1
|
Valdivia C, Newton JA, von Beeren C, O'Donnell S, Kronauer DJC, Russell JA, Łukasik P. Microbial symbionts are shared between ants and their associated beetles. Environ Microbiol 2023; 25:3466-3483. [PMID: 37968789 DOI: 10.1111/1462-2920.16544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
The transmission of microbial symbionts across animal species could strongly affect their biology and evolution, but our understanding of transmission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae) and their hundreds of closely associated insect guest species (myrmecophiles) can provide unique insights into interspecific microbial symbiont sharing. Here, we compared the microbiota of workers and larvae of the army ant Eciton burchellii with those of 13 myrmecophile beetle species using 16S rRNA amplicon sequencing. We found that the previously characterized specialized bacterial symbionts of army ant workers were largely absent from ant larvae and myrmecophiles, whose microbial communities were usually dominated by Rickettsia, Wolbachia, Rickettsiella and/or Weissella. Strikingly, different species of myrmecophiles and ant larvae often shared identical 16S rRNA genotypes of these common bacteria. Protein-coding gene sequences confirmed the close relationship of Weissella strains colonizing army ant larvae, some workers and several myrmecophile species. Unexpectedly, these strains were also similar to strains infecting dissimilar animals inhabiting very different habitats: trout and whales. Together, our data show that closely interacting species can share much of their microbiota, and some versatile microbial species can inhabit and possibly transmit across a diverse range of hosts and environments.
Collapse
Affiliation(s)
- Catalina Valdivia
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Justin A Newton
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Christoph von Beeren
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, USA
| | - Sean O'Donnell
- Department of Biodiversity, Earth & Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Ronchetti F, Polidori C, Schmitt T, Steffan-Dewenter I, Keller A. Bacterial gut microbiomes of aculeate brood parasites overlap with their aculeate hosts', but have higher diversity and specialization. FEMS Microbiol Ecol 2022; 98:6832279. [PMID: 36396342 DOI: 10.1093/femsec/fiac137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Despite growing interest in gut microbiomes of aculeate Hymenoptera, research so far focused on social bees, wasps, and ants, whereas non-social taxa and their brood parasites have not received much attention. Brood parasitism, however, allows to distinguish between microbiome components horizontally transmitted by spill-over from the host with such inherited through vertical transmission by mothers. Here, we studied the bacterial gut microbiome of adults in seven aculeate species in four brood parasite-host systems: two bee-mutillid (host-parasitoid) systems, one halictid bee-cuckoo bee system, and one wasp-chrysidid cuckoo wasp system. We addressed the following questions: (1) Do closely related species possess a more similar gut microbiome? (2) Do brood parasites share components of the microbiome with their host? (3) Do brood parasites have different diversity and specialization of microbiome communities compared with the hosts? Our results indicate that the bacterial gut microbiome of the studied taxa was species-specific, yet with a limited effect of host phylogenetic relatedness and a major contribution of shared microbes between hosts and parasites. However, contrasting patterns emerged between bee-parasite systems and the wasp-parasite system. We conclude that the gut microbiome in adult brood parasites is largely affected by their host-parasite relationships and the similarity of trophic food sources between hosts and parasites.
Collapse
Affiliation(s)
- Federico Ronchetti
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 2. 20133 Milan, Italy
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Phylogenomic analysis and metabolic role reconstruction of mutualistic Rhizobiales hindgut symbionts of Acromyrmex leaf-cutting ants. FEMS Microbiol Ecol 2022; 98:6652133. [PMID: 35906195 DOI: 10.1093/femsec/fiac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Rhizobiales are well-known plant-root nitrogen-fixing symbionts, but the functions of insect-associated Rhizobiales are poorly understood. We obtained genomes of three strains associated with Acromyrmex leaf-cutting ants and show that, in spite of being extracellular gut symbionts, they lost all pathways for essential amino acid biosynthesis, making them fully dependent on their hosts. Comparison with 54 Rhizobiales genomes showed that all insect-associated Rhizobiales lost the ability to fix nitrogen and that the Acromyrmex symbionts had exceptionally also lost the urease genes. However, the Acromyrmex strains share biosynthesis pathways for riboflavin vitamin, queuosine and a wide range of antioxidant enzymes likely to be beneficial for the ant fungus-farming symbiosis. We infer that the Rhizobiales symbionts catabolize excess of fungus-garden-derived arginine to urea, supplementing complementary Mollicutes symbionts that turn arginine into ammonia and infer that these combined symbiont activities stabilize the fungus-farming mutualism. Similar to the Mollicutes symbionts, the Rhizobiales species have fully functional CRISPR/Cas and R-M phage defenses, suggesting that these symbionts are important enough for the ant hosts to have precluded the evolution of metabolically cheaper defenseless strains.
Collapse
Affiliation(s)
- Mariya Zhukova
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Panagiotis Sapountzis
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Abstract
Within social insect colonies, microbiomes often differ between castes due to their different functional roles and between colony locations. Trachymyrmex septentrionalis fungus-growing ants form colonies throughout the eastern United States and northern Mexico that include workers, female and male alates (unmated reproductive castes), larvae, and pupae. How T. septentrionalis microbiomes vary across this geographic range and between castes is unknown. Our sampling of individual ants from colonies across the eastern United States revealed a conserved T. septentrionalis worker ant microbiome and revealed that worker ant microbiomes are more conserved within colonies than between them. A deeper sampling of individual ants from two colonies that included all available castes (pupae, larvae, workers, and female and male alates), from both before and after adaptation to controlled laboratory conditions, revealed that ant microbiomes from each colony, caste, and rearing condition were typically conserved within but not between each sampling category. Tenericute bacterial symbionts were especially abundant in these ant microbiomes and varied widely in abundance between sampling categories. This study demonstrates how individual insect colonies primarily drive the composition of their microbiomes and shows that these microbiomes are further modified by developmental differences between insect castes and the different environmental conditions experienced by each colony. IMPORTANCE This study investigates microbiome assembly in the fungus-growing ant Trachymyrmex septentrionalis, showing how colony, caste, and lab adaptation influence the microbiome and revealing unique patterns of mollicute symbiont abundance. We find that ant microbiomes differ strongly between colonies but less so within colonies. Microbiomes of different castes and following lab adaptation also differ in a colony-specific manner. This study advances our understanding of the nature of individuality in social insect microbiomes and cautions against the common practice of only sampling a limited number of populations to understand microbiome diversity and function.
Collapse
|
5
|
Zani RDOA, Ferro M, Bacci M. Three phylogenetically distinct and culturable diazotrophs are perennial symbionts of leaf-cutting ants. Ecol Evol 2021; 11:17686-17699. [PMID: 35003632 PMCID: PMC8717316 DOI: 10.1002/ece3.8213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023] Open
Abstract
The obligate mutualistic basidiomycete fungus, Leucocoprinus gongylophorus, mediates nutrition of leaf-cutting ants with carbons from vegetal matter. In addition, diazotrophic Enterobacteriales in the fungus garden and intestinal Rhizobiales supposedly mediate assimilation of atmospheric nitrogen, and Entomoplasmatales in the genus Mesoplasma, as well as other yet unidentified strains, supposedly mediate ant assimilation of other compounds from vegetal matter, such as citrate, fructose, and amino acids. Together, these nutritional partners would support the production of high yields of leafcutter biomass. In the present investigation, we propose that three phylogenetically distinct and culturable diazotrophs in the genera Ralstonia, Methylobacterium, and Pseudomonas integrate this symbiotic nutrition network, facilitating ant nutrition on nitrogen. Strains in these genera were often isolated and directly sequenced in 16S rRNA libraries from the ant abdomen, together with the nondiazotrophs Acinetobacter and Brachybacterium. These five isolates were underrepresented in libraries, suggesting that none of them is dominant in vivo. Libraries have been dominated by four uncultured Rhizobiales strains in the genera Liberibacter, Terasakiella, and Bartonella and, only in Acromyrmex ants, by the Entomoplasmatales in the genus Mesoplasma. Acromyrmex also presented small amounts of two other uncultured Entomoplasmatales strains, Entomoplasma and Spiroplasma. The absence of Entomoplasmatales in Atta workers implicates that the association with these bacteria is not mandatory for ant biomass production. Most of the strains that we detected in South American ants were genetically similar with strains previously described in association with leafcutters from Central and North America, indicating wide geographic dispersion, and suggesting fixed ecological services.
Collapse
Affiliation(s)
| | - Milene Ferro
- Centro de Estudos de Insetos Sociais (CEIS)Universidade Estadual Paulista (UNESP)Rio Claro ‐ SPBrazil
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais (CEIS)Universidade Estadual Paulista (UNESP)Rio Claro ‐ SPBrazil
- Departamento de Biologia Geral e AplicadaUniversidade Estadual Paulista (UNESP)Rio Claro ‐ SPBrazil
| |
Collapse
|
6
|
Negroni MA, Segers FHID, Vogelweith F, Foitzik S. Immune challenge reduces gut microbial diversity and triggers fertility-dependent gene expression changes in a social insect. BMC Genomics 2020; 21:816. [PMID: 33225893 PMCID: PMC7682046 DOI: 10.1186/s12864-020-07191-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
Background The gut microbiome can influence life history traits associated with host fitness such as fecundity and longevity. In most organisms, these two life history traits are traded-off, while they are positively linked in social insects. In ants, highly fecund queens can live for decades, while their non-reproducing workers exhibit much shorter lifespans. Yet, when fertility is induced in workers by death or removal of the queen, worker lifespan can increase. It is unclear how this positive link between fecundity and longevity is achieved and what role the gut microbiome and the immune system play in this. To gain insights into the molecular regulation of lifespan in social insects, we investigated fat body gene expression and gut microbiome composition in workers of the ant Temnothorax rugatulus in response to an experimental induction of fertility and an immune challenge. Results Fertile workers upregulated several molecular repair mechanisms, which could explain their extended lifespan. The immune challenge altered the expression of several thousand genes in the fat body, including many immune genes, and, interestingly, this transcriptomic response depended on worker fertility. For example, only fertile, immune-challenged workers upregulated genes involved in the synthesis of alpha-ketoglutarate, an immune system regulator, which extends the lifespan in Caenorhabditis elegans by down-regulating the TOR pathway and reducing oxidant production. Additionally, we observed a dramatic loss in bacterial diversity in the guts of the ants within a day of the immune challenge. Yet, bacterial density did not change, so that the gut microbiomes of many immune challenged workers consisted of only a single or a few bacterial strains. Moreover, the expression of immune genes was linked to the gut microbiome composition, suggesting that the ant host can regulate the microbiome in its gut. Conclusions Immune system flare-ups can have negative consequence on gut microbiome diversity, pointing to a previously underrated cost of immunity. Moreover, our results provide important insights into shifts in the molecular regulation of fertility and longevity associated with insect sociality.
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Francisca H I D Segers
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,Department for Applied Bioinformatics, Inst. of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Fanny Vogelweith
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,M2i Biocontrol, Parnac, France
| | - Susanne Foitzik
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| |
Collapse
|
7
|
Duan R, Xu H, Gao S, Gao Z, Wang N. Effects of Different Hosts on Bacterial Communities of Parasitic Wasp Nasonia vitripennis. Front Microbiol 2020; 11:1435. [PMID: 32774328 PMCID: PMC7381354 DOI: 10.3389/fmicb.2020.01435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitism is a special interspecific relationship in insects. Unlike most other ectoparasites, Nasonia vitripennis spend most of its life cycle (egg, larvae, pupae, and early adult stage) inside the pupae of flies, which is covered with hard puparium. Microbes play important roles in host development and help insect hosts to adapt to various environments. How the microbes of parasitic wasp respond to different fly hosts living in such close relationships motivated this investigation. In this study, we used N. vitripennis and three different fly pupa hosts (Lucilia sericata, Sarcophaga marshalli, and Musca domestica) to address this question, as well as to illustrate the potential transfer of bacteria through the trophic food chains. We found that N. vitripennis from different fly pupa hosts showed distinct microbiota, which means that the different fly hosts could affect the bacterial communities of their parasitic wasps. Some bacteria showed potential horizontal transfer through the trophic food chains, from the food through the fly to the parasitic wasp. We also found that the heritable endosymbiont Wolbachia could transferred from the fly host to the parasite and correlated with the bacterial communities of the corresponding parasitic wasps. Our findings provide new insight to the microbial interactions between parasite and host.
Collapse
Affiliation(s)
- Ruxin Duan
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Heng Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Shanshan Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ningxin Wang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
8
|
Dharampal PS, Diaz-Garcia L, Haase MAB, Zalapa J, Currie CR, Hittinger CT, Steffan SA. Microbial Diversity Associated with the Pollen Stores of Captive-Bred Bumble Bee Colonies. INSECTS 2020; 11:insects11040250. [PMID: 32316296 PMCID: PMC7240610 DOI: 10.3390/insects11040250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022]
Abstract
The pollen stores of bumble bees host diverse microbiota that influence overall colony fitness. Yet, the taxonomic identity of these symbiotic microbes is relatively unknown. In this descriptive study, we characterized the microbial community of pollen provisions within captive-bred bumble bee hives obtained from two commercial suppliers located in North America. Findings from 16S rRNA and ITS gene-based analyses revealed that pollen provisions from the captive-bred hives shared several microbial taxa that have been previously detected among wild populations. While diverse microbes across phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Ascomycota were detected in all commercial hives, significant differences were detected at finer-scale taxonomic resolution based on the supplier source. The causative agent of chalkbrood disease in honey bees, Ascosphaera apis, was detected in all hives obtained from one supplier source, although none of the hives showed symptoms of infection. The shared core microbiota across both commercial supplier sources consisted of two ubiquitous bee-associated groups, Lactobacillus and Wickerhamiella/Starmerella clade yeasts that potentially contribute to the beneficial function of the microbiome of bumble bee pollen provisions.
Collapse
Affiliation(s)
- Prarthana S. Dharampal
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Correspondence:
| | - Luis Diaz-Garcia
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA; (L.D.-G.); (J.Z.)
- Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Aguascalientes 20676, Mexico
| | - Max A. B. Haase
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.A.B.H.); (C.T.H.)
| | - Juan Zalapa
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA; (L.D.-G.); (J.Z.)
- USDA-ARS, Vegetable Crop Research Unit, Madison, WI 53706, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.A.B.H.); (C.T.H.)
| | - Shawn A. Steffan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- USDA-ARS, Vegetable Crop Research Unit, Madison, WI 53706, USA
| |
Collapse
|
9
|
Birer C, Moreau CS, Tysklind N, Zinger L, Duplais C. Disentangling the assembly mechanisms of ant cuticular bacterial communities of two Amazonian ant species sharing a common arboreal nest. Mol Ecol 2020; 29:1372-1385. [PMID: 32133714 DOI: 10.1111/mec.15400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus-growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species-specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants.
Collapse
Affiliation(s)
- Caroline Birer
- CNRS, UMR8172 EcoFoG, AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, Cayenne, France.,Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corrie S Moreau
- Departments of Entomology and Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Niklas Tysklind
- INRAE, UMR8172 EcoFoG, AgroParisTech, CIRAD, CNRS, Université des Antilles, Université de Guyane, Kourou, France
| | - Lucie Zinger
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Christophe Duplais
- CNRS, UMR8172 EcoFoG, AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, Cayenne, France
| |
Collapse
|
10
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. First Insight into Microbiome Profiles of Myrmecophilous Beetles and Their Host, Red Wood Ant Formica polyctena (Hymenoptera: Formicidae)-A Case Study. INSECTS 2020; 11:E134. [PMID: 32092972 PMCID: PMC7073670 DOI: 10.3390/insects11020134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 01/23/2023]
Abstract
Formica polyctena belongs to the red wood ant species group. Its nests provide a stable, food rich, and temperature and humidity controlled environment, utilized by a wide range of species, called myrmecophiles. Here, we used the high-throughput sequencing of the 16S rRNA gene on the Illumina platform for identification of the microbiome profiles of six selected myrmecophilous beetles (Dendrophilus pygmaeus, Leptacinus formicetorum, Monotoma angusticollis, Myrmechixenus subterraneus, Ptenidium formicetorum and Thiasophila angulata) and their host F. polyctena. Analyzed bacterial communities consisted of a total of 23 phyla, among which Proteobacteria, Actinobacteria, and Firmicutes were the most abundant. Two known endosymbionts-Wolbachia and Rickettsia-were found in the analyzed microbiome profiles and Wolbachia was dominant in bacterial communities associated with F. polyctena, M. subterraneus, L. formicetorum and P. formicetorum (>90% of reads). In turn, M. angusticollis was co-infected with both Wolbachia and Rickettsia, while in the microbiome of T. angulata, the dominance of Rickettsia has been observed. The relationships among the microbiome profiles were complex, and no relative abundance pattern common to all myrmecophilous beetles tested was observed. However, some subtle, species-specific patterns have been observed for bacterial communities associated with D. pygmaeus, M. angusticollis, and T. angulata.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| | - Grzegorz K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| | - Ewa Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| | - Bernard Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| |
Collapse
|
11
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. The microbiota of the Lasius fuliginosus – Pella laticollis myrmecophilous interaction. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1844322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- A. Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - M. Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - G. K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - E. Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - B. Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
12
|
Segers FHID, Kaltenpoth M, Foitzik S. Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecol Evol 2019; 9:13450-13467. [PMID: 31871657 PMCID: PMC6912891 DOI: 10.1002/ece3.5801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high-throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long-term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.
Collapse
Affiliation(s)
- Francisca H. I. D. Segers
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)FrankfurtGermany
- Behavioural Ecology and Social EvolutionInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
- Present address:
Applied Bioinformatics GroupInstitute of Cell Biology & NeuroscienceGoethe UniversityFrankfurtGermany
| | - Martin Kaltenpoth
- Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| | - Susanne Foitzik
- Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
13
|
Bosch TCG, Guillemin K, McFall-Ngai M. Evolutionary "Experiments" in Symbiosis: The Study of Model Animals Provides Insights into the Mechanisms Underlying the Diversity of Host-Microbe Interactions. Bioessays 2019; 41:e1800256. [PMID: 31099411 PMCID: PMC6756983 DOI: 10.1002/bies.201800256] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Current work in experimental biology revolves around a handful of animal species. Studying only a few organisms limits science to the answers that those organisms can provide. Nature has given us an overwhelming diversity of animals to study, and recent technological advances have greatly accelerated the ability to generate genetic and genomic tools to develop model organisms for research on host-microbe interactions. With the help of such models the authors therefore hope to construct a more complete picture of the mechanisms that underlie crucial interactions in a given metaorganism (entity consisting of a eukaryotic host with all its associated microbial partners). As reviewed here, new knowledge of the diversity of host-microbe interactions found across the animal kingdom will provide new insights into how animals develop, evolve, and succumb to the disease.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Zoological Institute, University of Kiel, 24118, Kiel, Germany
| | - Karen Guillemin
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Margaret McFall-Ngai
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
14
|
Tolley SJA, Nonacs P, Sapountzis P. Wolbachia Horizontal Transmission Events in Ants: What Do We Know and What Can We Learn? Front Microbiol 2019; 10:296. [PMID: 30894837 PMCID: PMC6414450 DOI: 10.3389/fmicb.2019.00296] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022] Open
Abstract
While strict vertical transmission insures the durability of intracellular symbioses, phylogenetic incongruences between hosts and endosymbionts suggest horizontal transmission must also occur. These horizontal acquisitions can have important implications for the biology of the host. Wolbachia is one of the most ecologically successful prokaryotes in arthropods, infecting an estimated 50–70% of all insect species. Much of this success is likely due to the fact that, in arthropods, Wolbachia is notorious for manipulating host reproduction to favor transmission through the female germline. However, its natural potential for horizontal transmission remains poorly understood. Here we evaluate the fundamental prerequisites for successful horizontal transfer, including necessary environmental conditions, genetic potential of bacterial strains, and means of mediating transfers. Furthermore, we revisit the relatedness of Wolbachia strains infecting the Panamanian leaf-cutting ant, Acromyrmex echinatior, and its inquiline social parasite, Acromyrmex insinuator, and compare our results to a study published more than 15 years ago by Van Borm et al. (2003). The results of this pilot study prompt us to reevaluate previous notions that obligate social parasitism reliably facilitates horizontal transfer and suggest that not all Wolbachia strains associated with ants have the same genetic potential for horizontal transmission.
Collapse
Affiliation(s)
- Sarah J A Tolley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peter Nonacs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
15
|
Telang A, Skinner J, Nemitz RZ, McClure AM. Metagenome and Culture-Based Methods Reveal Candidate Bacterial Mutualists in the Southern House Mosquito (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1170-1181. [PMID: 29668956 DOI: 10.1093/jme/tjy056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 06/08/2023]
Abstract
Mosquitoes are intensely studied as vectors of disease-causing pathogens, but we know relatively less about microbes that naturally reside in mosquitoes. Profiling resident bacteria in mosquitoes can help identify bacterial groups that can be exploited as a strategy of controlling mosquito populations. High-throughput 16S rRNA gene sequencing and traditional culture-based methods were used to identify bacterial assemblages in Culex quinquefasciatus Say (Diptera: Culicidae) in a tissue- and stage-specific design. In parallel, wild host Cx. quinquefasciatus was compared with our domestic strain. 16S rRNA genes survey finds that Cx. quinquefasciatus has taxonomically restricted bacterial communities, with 90% of its bacterial microbiota composed of eight distinctive bacterial groups: Nocardioidaceae (Actinomycetales), Microbacteriaceae (Actinomycetales), Flavobacteriaceae, Rhizobiales, Acetobacteraceae, Rickettsiaceae, Comamondaceae (Burkholderiales), and Enterobacteriaceae. Taking into account both metagenome- and culture-based methods, we suggest three bacterial groups, Acetobacteraceae, Flavobacteriaceae, and Enterobacteriaceae, as candidates for mutualists in Cx. quinquefasciatus. Members of these three bacterial families have been studied as mutualists, or even as symbionts, in other insect groups, so it is quite possible they play similar roles in mosquitoes.
Collapse
Affiliation(s)
- Aparna Telang
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL
| | - Jessica Skinner
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL
| | - Robert Z Nemitz
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL
| | | |
Collapse
|
16
|
Evolution and Diversity of Inherited Spiroplasma Symbionts in Myrmica Ants. Appl Environ Microbiol 2018; 84:AEM.02299-17. [PMID: 29196290 DOI: 10.1128/aem.02299-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Microbial partners play important roles in the biology and ecology of animals. In insects, maternally transmitted symbionts are especially common and can have host effects ranging from reproductive manipulation to nutrient provisioning and defense against natural enemies. In this study, we report a genus-wide association of Myrmica ants with the inherited bacterial symbiont Spiroplasma We screen Myrmica ants collected from the wild, including the invasive European fire ant, Myrmica rubra, and find an extraordinarily high prevalence of this symbiont-8 of 9 species, 42 of 43 colonies, and 250 of 276 individual workers harbored Spiroplasma-only one host species was uninfected. In our screens, each host species carried a distinct Spiroplasma strain, and none were infected with more than one strain. All symbionts belong to the citri clade, allied most closely with pathogenic strains of Spiroplasma infecting corn crops and honeybees, and there is strong evidence of host-symbiont persistence across evolutionary time scales. Genome sequencing of two Spiroplasma symbionts revealed candidate genes that may play a part in the symbiosis, a nutrient transporter absent from other Spiroplasma strains, and a ribosome-inactivating protein previously implicated in parasite defense. These results together suggest long-term, likely mutualistic, relationships atypical of Spiroplasma-insect associations with potential significance for broad ecological interactions with MyrmicaIMPORTANCE Animal-associated microbial symbionts can dramatically affect the biology of their hosts. The identification and characterization of these intimate partnerships remain an essential component of describing and predicting species interactions, especially for invasive host species. Ants perform crucial ecological functions as ecosystem engineers, scavengers, and predators, and ants in the genus Myrmica can be aggressive resource competitors and reach high densities in their native and invaded habitats. In this study, a novel symbiosis is identified between Myrmica ants and the facultative bacterial symbiont Spiroplasma Broad host distribution, high frequencies of infection, and host-symbiont codivergence over evolutionary time scales, an uncommon feature of Spiroplasma associations, suggest an important likely mutualistic interaction. Genome sequencing identified highly divergent gene candidates that may contribute to Spiroplasma's role as a possible defensive or nutritional partner in Myrmica.
Collapse
|
17
|
Moreira-Soto RD, Sanchez E, Currie CR, Pinto-Tomás AA. Ultrastructural and microbial analyses of cellulose degradation in leaf-cutter ant colonies. MICROBIOLOGY-SGM 2017; 163:1578-1589. [PMID: 29034862 DOI: 10.1099/mic.0.000546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Leaf-cutter ants (Atta and Acromyrmex) use fresh leaves to cultivate a mutualistic fungus (Leucoagaricus gongylophorus) for food in underground gardens. A new ant queen propagates the cultivar by taking a small fragment of fungus from her parent colony on her nuptial flight and uses it to begin her own colony. Recent research has shown that the ants' fungus gardens are colonized by symbiotic bacteria that perform important functions related to nitrogen fixation and have been implicated in contributing to plant biomass degradation. Here, we combine bacterial culturing in several media for counts and identification using the 16S rRNA gene with electron microscopy to investigate the process of cellulose degradation in the fungus garden and refuse dumps, and to assess the potential role of symbiotic bacteria. We show through electron microscopy that plant cell walls are visibly degraded in the bottom section of fungus gardens and refuse dumps, and that bacteria are more abundant in these sections. We also consistently isolated cellulolytic bacteria from all sections of fungus gardens. Finally, we show by culture-dependent and electron microscopy analysis that the fungus garden pellets carried by recently mated queens are colonized by fungus garden-associated bacteria. Taken together, our results indicate that cellulose is degraded in fungus gardens, and that fungus garden bacteria that may contribute to this deconstruction are vertically transmitted by new queens.
Collapse
Affiliation(s)
- Rolando Daniel Moreira-Soto
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Ethel Sanchez
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
| | - Cameron R Currie
- Great Lakes Bioenergy Research Center, Wisconsin, USA.,Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - Adrian A Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica.,Departamento de Bioquímica, Facultad de Medicina, Universidad de Costa Rica, Costa Rica.,Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
18
|
Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Diversity and Transmission of Gut Bacteria in Atta and Acromyrmex Leaf-Cutting Ants during Development. Front Microbiol 2017; 8:1942. [PMID: 29067008 PMCID: PMC5641371 DOI: 10.3389/fmicb.2017.01942] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022] Open
Abstract
The social Hymenoptera have distinct larval and adult stages separated by metamorphosis, which implies striking remodeling of external and internal body structures during the pupal stage. This imposes challenges to gut symbionts as existing cultures are lost and may or may not need to be replaced. To elucidate the extent to which metamorphosis interrupts associations between bacteria and hosts, we analyzed changes in gut microbiota during development and traced the transmission routes of dominant symbionts from the egg to adult stage in the leaf-cutting ants Acromyrmex echinatior and Atta cephalotes, which are both important functional herbivores in the New World tropics. Bacterial density remained similar across the developmental stages of Acromyrmex, but Atta brood had very low bacterial prevalences suggesting that bacterial gut symbionts are not actively maintained. We found that Wolbachia was the absolute dominant bacterial species across developmental stages in Acromyrmex and we confirmed that Atta lacks Wolbachia also in the immature stages, and had mostly Mollicutes bacteria in the adult worker guts. Wolbachia in Acromyrmex appeared to be transovarially transmitted similar to transmission in solitary insects. In contrast, Mollicutes were socially transmitted from old workers to newly emerged callows. We found that larval and pupal guts of both ant species contained Pseudomonas and Enterobacter bacteria that are also found in fungus gardens, but hardly or not in adult workers, suggesting they are beneficial only for larval growth and development. Our results reveal that transmission pathways for bacterial symbionts may be very different both between developmental stages and between sister genera and that identifying the mechanisms of bacterial acquisition and loss will be important to clarify their putative mutualistic functions.
Collapse
Affiliation(s)
- Mariya Zhukova
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Panagiotis Sapountzis
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer DJC, O'Donnell S, Koga R, Russell JA. The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol 2017; 26:3808-3825. [PMID: 28393425 DOI: 10.1111/mec.14140] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 01/01/2023]
Abstract
Symbiotic bacteria play important roles in the biology of their arthropod hosts. Yet the microbiota of many diverse and influential groups remain understudied, resulting in a paucity of information on the fidelities and histories of these associations. Motivated by prior findings from a smaller scale, 16S rRNA-based study, we conducted a broad phylogenetic and geographic survey of microbial communities in the ecologically dominant New World army ants (Formicidae: Dorylinae). Amplicon sequencing of the 16S rRNA gene across 28 species spanning the five New World genera showed that the microbial communities of army ants consist of very few common and abundant bacterial species. The two most abundant microbes, referred to as Unclassified Firmicutes and Unclassified Entomoplasmatales, appear to be specialized army ant associates that dominate microbial communities in the gut lumen of three host genera, Eciton, Labidus and Nomamyrmex. Both are present in other army ant genera, including those from the Old World, suggesting that army ant symbioses date back to the Cretaceous. Extensive sequencing of bacterial protein-coding genes revealed multiple strains of these symbionts coexisting within colonies, but seldom within the same individual ant. Bacterial strains formed multiple host species-specific lineages on phylogenies, which often grouped strains from distant geographic locations. These patterns deviate from those seen in other social insects and raise intriguing questions about the influence of army ant colony swarm-founding and within-colony genetic diversity on strain coexistence, and the effects of hosting a diverse suite of symbiont strains on colony ecology.
Collapse
Affiliation(s)
- Piotr Łukasik
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Justin A Newton
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Jon G Sanders
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Corrie S Moreau
- Department of Science and Education, Field Museum of Natural History, Chicago, IL, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2828-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Meseguer AS, Manzano-Marín A, Coeur d'Acier A, Clamens AL, Godefroid M, Jousselin E. Buchnerahas changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts. Mol Ecol 2016; 26:2363-2378. [DOI: 10.1111/mec.13910] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/30/2016] [Accepted: 10/27/2016] [Indexed: 02/02/2023]
Affiliation(s)
- A. S. Meseguer
- INRA; UMR 1062; Centre de Biologie pour la Gestion des Populations CBGP (INRA; IRD; CIRAD; Montpellier SupAgro); Montferrier-sur-Lez 34980 France
| | - A. Manzano-Marín
- INRA; UMR 1062; Centre de Biologie pour la Gestion des Populations CBGP (INRA; IRD; CIRAD; Montpellier SupAgro); Montferrier-sur-Lez 34980 France
| | - A. Coeur d'Acier
- INRA; UMR 1062; Centre de Biologie pour la Gestion des Populations CBGP (INRA; IRD; CIRAD; Montpellier SupAgro); Montferrier-sur-Lez 34980 France
| | - A.-L. Clamens
- INRA; UMR 1062; Centre de Biologie pour la Gestion des Populations CBGP (INRA; IRD; CIRAD; Montpellier SupAgro); Montferrier-sur-Lez 34980 France
| | - M. Godefroid
- INRA; UMR 1062; Centre de Biologie pour la Gestion des Populations CBGP (INRA; IRD; CIRAD; Montpellier SupAgro); Montferrier-sur-Lez 34980 France
| | - E. Jousselin
- INRA; UMR 1062; Centre de Biologie pour la Gestion des Populations CBGP (INRA; IRD; CIRAD; Montpellier SupAgro); Montferrier-sur-Lez 34980 France
| |
Collapse
|
22
|
Liu JN, Yu ZJ, Liu LM, Li NX, Wang RR, Zhang CM, Liu JZ. Identification, Distribution and Population Dynamics of Francisella-like Endosymbiont in Haemaphysalis doenitzi (Acari: Ixodidae). Sci Rep 2016; 6:35178. [PMID: 27731377 PMCID: PMC5059625 DOI: 10.1038/srep35178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/26/2016] [Indexed: 12/04/2022] Open
Abstract
Francisella-like endosymbionts (FLEs) with significant homology to Francisella tularensis (γ-proteobacteria) have been characterized in several tick species, whereas knowledge on their distribution and population dynamics in ticks remains meager. Hence, in the current study, we identified a novel Francisella-like endosymbiont (FLEs-Hd) from the tick Haemaphysalis doenitzi and evaluated the putative functions of this symbiont. Results indicated that FLEs-Hd had 100% infection rate and a perfect vertical transmission in H. doenitzi, and that it is distributed in ovaries, malpighian tubules, salivary glands and midguts of the ticks, suggesting that FLEs-Hd presumably is a crucial symbiont of the host without specific tissue tropism. To further explore the function of the symbiont, the population dynamics of FLEs-Hd at each developmental stage of ticks and in tissues at different reproductive statuses were determined by real-time quantitative polymerase chain reaction (real-time qPCR). Results showed that the high density and regular population dynamics of FLEs-Hd appeared in female ovaries, suggesting that the symbiont may provide necessary nutrients or regulators to ensure normal ovary development of ticks.
Collapse
Affiliation(s)
- Jian-Nan Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei, 050024, P. R. China
| | - Zhi-Jun Yu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei, 050024, P. R. China
| | - Li-Meng Liu
- Department of Integrative Biology, University of California, Berkeley, Valley Life Sciences Building, Room 5155A, Berkeley, CA, 94720-3140, USA
| | - Ning-Xin Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei, 050024, P. R. China
| | - Rong-Rong Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei, 050024, P. R. China
| | - Chun-Mian Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei, 050024, P. R. China
| | - Jing-Ze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei, 050024, P. R. China
| |
Collapse
|
23
|
Meirelles LA, McFrederick QS, Rodrigues A, Mantovani JD, de Melo Rodovalho C, Ferreira H, Bacci M, Mueller UG. Bacterial microbiomes from vertically transmitted fungal inocula of the leaf-cutting ant Atta texana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:630-640. [PMID: 27273758 DOI: 10.1111/1758-2229.12415] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/26/2016] [Indexed: 06/06/2023]
Abstract
Microbiome surveys provide clues for the functional roles of symbiotic microbial communities and their hosts. In this study, we elucidated bacterial microbiomes associated with the vertically transmitted fungal inocula (pellets) used by foundress queens of the leaf-cutting ant Atta texana as starter-cultures for new gardens. As reference microbiomes, we also surveyed bacterial microbiomes of foundress queens, gardens and brood of incipient nests. Pseudomonas, Acinetobacter, Propionibacterium and Corynebacterium were consistently present in high abundance in microbiomes. Some pellet and ant samples contained abundant bacteria from an Entomoplasmatales-clade, and a separate PCR-based survey of Entomoplasmatales bacteria in eight attine ant-genera from Brazil placed these bacteria in a monophyletic clade within the bacterial genus Mesoplasma. The attine ant-Mesoplasma association parallels a similar association between a closely related, monophyletic Entomoplasmatales-clade and army ants. Of thirteen A. texana nests surveyed, three nests with exceptionally high Mesoplasma abundance died, whereas the other nests survived. It is unclear whether Mesoplasma was the primary cause of mortality, or Mesoplasma became abundant in moribund nests for non-pathogenic reasons. However, the consistent and geographically widespread presence of Mesoplasma suggests an important functional role in the association with attine ants.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil
- Center for the Study of Social Insects, UNESP - São Paulo State University, Rio Claro, SP, Brazil
| | - Joana D Mantovani
- Center for the Study of Social Insects, UNESP - São Paulo State University, Rio Claro, SP, Brazil
| | - Cynara de Melo Rodovalho
- Center for the Study of Social Insects, UNESP - São Paulo State University, Rio Claro, SP, Brazil
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil
| | - Maurício Bacci
- Center for the Study of Social Insects, UNESP - São Paulo State University, Rio Claro, SP, Brazil
| | - Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
24
|
Brown BP, Wernegreen JJ. Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants. BMC Microbiol 2016; 16:140. [PMID: 27400652 PMCID: PMC4939635 DOI: 10.1186/s12866-016-0721-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/30/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Symbiotic associations between gut microbiota and their animal hosts shape the evolutionary trajectories of both partners. The genomic consequences of these relationships are significantly influenced by a variety of factors, including niche localization, interaction potential, and symbiont transmission mode. In eusocial insect hosts, socially transmitted gut microbiota may represent an intermediate point between free living or environmentally acquired bacteria and those with strict host association and maternal transmission. RESULTS We characterized the bacterial communities associated with an abundant ant species, Camponotus chromaiodes. While many bacteria had sporadic distributions, some taxa were abundant and persistent within and across ant colonies. Specially, two Acetobacteraceae operational taxonomic units (OTUs; referred to as AAB1 and AAB2) were abundant and widespread across host samples. Dissection experiments confirmed that AAB1 and AAB2 occur in C. chromaiodes gut tracts. We explored the distribution and evolution of these Acetobacteraceae OTUs in more depth. We found that Camponotus hosts representing different species and geographical regions possess close relatives of the Acetobacteraceae OTUs detected in C. chromaiodes. Phylogenetic analysis revealed that AAB1 and AAB2 join other ant associates in a monophyletic clade. This clade consists of Acetobacteraceae from three ant tribes, including a third, basal lineage associated with Attine ants. This ant-specific AAB clade exhibits a significant acceleration of substitution rates at the 16S rDNA gene and elevated AT content. Substitutions along 16S rRNA in AAB1 and AAB2 result in ~10 % reduction in the predicted rRNA stability. CONCLUSIONS Combined, these patterns in Camponotus-associated Acetobacteraceae resemble those found in cospeciating gut associates that are both socially and maternally transmitted. These associates may represent an intermediate point along an evolutionary trajectory manifest most extremely in symbionts with strict maternal transmission. Collectively, these results suggest that Acetobacteraceae may be a frequent and persistent gut associate in Camponotus species and perhaps other ant groups, and that its evolution is strongly impacted by this host association.
Collapse
Affiliation(s)
- Bryan P Brown
- Nicholas School of the Environment, Duke University, Box 3382, Durham, NC, 27708, USA
- Center for Genomic and Computational Biology, Duke University, Box 3382, Durham, NC, 27708, USA
| | - Jennifer J Wernegreen
- Nicholas School of the Environment, Duke University, Box 3382, Durham, NC, 27708, USA.
- Center for Genomic and Computational Biology, Duke University, Box 3382, Durham, NC, 27708, USA.
| |
Collapse
|