returned to baseline many hours before bleaching was first detected, raising doubts about their possible roles in this process. Cluster II was highly enriched for genes involved in protein folding, and most transcript levels returned more slowly to baseline, so that roles in either promoting or preventing bleaching seem plausible. Many of the genes in clusters I and II appear to be targets of the transcription factors NFκB and HSF1, respectively. We also examined the behavior of 337 genes whose much higher levels of expression in symbiotic than aposymbiotic anemones in the absence of stress suggest that they are important for the symbiosis. Unexpectedly, in many cases, these expression levels declined precipitously long before bleaching itself was evident, suggesting that loss of expression of symbiosis-supporting genes may be involved in triggering bleaching.
Collapse
Affiliation(s)
- Phillip A Cleves
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Cory J Krediet
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Department of Marine Science, Eckerd College, St. Petersburg, FL 33711
| | - Erik M Lehnert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
33
|
Signor SA. Evolution of Plasticity in Response to Ethanol between Sister Species with Different Ecological Histories ( Drosophila melanogaster and D. simulans). Am Nat 2020; 196:620-633. [PMID: 33064591 DOI: 10.1086/710763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWhen populations evolve adaptive reaction norms in response to novel environments, it can occur through a process termed genetic accommodation. Under this model, the initial response to the environment is widely variable between genotypes as a result of cryptic genetic variation, which is then refined by selection to a single adaptive response. Here, I empirically test these predictions from genetic accommodation by measuring reaction norms in individual genotypes and across several time points. I compare two species of Drosophila that differ in their adaptation to ethanol (D. melanogaster and D. simulans). Both species are human commensals with a recent cosmopolitan expansion, but only D. melanogaster is adapted to ethanol exposure. Using gene expression as a phenotype and an approach that combines information about expression and alternative splicing, I find that D. simulans exhibits cryptic genetic variation in the response to ethanol, while D. melanogaster has almost no genotype-specific variation in reaction norm. This is evidence for adaptation to ethanol through genetic accommodation, suggesting that the evolution of phenotypic plasticity could be an important contributor to the ability to exploit novel resources.
Collapse
|
34
|
Forsman ZH, Ritson-Williams R, Tisthammer KH, Knapp ISS, Toonen RJ. Host-symbiont coevolution, cryptic structure, and bleaching susceptibility, in a coral species complex (Scleractinia; Poritidae). Sci Rep 2020; 10:16995. [PMID: 33046719 PMCID: PMC7550562 DOI: 10.1038/s41598-020-73501-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022] Open
Abstract
The 'species' is a key concept for conservation and evolutionary biology, yet the lines between population and species-level variation are often blurred, especially for corals. The 'Porites lobata species complex' consists of branching and mounding corals that form reefs across the Pacific. We used reduced representation meta-genomic sequencing to examine genetic relationships within this species complex and to identify candidate loci associated with colony morphology, cryptic genetic structure, and apparent bleaching susceptibility. We compared existing Porites data with bleached and unbleached colonies of the branching coral P. compressa collected in Kāne'ohe Bay Hawai'i during the 2015 coral bleaching event. Loci that mapped to coral, symbiont, and microbial references revealed genetic structure consistent with recent host-symbiont co-evolution. Cryptic genetic clades were resolved that previous work has associated with distance from shore, but no genetic structure was associated with bleaching. We identified many candidate loci associated with morphospecies, including candidate host and symbiont loci with fixed differences between branching and mounding corals. We also found many loci associated with cryptic genetic structure, yet relatively few loci associated with bleaching. Recent host-symbiont co-evolution and rapid diversification suggests that variation and therefore the capacity of these corals to adapt may be underappreciated.
Collapse
Affiliation(s)
- Z H Forsman
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA.
| | | | - K H Tisthammer
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - I S S Knapp
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - R J Toonen
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| |
Collapse
|
35
|
van Oppen MJH, Medina M. Coral evolutionary responses to microbial symbioses. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190591. [PMID: 32772672 PMCID: PMC7435167 DOI: 10.1098/rstb.2019.0591] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
This review explores how microbial symbioses may have influenced and continue to influence the evolution of reef-building corals (Cnidaria; Scleractinia). The coral holobiont comprises a diverse microbiome including dinoflagellate algae (Dinophyceae; Symbiodiniaceae), bacteria, archaea, fungi and viruses, but here we focus on the Symbiodiniaceae as knowledge of the impact of other microbial symbionts on coral evolution is scant. Symbiosis with Symbiodiniaceae has extended the coral's metabolic capacity through metabolic handoffs and horizontal gene transfer (HGT) and has contributed to the ecological success of these iconic organisms. It necessitated the prior existence or the evolution of a series of adaptations of the host to attract and select the right symbionts, to provide them with a suitable environment and to remove disfunctional symbionts. Signatures of microbial symbiosis in the coral genome include HGT from Symbiodiniaceae and bacteria, gene family expansions, and a broad repertoire of oxidative stress response and innate immunity genes. Symbiosis with Symbiodiniaceae has permitted corals to occupy oligotrophic waters as the algae provide most corals with the majority of their nutrition. However, the coral-Symbiodiniaceae symbiosis is sensitive to climate warming, which disrupts this intimate relationship, causing coral bleaching, mortality and a worldwide decline of coral reefs. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, 3010 Victoria, Australia
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, 4810 Queensland, Australia
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA 16802, USA
| |
Collapse
|
36
|
Yu X, Yu K, Huang W, Liang J, Qin Z, Chen B, Yao Q, Liao Z. Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139319. [PMID: 32446076 DOI: 10.1016/j.scitotenv.2020.139319] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Field ecological observations indicate that scleractinian coral exposed to early thermal stress are likely to develop higher tolerance to subsequent heat stress. The causes of this phenomenon, however, remain enigmatic. To unravel the mechanisms underlying the increased heat tolerance, we applied different thermal treatments to the scleractinian coral Acropora pruinosa and studied the resulting differences in appearance, physiological index, Symbiodiniaceae and bacterial communities, and transcriptome response. We found that early heat stress improved the thermal tolerance of the coral holobiont. After thermal acclimation, the community structure and symbiotic bacterial diversity in the microbiota were reorganized, whereas those of Symbiodiniaceae remained stable. RNA-seq analysis revealed that the downregulated coral host genes were mainly involved in pathways relating to metabolism, particularly the nitrogen metabolism pathway. This indicates that thermal acclimation led to decrease in the metabolism level in the coral host, which might be a self-protection mechanism. We suggest that thermal acclimation may increase scleractinian coral thermal tolerance by slowing host metabolism, altering the dominant bacterial population, and increasing bacterial diversity. This study offers new insights into the adaptive potential of scleractinian coral to heat stress from global warming.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), China.
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
37
|
Huang X, Zhan A. Highly dynamic transcriptional reprogramming and shorter isoform shifts under acute stresses during biological invasions. RNA Biol 2020; 18:340-353. [PMID: 32804003 DOI: 10.1080/15476286.2020.1805904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phenotypic plasticity has been increasingly recognized for its importance in adaptation to novel environments, and initial rapid plastic response to acute stresses usually serves as the stepping stone for future adaptation. Differential gene expression and alternative splicing have been proposed as two underlying mechanisms for rapid plastic response to environmental stresses. Here, we used an invasive model species, Ciona savignyi, to investigate the temporary plastic changes under temperature stresses on gene expression and alternative splicing. Our results revealed rapid and highly dynamic gene expression reprogramming and alternative splicing switch under acute stresses. Distinct transcriptional response profiles were triggered by two types of temperature stresses, showing resilience recovery and increasing divergence under heat and cold challenges, respectively. Interestingly, alternative exons were more inclined to be skipped under both heat and cold stresses, leading to shorter isoforms but with maintained Open Reading Frames (ORFs). Although similar response patterns were observed between differential gene expression and alternative splicing, low overlap between Differentially Expressed Genes (DEGs) and Differentially Alternative Spliced Genes (DASGs) suggests that distinct gene sets and associated functions should be involved in temperature challenges. Thus, alternative splicing should offer an additional layer of plastic response to environmental challenges. Finally, we identified key plastic genes involved in both gene expression regulation and alternative splicing. The results obtained here shed light on adaptation and accommodation mechanisms during biological invasions, particularly for acute environmental changes at early stages of biological invasions such as transport and introduction.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
A tentacle for every occasion: comparing the hunting tentacles and sweeper tentacles, used for territorial competition, in the coral Galaxea fascicularis. BMC Genomics 2020; 21:548. [PMID: 32770938 PMCID: PMC7430897 DOI: 10.1186/s12864-020-06952-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background Coral reefs are among the most diverse, complex and densely populated marine ecosystems. To survive, morphologically simple and sessile cnidarians have developed mechanisms to catch prey, deter predators and compete with adjacent corals for space, yet the mechanisms underlying these functions are largely unknown. Here, we characterize the histology, toxic activity and gene expression patterns in two different types of tentacles from the scleractinian coral Galaxea fascilcularis – catch tentacles (CTs), used to catch prey and deter predators, and sweeper tentacles (STs), specialized tentacles used for territorial aggression. Results STs exhibit more mucocytes and higher expression of mucin genes than CTs, and lack the ectodermal cilia used to deliver food to the mouth and remove debris. STs and CTs also express different sensory rhodopsin-like g-protein coupled receptors, suggesting they may employ different sensory pathways. Each tentacle type has a different complement of stinging cells (nematocytes), and the expression in the two tentacles of genes encoding structural nematocyte proteins suggests the stinging cells develop within the tentacles. CTs have higher neurotoxicity to blowfly larvae and hemolytic activity compared to the STs, consistent with a role in prey capture. In contrast, STs have higher phospholipase A2 activity, which we speculate may have a role in inducing tissue damage during territorial aggression. The expression of genes encoding cytolytic toxins (actinoporins) and phospholipases also differs between the tentacle types. Conclusions These results show that the same organism utilizes two distinct tentacle types, each equipped with a different venom apparatus and toxin composition, for prey capture and defense and for territorial aggression.
Collapse
|
39
|
Dixon G, Abbott E, Matz M. Meta-analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol Ecol 2020; 29:2855-2870. [PMID: 32615003 DOI: 10.1111/mec.15535] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
As climate change progresses, reef-building corals must contend more often with suboptimal conditions, motivating a need to understand coral stress response. Here, we test the hypothesis that there is a stereotyped transcriptional response that corals enact under all stressful conditions, functionally characterized by downregulation of growth, and activation of cell death, response to reactive oxygen species, immunity, and protein folding and degradation. We analyse RNA-seq and Tag-Seq data from 14 previously published studies and supplement them with four new experiments involving different stressors, totaling over 600 gene expression profiles from the genus Acropora. Contrary to expectations, we found not one, but two distinct types of response. The type A response was observed under all kinds of high-intensity stress, was correlated between independent projects and was functionally consistent with the hypothesized stereotyped response. The consistent correlation between projects, irrespective of stress type, supports the type A response as the general coral environmental stress response (ESR), a blanket solution to severely stressful conditions. The distinct type B response was observed under lower intensity stress and was more variable among studies. Unexpectedly, at the level of individual genes and functional categories, the type B response was broadly opposite the type A response. Finally, taking advantage of the breadth of the data set, we present contextual annotations for previously unannotated genes based on consistent stress-induced differences across independent projects.
Collapse
Affiliation(s)
- Groves Dixon
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Evelyn Abbott
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| |
Collapse
|
40
|
Studivan MS, Voss JD. Transcriptomic plasticity of mesophotic corals among natural populations and transplants of
Montastraea cavernosa
in the Gulf of Mexico and Belize. Mol Ecol 2020; 29:2399-2415. [DOI: 10.1111/mec.15495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Michael S. Studivan
- Harbor Branch Oceanographic Institute Florida Atlantic University Fort Pierce FL USA
- Cooperative Institute for Marine and Atmospheric Studies University of Miami Rosenstiel School of Marine and Atmospheric Sciences Miami FL USA
| | - Joshua D. Voss
- Harbor Branch Oceanographic Institute Florida Atlantic University Fort Pierce FL USA
| |
Collapse
|
41
|
Stanford BC, Clake DJ, Morris MR, Rogers SM. The power and limitations of gene expression pathway analyses toward predicting population response to environmental stressors. Evol Appl 2020; 13:1166-1182. [PMID: 32684953 PMCID: PMC7359838 DOI: 10.1111/eva.12935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Rapid environmental changes impact the global distribution and abundance of species, highlighting the urgency to understand and predict how populations will respond. The analysis of differentially expressed genes has elucidated areas of the genome involved in adaptive divergence to past and present environmental change. Such studies however have been hampered by large numbers of differentially expressed genes and limited knowledge of how these genes work in conjunction with each other. Recent methods (broadly termed "pathway analyses") have emerged that aim to group genes that behave in a coordinated fashion to a factor of interest. These methods aid in functional annotation and uncovering biological pathways, thereby collapsing complex datasets into more manageable units, providing more nuanced understandings of both the organism-level effects of modified gene expression, and the targets of adaptive divergence. Here, we reanalyze a dataset that investigated temperature-induced changes in gene expression in marine-adapted and freshwater-adapted threespine stickleback (Gasterosteus aculeatus), using Weighted Gene Co-expression Network Analysis (WGCNA) with PANTHER Gene Ontology (GO)-Slim overrepresentation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Six modules exhibited a conserved response and six a divergent response between marine and freshwater stickleback when acclimated to 7°C or 22°C. One divergent module showed freshwater-specific response to temperature, and the remaining divergent modules showed differences in height of reaction norms. PPARAa, a transcription factor that regulates fatty acid metabolism and has been implicated in adaptive divergence, was located in a module that had higher expression at 7°C and in freshwater stickleback. This updated methodology revealed patterns that were not found in the original publication. Although such methods hold promise toward predicting population response to environmental stressors, many limitations remain, particularly with regard to module expression representation, database resources, and cross-database integration.
Collapse
Affiliation(s)
| | - Danielle J. Clake
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | | | - Sean M. Rogers
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
- Bamfield Marine Sciences CentreBamfieldBCCanada
| |
Collapse
|
42
|
Abstract
Much recent marine research has been directed towards understanding the effects of anthropogenic-induced environmental change on marine biodiversity, particularly for those animals with heavily calcified exoskeletons, such as corals, molluscs and urchins. This is because life in our oceans is becoming more challenging for these animals with changes in temperature, pH and salinity. In the future, it will be more energetically expensive to make marine skeletons and the increasingly corrosive conditions in seawater are expected to result in the dissolution of these external skeletons. However, initial predictions of wide-scale sensitivity are changing as we understand more about the mechanisms underpinning skeletal production (biomineralization). These studies demonstrate the complexity of calcification pathways and the cellular responses of animals to these altered conditions. Factors including parental conditioning, phenotypic plasticity and epigenetics can significantly impact the production of skeletons and thus future population success. This understanding is paralleled by an increase in our knowledge of the genes and proteins involved in biomineralization, particularly in some phyla, such as urchins, molluscs and corals. This Review will provide a broad overview of our current understanding of the factors affecting skeletal production in marine invertebrates. It will focus on the molecular mechanisms underpinning biomineralization and how knowledge of these processes affects experimental design and our ability to predict responses to climate change. Understanding marine biomineralization has many tangible benefits in our changing world, including improvements in conservation and aquaculture and exploitation of natural calcified structure design using biomimicry approaches that are aimed at producing novel biocomposites.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
43
|
Drury C. Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress. Mol Ecol 2020; 29:448-465. [PMID: 31845413 DOI: 10.1111/mec.15337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Coral reefs are under extreme threat due to a number of stressors, but temperature increases due to changing climate are the most severe. Rising ocean temperatures coupled with local extremes lead to extensive bleaching, where the coral-algal symbiosis breaks down and corals may die, compromising the structure and function of reefs. Although the symbiotic nature of the coral colony has historically been a focus of research on coral resilience, the host itself is a foundational component in the response to thermal stress. Fixed effects in the coral host set trait baselines through evolutionary processes, acting on many loci of small effect to create mosaics of thermal tolerance across latitudes and individual coral reefs. These genomic differences can be strongly heritable, producing wide variation among clones of different genotypes or families of a specific larval cross. Phenotypic plasticity is overlaid on these baselines and a growing body of knowledge demonstrates the potential for acclimatization of reef-building corals through a variety of mechanisms that promote resilience and stress tolerance. The long-term persistence of coral reefs will require many of these mechanisms to adjust to warmer temperatures within a generation, bridging the gap to reproductive events that allow recombination of standing diversity and adaptive change. Business-as-usual climate scenarios will probably lead to the loss of some coral populations or species in the future, so the interaction between intragenerational effects and evolutionary pressure is critical for the survival of reefs.
Collapse
|
44
|
Cleves PA, Shumaker A, Lee J, Putnam HM, Bhattacharya D. Unknown to Known: Advancing Knowledge of Coral Gene Function. Trends Genet 2019; 36:93-104. [PMID: 31882190 DOI: 10.1016/j.tig.2019.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Given the catastrophic changes befalling coral reefs, understanding coral gene function is essential to advance reef conservation. This has proved challenging due to the paucity of genomic data and genetic tools available for corals. Recently, CRISPR/Cas9 gene editing was applied to these species; however, a major bottleneck is the identification and prioritization of candidate genes for manipulation. This issue is exacerbated by the many unknown ('dark') coral genes that may play key roles in the stress response. We review the use of gene coexpression networks that incorporate both known and unknown genes to identify targets for reverse genetic analysis. This approach also provides a framework for the annotation of dark genes in established interaction networks to improve our fundamental knowledge of coral gene function.
Collapse
Affiliation(s)
- Phillip A Cleves
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Alexander Shumaker
- Microbial Biology Graduate Program, Rutgers University, New Brunswick, NJ 08901, USA
| | - JunMo Lee
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA; Current address: Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
45
|
Thermal Stress and Resilience of Corals in a Climate-Changing World. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse8010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coral reef ecosystems are under the direct threat of increasing atmospheric greenhouse gases, which increase seawater temperatures in the oceans and lead to bleaching events. Global bleaching events are becoming more frequent and stronger, and understanding how corals can tolerate and survive high-temperature stress should be accorded paramount priority. Here, we review evidence of the different mechanisms that corals employ to mitigate thermal stress, which include association with thermally tolerant endosymbionts, acclimatisation, and adaptation processes. These differences highlight the physiological diversity and complexity of symbiotic organisms, such as scleractinian corals, where each species (coral host and microbial endosymbionts) responds differently to thermal stress. We conclude by offering some insights into the future of coral reefs and examining the strategies scientists are leveraging to ensure the survival of this valuable ecosystem. Without a reduction in greenhouse gas emissions and a divergence from our societal dependence on fossil fuels, natural mechanisms possessed by corals might be insufficient towards ensuring the ecological functioning of coral reef ecosystems.
Collapse
|
46
|
Guzman C, Atrigenio M, Shinzato C, Aliño P, Conaco C. Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea. PeerJ 2019; 7:e7785. [PMID: 31579631 PMCID: PMC6768060 DOI: 10.7717/peerj.7785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Background Heliopora coerulea, the blue coral, is a reef building octocoral that is reported to have a higher optimum temperature for growth compared to most scleractinian corals. This octocoral has been observed to grow over both live and dead scleractinians and to dominate certain reefs in the Indo-Pacific region. The molecular mechanisms underlying the ability of H. coerulea to tolerate warmer seawater temperatures and to effectively compete for space on the substrate remain to be elucidated. Methods In this study, we subjected H. coerulea colonies to various temperatures for up to 3 weeks. The growth and photosynthetic efficiency rates of the coral colonies were measured. We then conducted pairwise comparisons of gene expression among the different coral tissue regions to identify genes and pathways that are expressed under different temperature conditions. Results A horizontal growth rate of 1.13 ± 0.25 mm per week was observed for corals subjected to 28 or 31 °C. This growth rate was significantly higher compared to corals exposed at 26 °C. This new growth was characterized by the extension of whitish tissue at the edges of the colony and was enriched for a matrix metallopeptidase, a calcium and integrin binding protein, and other transcripts with unknown function. Tissues at the growth margin and the adjacent calcified encrusting region were enriched for transcripts related to proline and riboflavin metabolism, nitrogen utilization, and organic cation transport. The calcified digitate regions, on the other hand, were enriched for transcripts encoding proteins involved in cell-matrix adhesion, translation, receptor-mediated endocytosis, photosynthesis, and ion transport. Functions related to lipid biosynthesis, extracellular matrix formation, cell migration, and oxidation-reduction processes were enriched at the growth margin in corals subjected for 3 weeks to 28 or 31 °C relative to corals at 26 °C. In the digitate region of the coral, transcripts encoding proteins that protect against oxidative stress, modify cell membrane composition, and mediate intercellular signaling pathways were enriched after just 24 h of exposure to 31 °C compared to corals at 28 °C. The overall downregulation of gene expression observed after 3 weeks of sustained exposure to 31 °C is likely compensated by symbiont metabolism. Discussion These findings reveal that the different regions of H. coerulea have variable gene expression profiles and responses to temperature variation. Under warmer conditions, the blue coral invests cellular resources toward extracellular matrix formation and cellular migration at the colony margins, which may promote rapid tissue growth and extension. This mechanism enables the coral to colonize adjacent reef substrates and successfully overgrow slower growing scleractinian corals that may already be more vulnerable to warming ocean waters.
Collapse
Affiliation(s)
- Christine Guzman
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Michael Atrigenio
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Chuya Shinzato
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Porfirio Aliño
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
47
|
The Algal Symbiont Modifies the Transcriptome of the Scleractinian Coral Euphyllia paradivisa During Heat Stress. Microorganisms 2019; 7:microorganisms7080256. [PMID: 31409030 PMCID: PMC6723837 DOI: 10.3390/microorganisms7080256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022] Open
Abstract
The profound mutualistic symbiosis between corals and their endosymbiotic counterparts, Symbiodiniaceae algae, has been threatened by the increase in seawater temperatures, leading to breakdown of the symbiotic relationship-coral bleaching. To characterize the heat-stress response of the holobiont, we generated vital apo-symbiotic Euphyllia paradivisa corals that lacked the endosymbiotic algae. Using RNA sequencing, we analyzed the gene expression of these apo-symbionts vs. symbiotic ones, to test the effect of the algal presence on the tolerance of the coral. We utilized literature-derived lists of "symbiosis differentially expressed genes" and "coral heat-stress genes" in order to compare between the treatments. The symbiotic and apo-symbiotic samples were segregated into two separate groups with several different enriched gene ontologies. Our findings suggest that the presence of endosymbionts has a greater negative impact on the host than the environmental temperature conditions experienced by the holobiont. The peak of the stress reaction was identified as 28 °C, with the highest number of differentially expressed genes. We suggest that the algal symbionts increase coral holobiont susceptibility to elevated temperatures. Currently, we can only speculate whether coral species, such as E. paradivisa, with the plasticity to also flourish as apo-symbionts, may have a greater chance to withstand the upcoming global climate change challenge.
Collapse
|
48
|
Li N, Arief N, Edmands S. Effects of oxidative stress on sex-specific gene expression in the copepod Tigriopus californicus revealed by single individual RNA-seq. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100608. [PMID: 31325755 DOI: 10.1016/j.cbd.2019.100608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress reflects the imbalance of pro-oxidants and antioxidants. Prolonged oxidative stress can induce cellular damage, diseases and aging, and the effects may be sex-specific. Tigriopus californicus has recently been proposed as an alternative model system for sex-specific studies due to the absence of sex chromosomes. In this study, we used comparative transcriptomic analyses to assess sex-specific transcriptional responses to oxidative stress. Male and female individuals were maintained separately in one of three treatments: 1) control conditions with an algae diet, 2) pro-oxidant (H2O2) conditions with an algae diet or 3) decreased antioxidant conditions (reduced carotenoids due to a yeast diet). Single individual RNA-seq was then conducted for twenty-four libraries using Ligation Mediated RNA sequencing (LM-Seq). Variance in gene expression was partitioned into 62.3% between sexes, 26.85% among individuals and 10.85% among treatments. Within each of the three treatments, expression was biased toward females. However, compared to the control treatment, males in both pro-oxidant and decreased antioxidant treatments differentially expressed more genes while females differentially expressed fewer genes but with a greater magnitude of fold change. As the first study of copepods to apply single individual RNA-seq, the findings will contribute to a better understanding of transcriptomic variation among individuals as well as sex-specific response mechanisms to oxidative stress in the absence of sex chromosomes.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Natasha Arief
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| |
Collapse
|
49
|
Thomas L, López EH, Morikawa MK, Palumbi SR. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐building corals. Mol Ecol 2019; 28:3371-3382. [DOI: 10.1111/mec.15143] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Luke Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre Perth WA Australia
- Oceans Graduate School The UWA Oceans Institute, The University of Western Australia Perth WA Australia
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| | - Elora H. López
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| | - Megan K. Morikawa
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| | - Stephen R. Palumbi
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| |
Collapse
|
50
|
Nilo-Poyanco R, Vizoso P, Sanhueza D, Balic I, Meneses C, Orellana A, Campos-Vargas R. A Prunus persica genome-wide RNA-seq approach uncovers major differences in the transcriptome among chilling injury sensitive and non-sensitive varieties. PHYSIOLOGIA PLANTARUM 2019; 166:772-793. [PMID: 30203620 DOI: 10.1111/ppl.12831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 05/14/2023]
Abstract
Chilling injury represents a major constrain for crops productivity. Prunus persica, one of the most relevant rosacea crops, have early season varieties that are resistant to chilling injury, in contrast to late season varieties, which display chilling symptoms such as mealiness (dry, sandy fruit mesocarp) after prolonged storage at chilling temperatures. To uncover the molecular processes related to the ability of early varieties to withstand mealiness, postharvest and genome-wide RNA-seq assessments were performed in two early and two late varieties. Differences in juice content and ethylene biosynthesis were detected among early and late season fruits that became mealy after exposed to prolonged chilling. Principal component and data distribution analysis revealed that cold-stored late variety fruit displayed an exacerbated and unique transcriptome profile when compared to any other postharvest condition. A differential expression analysis performed using an empirical Bayes mixture modeling approach followed by co-expression and functional enrichment analysis uncover processes related to ethylene, lipids, cell wall, carotenoids and DNA metabolism, light response, and plastid homeostasis associated to the susceptibility or resistance of P. persica varieties to chilling stress. Several of the genes related to these processes are in quantitative trait loci (QTL) associated to mealiness in P. persica. Together, these analyses exemplify how P. persica can be used as a model for studying chilling stress in plants.
Collapse
Affiliation(s)
- Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paula Vizoso
- Centro de Propagación y Conservación Vegetal, Universidad Mayor, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Iván Balic
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Departamento de Ciencias Biológicas, Universidad de Los Lagos, Osorno, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|