1
|
Martinengo E, Micarelli P, Reinero FR, Bertelloni F, Fratini F. Antibacterial activity in egg samples from small-spotted catshark Scyliorhinus canicula and nursehound Scyliorhinus stellaris: A preliminary investigation. JOURNAL OF FISH BIOLOGY 2024; 104:1638-1644. [PMID: 38387880 DOI: 10.1111/jfb.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The study aims to identify antibacterial properties in unfertilized eggs of Scyliorhinus canicula and Scyliorhinus stellaris. Despite challenging marine conditions, these eggs retain their integrity for extended periods and remain unaffected by pathogens. The antibacterial activity was measured using minimum inhibitory and minimum bactericidal concentration analysis. The eggs of S. stellaris exhibited a slight inhibitory effect against Staphylococcus aureus and Listeria monocytogenes, whereas both species' eggs showed no activity against gram-negative microorganisms.
Collapse
Affiliation(s)
- Elena Martinengo
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Primo Micarelli
- Sharks Studies Center-Scientific Institute, Massa Marittima, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | | | | | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Güell BA, McDaniel JG, Warkentin KM. Egg-Clutch Biomechanics Affect Escape-Hatching Behavior and Performance. Integr Org Biol 2024; 6:obae006. [PMID: 38585155 PMCID: PMC10995723 DOI: 10.1093/iob/obae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Arboreal embryos of phyllomedusine treefrogs hatch prematurely to escape snake predation, cued by vibrations in their egg clutches during attacks. However, escape success varies between species, from ∼77% in Agalychnis callidryas to just ∼9% in A. spurrelli at 1 day premature. Both species begin responding to snake attacks at similar developmental stages, when vestibular mechanosensory function begins, suggesting that sensory ability does not limit the hatching response in A. spurrelli. Agalychnis callidryas clutches are thick and gelatinous, while A. spurrelli clutches are thinner and stiffer. We hypothesized that this structural difference alters the egg motion excited by attacks. Since vibrations excited by snakes must propagate through clutches to reach embryos, we hypothesized that the species difference in attack-induced hatching may reflect effects of clutch biomechanics on the cues available to embryos. Mechanics predicts that thinner, stiffer structures have higher free vibration frequencies, greater spatial attenuation, and faster vibration damping than thicker, more flexible structures. We assessed clutch biomechanics by embedding small accelerometers in clutches of both species and recording vibrations during standardized excitation tests at two distances from the accelerometer. Analyses of recorded vibrations showed that A. spurrelli clutches have higher free vibration frequencies and greater vibration damping than A. callidryas clutches. Higher frequencies elicit less hatching in A. callidryas, and greater damping could reduce the amount of vibration embryos can perceive. To directly test if clutch structure affects escape success in snake attacks, we transplanted A. spurrelli eggs into A. callidryas clutches and compared their escape rates with untransplanted, age-matched conspecific controls. We also performed reciprocal transplantation of eggs between pairs of A. callidryas clutches as a method control. Transplanting A. spurrelli embryos into A. callidryas clutches nearly tripled their escape success (44%) compared to conspecific controls (15%), whereas transplanting A. callidryas embryos into different A. callidryas clutches only increased escape success by 10%. At hatching competence, A. callidryas eggs are no longer jelly-encapsulated, while A. spurrelli eggs retain their jelly coat. Therefore, we compared the hatching response and latency of A. spurrelli in de-jellied eggs and their control, jelly-encapsulated siblings using manual egg-jiggling to simulate predation cues. Embryos in de-jellied eggs were more likely to hatch and hatched faster than control siblings. Together, our results suggest that the properties of parentally produced egg-clutch structures, including their vibration biomechanics, constrain the information available to A. spurrelli embryos and contribute to interspecific differences in hatching responses to predator attacks.
Collapse
Affiliation(s)
- B A Güell
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - J G McDaniel
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - K M Warkentin
- Department of Biology, Boston University, Boston, MA 02215, USA
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
3
|
Pisciottano F, Campos MC, Penna C, Bruque CD, Gabaldón T, Saragüeta P. Positive selection in gamete interaction proteins in Carnivora. Mol Ecol 2024; 33:e17263. [PMID: 38318732 DOI: 10.1111/mec.17263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The absence of robust interspecific isolation barriers among pantherines, including the iconic South American jaguar (Panthera onca), led us to study molecular evolution of typically rapidly evolving reproductive proteins within this subfamily and related groups. In this study, we delved into the evolutionary forces acting on the zona pellucida (ZP) gamete interaction protein family and the sperm-oocyte fusion protein pair IZUMO1-JUNO across the Carnivora order, distinguishing between Caniformia and Feliformia suborders and anticipating few significant diversifying changes in the Pantherinae subfamily. A chromosome-resolved jaguar genome assembly facilitated coding sequences, enabling the reconstruction of protein evolutionary histories. Examining sequence variability across more than 30 Carnivora species revealed that Feliformia exhibited significantly lower diversity compared to its sister taxa, Caniformia. Molecular evolution analyses of ZP2 and ZP3, subunits directly involved in sperm-recognition, unveiled diversifying positive selection in Feliformia, Caniformia and Pantherinae, although no significant changes were linked to sperm binding. Structural cross-linking ZP subunits, ZP4 and ZP1 exhibited lower levels or complete absence of positive selection. Notably, the fusion protein IZUMO1 displayed prominent positive selection signatures and sites in basal lineages of both Caniformia and Feliformia, extending along the Caniformia subtree but absent in Pantherinae. Conversely, JUNO did not exhibit any positive selection signatures across tested lineages and clades. Eight Caniformia-specific positive selected sites in IZUMO1 were detected within two JUNO-interaction clusters. Our findings provide for the first time insights into the evolutionary trajectories of ZP proteins and the IZUMO1-JUNO gamete interaction pair within the Carnivora order.
Collapse
Affiliation(s)
- Francisco Pisciottano
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - María Clara Campos
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Clementina Penna
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad El Calafate SAMIC, El Calafate, Santa Cruz, Argentina
| | - Toni Gabaldón
- Barcelona Supercomputing Center (BSC), Institute for Research in Biomedicine (IRB), and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patricia Saragüeta
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Dong J, Pei K, Xu W, Gong M, Zhu W, Liu S, Tang M, Liu J, Xia X, Bu X, Nie L. Zona pellucida family genes in Chinese pond turtle: identification, expression profiles, and role in the spermatozoa acrosome reaction†. Biol Reprod 2023; 109:97-106. [PMID: 37140246 DOI: 10.1093/biolre/ioad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/12/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
The zona pellucida (ZP) is an extracellular matrix that surrounds all vertebrate eggs, and it is involved in fertilization and species-specific recognition. Numerous in-depth studies of the ZP proteins of mammals, birds, amphibians, and fishes have been conducted, but systematic investigation of the ZP family genes and their role during fertilization in reptiles has not been reported to date. In this study, we identified six turtle ZP (Tu-ZP) gene subfamilies (Tu-ZP1, Tu-ZP2, Tu-ZP3, Tu-ZP4, Tu-ZPD, and Tu-ZPAX) based on whole genome sequence data from Mauremys reevesii. We found that Tu-ZP4 had large segmental duplication and was distributed on three chromosomes, and we also detected gene duplication in the other Tu-ZP genes. To evaluate the role of Tu-ZP proteins in sperm-egg binding, we assessed the expression pattern of these Tu-ZP proteins and their ability to induce the spermatozoa acrosome reaction in M. reevesii. In conclusion, this is the first report of the existence of gene duplication of Tu-ZP genes and that Tu-ZP2, Tu-ZP3, and Tu-ZPD can induce acrosome exocytosis of spermatogenesis in the reptile.
Collapse
Affiliation(s)
- Jinxiu Dong
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Kejiao Pei
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wannan Xu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Mengmeng Gong
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wenrui Zhu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Siqi Liu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Min Tang
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jianjun Liu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xingquan Xia
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xinjiang Bu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Liuwang Nie
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
5
|
Okumura H, Mizuno A, Iwamoto E, Sakuma R, Nishio S, Nishijima KI, Matsuda T, Ujita M. New insights into the role of microheterogeneity of ZP3 during structural maturation of the avian equivalent of mammalian zona pellucida. PLoS One 2023; 18:e0283087. [PMID: 36943849 PMCID: PMC10030024 DOI: 10.1371/journal.pone.0283087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/11/2023] [Indexed: 03/23/2023] Open
Abstract
The egg coat including mammalian zona pellucida (ZP) and the avian equivalent, i.e., inner-perivitelline layer (IPVL), is a specialized extracellular matrix being composed of the ZP glycoproteins and surrounds both pre-ovulatory oocytes and ovulated egg cells in vertebrates. The egg coat is well known for its potential importance in both the reproduction and early development, although the underlying molecular mechanisms remain to be fully elucidated. Interestingly, ZP3, one of the ZP-glycoprotein family members forming scaffolds of the egg-coat matrices with other ZP glycoproteins, exhibits extreme but distinctive microheterogeneity to form a large number of isoelectric-point isoforms at least in the chicken IPVL. In the present study, we performed three-dimensional confocal imaging and two-dimensional polyacrylamide-gel electrophoresis (2D-PAGE) of chicken IPVLs that were isolated from the ovarian follicles at different growth stages before ovulation. The results suggest that the relative proportions of the ZP3 isoforms are differentially altered during the structural maturation of the egg-coat matrices. Furthermore, tandem mass spectrometry (MS/MS) analyses and ZP1 binding assays against separated ZP3 isoforms demonstrated that each ZP3 isoform contains characteristic modifications, and there are large differences among ZP3 isoforms in the ZP1 binding affinities. These results suggest that the microheterogeneity of chicken ZP3 might be regulated to be associated with the formation of egg-coat matrices during the structural maturation of chicken IPVL. Our findings may provide new insights into molecular mechanisms of egg-coat assembly processes.
Collapse
Affiliation(s)
- Hiroki Okumura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Ayaka Mizuno
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Eri Iwamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Rio Sakuma
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ken-Ichi Nishijima
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tsukasa Matsuda
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Minoru Ujita
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| |
Collapse
|
6
|
Anderson SAS, López-Fernández H, Weir JT. Ecology and the origin of non-ephemeral species. Am Nat 2022; 201:619-638. [PMID: 37130236 DOI: 10.1086/723763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractResearch over the past three decades has shown that ecology-based extrinsic reproductive barriers can rapidly arise to generate incipient species-but such barriers can also rapidly dissolve when environments change, resulting in incipient species collapse. Understanding the evolution of unconditional, "intrinsic" reproductive barriers is therefore important for understanding the longer-term buildup of biodiversity. In this article, we consider ecology's role in the evolution of intrinsic reproductive isolation. We suggest that this topic has fallen into a gap between disciplines: while evolutionary ecologists have traditionally focused on the rapid evolution of extrinsic isolation between co-occurring ecotypes, speciation geneticists studying intrinsic isolation in other taxa have devoted little attention to the ecological context in which it evolves. We argue that for evolutionary ecology to close this gap, the field will have to expand its focus beyond rapid adaptation and its traditional model systems. Synthesizing data from several subfields, we present circumstantial evidence for and against different forms of ecological adaptation as promoters of intrinsic isolation and discuss alternative forces that may be significant. We conclude by outlining complementary approaches that can better address the role of ecology in the evolution of nonephemeral reproductive barriers and, by extension, less ephemeral species.
Collapse
|
7
|
Rivera AM, Wilburn DB, Swanson WJ. Domain Expansion and Functional Diversification in Vertebrate Reproductive Proteins. Mol Biol Evol 2022; 39:msac105. [PMID: 35587583 PMCID: PMC9154058 DOI: 10.1093/molbev/msac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The rapid evolution of fertilization proteins has generated remarkable diversity in molecular structure and function. Glycoproteins of vertebrate egg coats contain multiple zona pellucida (ZP)-N domains (1-6 copies) that facilitate multiple reproductive functions, including species-specific sperm recognition. In this report, we integrate phylogenetics and machine learning to investigate how ZP-N domains diversify in structure and function. The most C-terminal ZP-N domain of each paralog is associated with another domain type (ZP-C), which together form a "ZP module." All modular ZP-N domains are phylogenetically distinct from nonmodular or free ZP-N domains. Machine learning-based classification identifies eight residues that form a stabilizing network in modular ZP-N domains that is absent in free domains. Positive selection is identified in some free ZP-N domains. Our findings support that strong purifying selection has conserved an essential structural core in modular ZP-N domains, with the relaxation of this structural constraint allowing free N-terminal domains to functionally diversify.
Collapse
Affiliation(s)
- Alberto M. Rivera
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Damien B. Wilburn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Willie J. Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Rivera AM, Swanson WJ. The Importance of Gene Duplication and Domain Repeat Expansion for the Function and Evolution of Fertilization Proteins. Front Cell Dev Biol 2022; 10:827454. [PMID: 35155436 PMCID: PMC8830517 DOI: 10.3389/fcell.2022.827454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The process of gene duplication followed by gene loss or evolution of new functions has been studied extensively, yet the role gene duplication plays in the function and evolution of fertilization proteins is underappreciated. Gene duplication is observed in many fertilization protein families including Izumo, DCST, ZP, and the TFP superfamily. Molecules mediating fertilization are part of larger gene families expressed in a variety of tissues, but gene duplication followed by structural modifications has often facilitated their cooption into a fertilization function. Repeat expansions of functional domains within a gene also provide opportunities for the evolution of novel fertilization protein. ZP proteins with domain repeat expansions are linked to species-specificity in fertilization and TFP proteins that experienced domain duplications were coopted into a novel sperm function. This review outlines the importance of gene duplications and repeat domain expansions in the evolution of fertilization proteins.
Collapse
Affiliation(s)
- Alberto M. Rivera
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
9
|
Brégeon M, Tomas D, Bernay B, Zatylny-Gaudin C, Georgeault S, Labas V, Réhault-Godbert S, Guyot N. Multifaceted roles of the egg perivitelline layer in avian reproduction: Functional insights from the proteomes of chicken egg inner and outer sublayers. J Proteomics 2022; 258:104489. [DOI: 10.1016/j.jprot.2022.104489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
|
10
|
Spies I, Drinan DP, Petrou EL, Spurr R, Tarpey C, Hartinger T, Larson W, Hauser L. Evidence for selection and spatially distinct patterns found in a putative zona pellucida gene in Pacific cod, and implications for management. Ecol Evol 2021; 11:16661-16679. [PMID: 34938464 PMCID: PMC8668774 DOI: 10.1002/ece3.8284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic differentiation has been observed in marine species even when no obvious barriers to gene flow exist, and understanding such differentiation is essential for effective fisheries management. Highly differentiated outlier loci can provide information on how genetic variation might not only contribute to local adaptation but may also be affected by historical demographic events. A locus which aligned to a predicted zona pellucida sperm-binding protein 3 gene (ZP3) in Atlantic cod (Gadus morhua) was previously identified as the highest outlier based on F ST in a RADseq study of Pacific cod (Gadus macrocephalus) across the West Coast of North America. However, because of the limited length of the RAD sequence and restricted geographic area of sampling, no conclusion on the functional significance of the observed variation was possible. In other marine species, ZP3 is involved in reproductive isolation, local adaptation, and has neofunctionalized as an antifreeze gene, and so it may provide important insights in functional population structure of Pacific cod. Here, we sequenced a 544-bp region of ZP3 in 230 Pacific cod collected from throughout their geographic range. We observed striking patterns of spatial structuring of ZP3 haplotypes, with a sharp break near Kodiak, Alaska, USA where populations within ~200 km of each other are nearly fixed for different haplotypes, contrasting a pattern of isolation by distance at other genetic markers in this region (F ST = 0.003). Phylogenetic analysis of ZP3 haplotypes revealed that the more southern haplotypes appear to be ancestral, with the northern haplotype evolving more recently, potentially in response to a novel selective pressure as Pacific cod recolonized northern latitudes after glaciation. The sharp break in haplotype frequencies suggests strong selective pressures are operating on small spatial scales and illustrates that selection can create high divergence even in marine species with ample opportunities for gene flow.
Collapse
Affiliation(s)
- Ingrid Spies
- Resource Ecology and Fisheries Management DivisionAlaska Fisheries Science CenterSeattleWashingtonUSA
| | - Daniel P. Drinan
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Eleni L. Petrou
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Rory Spurr
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Carolyn Tarpey
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Theodore Hartinger
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Wes Larson
- Ted Stevens Marine Research InstituteAlaska Fisheries Science Center/Auke Bay LaboratoryJuneauAlaskaUSA
| | - Lorenz Hauser
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
11
|
Killingbeck EE, Wilburn DB, Merrihew GE, MacCoss MJ, Swanson WJ. Proteomics support the threespine stickleback egg coat as a protective oocyte envelope. Mol Reprod Dev 2021; 88:500-515. [PMID: 34148267 PMCID: PMC8362008 DOI: 10.1002/mrd.23517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Ecological and behavioral factors have been suggested to underlie stickleback reproductive isolation and incipient speciation, but reproductive proteins mediating gamete recognition during fertilization have so far remained unexplored. To begin to investigate the contribution of reproductive proteins to stickleback reproductive isolation, we have characterized the stickleback egg coat proteome. We find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3, as in other teleost fish. Our molecular evolutionary analyses indicate that across teleosts, ZP3 but not ZP1 has experienced positive Darwinian selection. Mammalian ZP3 is also rapidly evolving, and surprisingly some residues under selection in stickleback and mammalian ZP3 directly align. Despite broad homology, however, we find differences between mammalian and stickleback ZP proteins with respect to glycosylation, disulfide bonding, and sites of synthesis. Taken together, the changes we observe in stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Izquierdo-Rico MJ, Moros-Nicolás C, Pérez-Crespo M, Laguna-Barraza R, Gutiérrez-Adán A, Veyrunes F, Ballesta J, Laudet V, Chevret P, Avilés M. ZP4 Is Present in Murine Zona Pellucida and Is Not Responsible for the Specific Gamete Interaction. Front Cell Dev Biol 2021; 8:626679. [PMID: 33537315 PMCID: PMC7848090 DOI: 10.3389/fcell.2020.626679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian eggs are surrounded by an extracellular matrix called the zona pellucida (ZP). This envelope participates in processes such as acrosome reaction induction, sperm binding, protection of the oviductal embryo, and may be involved in speciation. In eutherian mammals, this coat is formed of three or four glycoproteins (ZP1-ZP4). While Mus musculus has been used as a model to study the ZP for more than 35 years, surprisingly, it is the only eutherian species in which the ZP is formed of three glycoproteins Zp1, Zp2, and Zp3, Zp4 being a pseudogene. Zp4 was lost in the Mus lineage after it diverged from Rattus, although it is not known when precisely this loss occurred. In this work, the status of Zp4 in several murine rodents was tested by phylogenetic, molecular, and proteomic analyses. Additionally, assays of cross in vitro fertilization between three and four ZP rodents were performed to test the effect of the presence of Zp4 in murine ZP and its possible involvement in reproductive isolation. Our results showed that Zp4 pseudogenization is restricted to the subgenus Mus, which diverged around 6 MYA. Heterologous in vitro fertilization assays demonstrate that a ZP formed of four glycoproteins is not a barrier for the spermatozoa of species with a ZP formed of three glycoproteins. This study identifies the existence of several mouse species with four ZPs that can be considered suitable for use as an experimental animal model to understand the structural and functional roles of the four ZP proteins in other species, including human.
Collapse
Affiliation(s)
- Mª José Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Carla Moros-Nicolás
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Míriam Pérez-Crespo
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ricardo Laguna-Barraza
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution, UMR5554 CNRS/Université Montpellier/IRD/EPHE, Montpellier, France
| | - José Ballesta
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| |
Collapse
|
13
|
Wang Y, Chen F, He J, Xue G, Chen J, Xie P. Cellular and molecular modification of egg envelope hardening in fertilization. Biochimie 2020; 181:134-144. [PMID: 33333173 DOI: 10.1016/j.biochi.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
Fertilization is an essential process that fundamentally impacts fitness. An egg changes dramatically after fertilization mediating the beginning of life, which mainly includes the transformation of the egg envelope via hardening, which is thought to be due to complex reactions involved in the conversion of cellular and molecular. This review highlights the mechanisms of egg envelope hardening in teleost fish. We conclude that the egg envelope hardening might be carried out in two steps. (a) A metalloprotease (alveolin) hydrolyzes the N-terminal proline-glutamine (Pro-Gln) region of zona pellucida (ZP) 1 and (b) triggers intermolecular cross-linking to ZP3 catalyzed by transglutaminase (TGase). The post-fertilization hardening of the egg envelope is an evolutionarily conserved phenomenon across species. We discuss the biochemical function and interaction of some factors reported to be essential to egg envelope hardening in mammalian and nonmammalian species, including metalloprotease, TGase, peroxidase/ovoperoxidase, and other factors (carbohydrate moieties, zinc and Larp6 proteins), and the relevant data suggest that egg envelope hardening is crucial to block polyspermy in internal fertilization, in addition to protecting the developing embryo from mechanical shock and preventing bacterial infection in external fertilization. Increased knowledge of the processes of egg envelope hardening and fertilization is likely to make a remarkable contribution to reproduction and aquaculture.
Collapse
Affiliation(s)
- Yeke Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ge Xue
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Institute of Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environment, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|
14
|
Delia J, Bravo‐Valencia L, Warkentin KM. The evolution of extended parental care in glassfrogs: Do egg‐clutch phenotypes mediate coevolution between the sexes? ECOL MONOGR 2020. [DOI: 10.1002/ecm.1411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jesse Delia
- Department of Biology Boston University Boston 02214 Massachusetts USA
| | - Laura Bravo‐Valencia
- Profesional equipo de fauna silvestre Corantioquia Santa Fe de Antioquia Colombia
| | - Karen M. Warkentin
- Department of Biology Boston University Boston 02214 Massachusetts USA
- Smithsonian Tropical Research Institute Panamá 0843-03092 República de Panamá
| |
Collapse
|
15
|
Abstract
The perpetuation and preservation of distinct species rely on mechanisms that ensure that only interactions between gametes of the same species can give rise to viable and fertile offspring. Species-specificity can act at various stages, ranging from physical/behavioral pre-copulatory mechanisms, to pre-zygotic incompatibility during fertilization, to post-zygotic hybrid incompatibility. Herein, we focus on our current knowledge of the molecular mechanisms responsible for species-specificity during fertilization. While still poorly understood, decades of research have led to the discovery of molecules implicated in species-specific gamete interactions, starting from initial sperm-egg attraction to the binding of sperm and egg. While many of these molecules have been described as species-specific in their mode of action, relatively few have been demonstrated as such with definitive evidence. Thus, we also raise remaining questions that need to be addressed in order to characterize gamete interaction molecules as species-specific.
Collapse
|
16
|
Yeh HY, Tseng HY, Lin CP, Liao CP, Hsu JY, Huang WS. Rafting on floating fruit is effective for oceanic dispersal of flightless weevils. ACTA ACUST UNITED AC 2018; 221:jeb.190488. [PMID: 30352828 DOI: 10.1242/jeb.190488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/19/2018] [Indexed: 01/18/2023]
Abstract
Terrestrial species, especially non-vagile ones (those unable to fly or swim), cannot cross oceans without exploiting other animals or floating objects. However, the colonisation history of flightless Pachyrhynchus weevils, inferred from genetic data, reveals their ability to travel long distances to colonise remote islands. Here, we used captive-bred Pachyrhynchus jitanasaius to analyse (i) the physiological tolerance of weevils (egg, larva and adult stages) to different levels of salinity; (ii) the survival rate of larvae in a simulated ocean environment in the laboratory; and (iii) the survival rate of larvae in a field experiment in the ocean using fruit of the fish poison tree floating on the Kuroshio current in the Pacific Ocean. We found that the survival rate of larvae in seawater was lower than in fresh water, although if the larvae survived 7 days of immersion in seawater, some emerged as adults in the subsequent rearing process. No adults survived for more than 2 days, regardless of salinity level. After floating separately for 6 days in salt water in the laboratory and in the Kuroshio current, two of 18 larvae survived in the fruit. This study provides the first empirical evidence that P. jitanasaius larvae can survive 'rafting' on ocean currents and that the eggs and larvae of these weevils have the highest probability of crossing the oceanic barrier. This ability may facilitate over-the-sea dispersal of these flightless insects and further shape their distribution and speciation pattern in the Western Pacific islands.
Collapse
Affiliation(s)
- Hui-Ying Yeh
- Department of Life Science, National Chung Hsing University, Taichung 404, Taiwan
| | - Hui-Yun Tseng
- Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Chen-Pan Liao
- Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan
| | - Jung-Ya Hsu
- Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan
| | - Wen-San Huang
- Department of Life Science, National Chung Hsing University, Taichung 404, Taiwan .,Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan
| |
Collapse
|
17
|
Feng JM, Tian HF, Hu QM, Meng Y, Xiao HB. Evolution and multiple origins of zona pellucida genes in vertebrates. Biol Open 2018; 7:7/11/bio036137. [PMID: 30425109 PMCID: PMC6262864 DOI: 10.1242/bio.036137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animal egg coats are composed of different glycoproteins collectively named zona pellucida (ZP) proteins. The characterized vertebrate genes encoding ZP proteins have been classified into six subfamilies, and exhibit low similarity to the ZP genes characterized in certain invertebrates. The origin and evolution of the vertebrate ZP genes remain obscure. A search against 97 representative metazoan species revealed various numbers (ranging from three to 33) of different putative egg-coat ZP genes in all 47 vertebrates and several ZP genes in five invertebrate species, but no putative ZP gene was found in the other 45 species. Based on phylogenetic and synteny analyses, all vertebrate egg-coat ZP genes were classified into eight ZP gene subfamilies. Lineage- and species-specific gene duplications and gene losses occurred frequently and represented the main causes of the patchy distribution of the eight ZP gene subfamilies in vertebrates. Thorough phylogenetic analyses revealed that the vertebrate ZP genes could be traced to three independent origins but were not orthologues of the characterized invertebrate ZP genes. Our results suggested that vertebrate egg-coat ZP genes should be classified into eight subfamilies, and a putative evolutionary map is proposed. These findings would aid the functional and evolutionary analyses of these reproductive genes in vertebrates. Summary: Phylogenetic and synteny analyses indicate that the vertebrate zona pellucida (ZP) genes encoding egg coat proteins can be classified into eight subfamilies, and the evolutionary origins of these genes are discussed.
Collapse
Affiliation(s)
- Jin-Mei Feng
- Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan, Hubei Province 430056, China
| | - Hai-Feng Tian
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| | - Qiao-Mu Hu
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| | - Yan Meng
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| | - Han-Bing Xiao
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| |
Collapse
|
18
|
Shu L, Qiu J, Räsänen K. De novo oviduct transcriptome of the moor frog Rana arvalis: a quest for maternal effect candidate genes. PeerJ 2018; 6:e5452. [PMID: 30128207 PMCID: PMC6098945 DOI: 10.7717/peerj.5452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/22/2018] [Indexed: 12/02/2022] Open
Abstract
Maternal effects can substantially affect ecological and evolutionary processes in natural populations. However, as they often are environmentally induced, establishing their genetic basis is challenging. One important, but largely neglected, source of maternal effects are egg coats (i.e., the maternally derived extracellular matrix that surrounds the embryo). In the moor frog, the gelatinous egg coats (i.e., egg jelly) are produced in the mother’s oviduct and consist primarily of highly glycosylated mucin type O-glycans. These O-glycans affect jelly water balance and, subsequently, contribute to adaptive divergence in embryonic acid tolerance. To identify candidate genes for maternal effects, we conducted RNAseq transcriptomics on oviduct samples from seven R. arvalis females, representing the full range of within and among population variation in embryonic acid stress tolerance across our study populations. De novo sequencing of these oviduct transcriptomes detected 124,071 unigenes and functional annotation analyses identified a total of 57,839 unigenes, of which several identified genes likely code for variation in egg jelly coats. These belonged to two main groups: mucin type core protein genes and five different types of glycosylation genes. We further predict 26,711 gene-linked microsatellite (simple sequence repeats) and 231,274 single nucleotide polymorphisms. Our study provides the first set of genomic resources for R. arvalis, an emerging model system for the study of ecology and evolution in natural populations, and gives insight into the genetic architecture of egg coat mediated maternal effects.
Collapse
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, Swiss Federal Institute of Technology in Zürich, Zürich, Switzerland
| | - Jie Qiu
- Institutue of Crop Science and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Katja Räsänen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, Swiss Federal Institute of Technology in Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Abstract
All animal oocytes are surrounded by a glycoproteinaceous egg coat, a specialized extracellular matrix that serves both structural and species-specific roles during fertilization. Egg coat glycoproteins polymerize into the extracellular matrix of the egg coat using a conserved protein-protein interaction module-the zona pellucida (ZP) domain-common to both vertebrates and invertebrates, suggesting that the basic structural features of egg coats have been conserved across hundreds of millions of years of evolution. Egg coat proteins, as with other proteins involved in reproduction, are frequently found to be rapidly evolving. Given that gamete compatibility must be maintained for the fitness of sexually reproducing organisms, this finding is somewhat paradoxical and suggests a role for adaptive diversification in reproductive protein evolution. Here we review the structure and function of metazoan egg coat proteins, with an emphasis on the potential role their evolution has played in the creation and maintenance of species boundaries.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
20
|
Shen M, Di G, Li M, Fu J, Dai Q, Miao X, Huang M, You W, Ke C. Proteomics Studies on the three Larval Stages of Development and Metamorphosis of Babylonia areolata. Sci Rep 2018; 8:6269. [PMID: 29674673 PMCID: PMC5908917 DOI: 10.1038/s41598-018-24645-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
The ivory shell, Babylonia areolata, is a commercially important aquaculture species in the southeast coast of mainland China. The middle veliger stage, later veliger stage, and juvenile stage are distinct larval stages in B. areolata development. In this study, we used label-free quantification proteomics analysis of the three developmental stages of B. areolata. We identified a total of 5,583 proteins, of which 1,419 proteins expression level showed significant differential expression. The results of gene ontology enrichment analysis showed that the number of proteins involved in metabolic and cellular processes were the most abundant. Those proteins mostly had functions such as binding, catalytic activity and transporter activity. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that the number of proteins involved in the ribosome, carbon metabolism, and lysosome pathways were the most abundant, indicating that protein synthesis and the immune response were active during the three stages of development. This is the first study to use proteomics and real-time PCR to study the early developmental stages of B. areolata, which could provide relevant data on gastropod development. Our results provide insights into the novel aspects of protein function in shell formation, body torsion, changes in feeding habits, attachment and metamorphosis, immune-related activities in B. areolata larvae.
Collapse
Affiliation(s)
- Minghui Shen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Hainan Academy of Ocean and Fisheries Sciences, Haikou, 570206, China
| | - Guilan Di
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China. .,College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Min Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jingqiang Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Qi Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiulian Miao
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
21
|
Svensson O, Gräns J, Celander MC, Havenhand J, Leder EH, Lindström K, Schöld S, van Oosterhout C, Kvarnemo C. Immigrant reproductive dysfunction facilitates ecological speciation. Evolution 2017; 71:2510-2521. [PMID: 28791680 DOI: 10.1111/evo.13323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/01/2017] [Accepted: 08/05/2017] [Indexed: 01/20/2023]
Abstract
The distributions of species are not only determined by where they can survive - they must also be able to reproduce. Although immigrant inviability is a well-established concept, the fact that immigrants also need to be able to effectively reproduce in foreign environments has not been fully appreciated in the study of adaptive divergence and speciation. Fertilization and reproduction are sensitive life-history stages that could be detrimentally affected for immigrants in non-native habitats. We propose that "immigrant reproductive dysfunction" is a hitherto overlooked aspect of reproductive isolation caused by natural selection on immigrants. This idea is supported by results from experiments on an externally fertilizing fish (sand goby, Pomatoschistus minutus). Growth and condition of adults were not affected by non-native salinity whereas males spawning as immigrants had lower sperm motility and hatching success than residents. We interpret these results as evidence for local adaptation or acclimation of sperm, and possibly also components of paternal care. The resulting loss in fitness, which we call "immigrant reproductive dysfunction," has the potential to reduce gene flow between populations with locally adapted reproduction, and it may play a role in species distributions and speciation.
Collapse
Affiliation(s)
- Ola Svensson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Current Address: School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Johanna Gräns
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Malin C Celander
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jonathan Havenhand
- Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Department of Marine Sciences, University of Gothenburg, Tjärnö, SE-452 96 Strömstad, Sweden
| | - Erica H Leder
- Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Department of Biology, University of Turku, FI-20014 Turun yliopisto, Finland.,Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Kai Lindström
- Environmental and Marine Biology, Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Sofie Schöld
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Current Address: Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, SE-603 80 Norrköping, Sweden
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
22
|
Springate L, Frasier TR. Gamete compatibility genes in mammals: candidates, applications and a potential path forward. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170577. [PMID: 28878999 PMCID: PMC5579115 DOI: 10.1098/rsos.170577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/31/2017] [Indexed: 06/01/2023]
Abstract
Fertilization represents a critical stage in biology, where successful alleles of a previous generation are shuffled into new arrangements and subjected to the forces of selection in the next generation. Although much research has been conducted on how variation in morphological and behavioural traits lead to variation in fertilization patterns, surprisingly little is known about fertilization at a molecular level, and specifically about how genes expressed on the sperm and egg themselves influence fertilization patterns. In mammals, several genes have been identified whose products are expressed on either the sperm or the egg, and which influence the fertilization process, but the specific mechanisms are not yet known. Additionally, in 2014 an interacting pair of proteins was identified: 'Izumo' on the sperm, and 'Juno' on the egg. With the identification of these genes comes the first opportunity to understand the molecular aspects of fertilization in mammals, and to identify how the genetic characteristics of these genes influence fertilization patterns. Here, we review recent progress in our understanding of fertilization and gamete compatibility in mammals, which should provide a helpful guide to researchers interested in untangling the molecular mechanisms of fertilization and the resulting impacts on population biology and evolutionary processes.
Collapse
|
23
|
Thompson AW, Furness AI, Stone C, Rade CM, Ortí G. Microanatomical diversification of the zona pellucida in aplochelioid killifishes. JOURNAL OF FISH BIOLOGY 2017; 91:126-143. [PMID: 28555871 DOI: 10.1111/jfb.13332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
This study investigates zona pellucida (ZP) ultrastructure in fertilized eggs of annual killifishes (suborder Aplocheiloidei), a group of highly specialized fishes that are able to survive desiccation for several weeks to months before they hatch. Little is known about ZP or chorionic ultrastructure sustaining these life-history modes, so scanning electron microscopy (SEM) was used to describe this trait in a large number of aplocheiloids with a focus on the family Rivulidae and the genus Hypsolebias. New images of ZP ultrastructure for 52 aplocheiloid species are provided, more than doubling the number characterized thus far. The evolution of chorionic structure within this group is studied using these new data. Characters were coded into a morphological matrix and optimized onto a consensus phylogeny to assess phylogenetic signal and reconstruct ancestral character states. Although ZP characters seem highly homoplastic and exhibit a large amount of structural convergence among lineages, aplocheiloid killifishes have evolved a number of unique structures associated with the chorion. Some annual species seem to have lost long filaments because eggs are deposited in the soil instead of being adhered to aquatic plants.
Collapse
Affiliation(s)
- A W Thompson
- The George Washington University, Department of Biological Sciences, 2023 G St NW, Washington, D.C., 20052, U.S.A
| | - A I Furness
- University of California Irvine, Department of Biological Sciences, 321 Steinhaus Hall University of California Irvine, Irvine, CA, 92697, U.S.A
| | - C Stone
- The George Washington University, Department of Biological Sciences, 2023 G St NW, Washington, D.C., 20052, U.S.A
| | - C M Rade
- The George Washington University, Department of Biological Sciences, 2023 G St NW, Washington, D.C., 20052, U.S.A
| | - G Ortí
- The George Washington University, Department of Biological Sciences, 2023 G St NW, Washington, D.C., 20052, U.S.A
| |
Collapse
|
24
|
Şahar U, Deveci R. Profiling N-glycans of the egg jelly coat of the sea urchin Paracentrotus lividus by MALDI-TOF mass spectrometry and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectrometry systems. Mol Reprod Dev 2017; 84:401-407. [PMID: 28295836 DOI: 10.1002/mrd.22794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/04/2017] [Indexed: 01/29/2023]
Abstract
Sea urchin eggs are surrounded by a carbohydrate-rich layer, termed the jelly coat, that consists of polysaccharides and glycoproteins. In the present study, we describe two mass spectrometric strategies to characterize the N-glycosylation of the Paracentrotus lividus egg jelly coat, which has an alecithal-type extracellular matrix like mammalian eggs. Egg jelly was isolated, lyophilized, and dialyzed, followed by peptide N-glycosidase F (PNGase-F) treatment to release N-glycans from their protein chain. These N-glycans were then derivatized by permethylation reaction, and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectroscopy (CapLC ESI-Ion trap-MS/MS). N-glycans in the egg jelly coat glycoproteins were indicated by sodiated molecules at m/z 1579.8, 1783.9, 1988.0, 2192.0, and 2397.1 for permethylated oligosaccharides on MALDI-TOF MS. Fragmentation and structural characterization of these oligosaccharides were performed by ESI-Ion trap MS/MS. Then, MALDI-TOF-MS and ESI-Ion trap-MS/MS spectra were interpreted using the GlycoWorkbench software suite, a tool for building, displaying, and profiling glycan masses, to identify the original oligosaccharide structures. The oligosaccharides of the isolated egg jelly coat were mainly of the high mannose type.
Collapse
Affiliation(s)
- Umut Şahar
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Bornova, İzmir
| | - Remziye Deveci
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Bornova, İzmir
| |
Collapse
|
25
|
Pintar MR, Resetarits WJ. Persistence of an egg mass polymorphism in Ambystoma maculatum: differential performance under high and low nutrients. Ecology 2017; 98:1349-1360. [PMID: 28247910 DOI: 10.1002/ecy.1789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/14/2017] [Accepted: 02/16/2017] [Indexed: 11/09/2022]
Abstract
Polymorphisms play critical roles in allowing organisms to adapt to novel environments while enabling ecological speciation under divergent selection. Ambystoma maculatum, the spotted salamander, exhibits a unique polymorphism in the structure and appearance of its egg masses with two common morphs, white and clear. Amphibian egg jelly layers mediate interactions between embryos and the environment and are more responsive to ecological pressures of natural selection than other egg coat components. The A. maculatum egg mass polymorphism was hypothesized to be adaptive with regard to varying dissolved nutrient levels in ponds. We conducted two mesocosm experiments, collected field data, and constructed a population projection model to determine how dissolved nutrient levels affect embryonic and larval development and relate to the distribution of the morphs in natural ponds. We found that upon hatching there was an interaction between nutrient level and egg mass morph wherein individuals from white morphs were larger in low nutrient habitats. This interaction persisted throughout the larval stage, and along with the higher abundance of white morphs in ponds with low conductivity, we demonstrate that the white morph is advantageous in low nutrient environments. Our findings provide evidence for the role of environmental heterogeneity in enabling the persistence of a structural egg mass polymorphism, with maintenance occurring across multiple scales and persistence across its range. This indicates that polymorphisms can maximize performance in heterogeneous environments, while persisting over long timescales without leading to sympatric speciation.
Collapse
Affiliation(s)
- Matthew R Pintar
- Department of Biology, University of Mississippi, University, Mississippi, 38677, USA
| | - William J Resetarits
- Department of Biology, University of Mississippi, University, Mississippi, 38677, USA
| |
Collapse
|
26
|
Mu H, Sun J, Heras H, Chu KH, Qiu JW. An integrated proteomic and transcriptomic analysis of perivitelline fluid proteins in a freshwater gastropod laying aerial eggs. J Proteomics 2017; 155:22-30. [PMID: 28095328 DOI: 10.1016/j.jprot.2017.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 11/27/2022]
Abstract
Proteins of the egg perivitelline fluid (PVF) that surrounds the embryo are critical for embryonic development in many animals, but little is known about their identities. Using an integrated proteomic and transcriptomic approach, we identified 64 proteins from the PVF of Pomacea maculata, a freshwater snail adopting aerial oviposition. Proteins were classified into eight functional groups: major multifunctional perivitellin subunits, immune response, energy metabolism, protein degradation, oxidation-reduction, signaling and binding, transcription and translation, and others. Comparison of gene expression levels between tissues showed that 22 PVF genes were exclusively expressed in albumen gland, the female organ that secretes PVF. Base substitution analysis of PVF and housekeeping genes between P. maculata and its closely related species Pomacea canaliculata showed that the reproductive proteins had a higher mean evolutionary rate. Predicted 3D structures of selected PVF proteins showed that some nonsynonymous substitutions are located at or near the binding regions that may affect protein function. The proteome and sequence divergence analysis revealed a substantial amount of maternal investment in embryonic nutrition and defense, and higher adaptive selective pressure on PVF protein-coding genes when compared with housekeeping genes, providing insight into the adaptations associated with the unusual reproductive strategy in these mollusks. SIGNIFICANCE There has been great interest in studying reproduction-related proteins as such studies may not only answer fundamental questions about speciation and evolution, but also solve practical problems of animal infertility and pest outbreak. Our study has demonstrated the effectiveness of an integrated proteomic and transcriptomic approach in understanding the heavy maternal investment of proteins in the eggs of a non-model snail, and how the reproductive proteins may have evolved during the transition from laying underwater eggs to aerial eggs.
Collapse
Affiliation(s)
- Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jin Sun
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)-CONICET CCT-La Plata, La Plata, Argentina; Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, Argentina
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
27
|
Shu L, Laurila A, Suter MJF, Räsänen K. Molecular phenotyping of maternally mediated parallel adaptive divergence withinRana arvalisandRana temporaria. Mol Ecol 2016; 25:4564-79. [DOI: 10.1111/mec.13786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology; Eawag; Duebendorf 8600 Switzerland
- Institute of Integrative Biology; ETH Zürich; Zürich 8092 Switzerland
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics; Evolutionary Biology Center; Uppsala University; Uppsala 75236 Sweden
| | - Marc J.-F. Suter
- Department of Environmental Toxicology; Eawag; Duebendorf 8600 Switzerland
- Department of Environmental Systems Science; ETH Zürich; Zürich 8092 Switzerland
| | - Katja Räsänen
- Department of Aquatic Ecology; Eawag; Duebendorf 8600 Switzerland
- Institute of Integrative Biology; ETH Zürich; Zürich 8092 Switzerland
| |
Collapse
|
28
|
Weicksel SE, Mahadav A, Moyle M, Cipriani PG, Kudron M, Pincus Z, Bahmanyar S, Abriola L, Merkel J, Gutwein M, Fernandez AG, Piano F, Gunsalus KC, Reinke V. A novel small molecule that disrupts a key event during the oocyte-to-embryo transition in C. elegans. Development 2016; 143:3540-3548. [PMID: 27510972 DOI: 10.1242/dev.140046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
The complex cellular events that occur in response to fertilization are essential for mediating the oocyte-to-embryo transition. Here, we describe a comprehensive small-molecule screen focused on identifying compounds that affect early embryonic events in Caenorhabditis elegans We identify a single novel compound that disrupts early embryogenesis with remarkable stage and species specificity. The compound, named C22, primarily impairs eggshell integrity, leading to osmotic sensitivity and embryonic lethality. The C22-induced phenotype is dependent upon the upregulation of the LET-607/CREBH transcription factor and its candidate target genes, which primarily encode factors involved in diverse aspects of protein trafficking. Together, our data suggest that in the presence of C22, one or more key components of the eggshell are inappropriately processed, leading to permeable, inviable embryos. The remarkable specificity and reversibility of this compound will facilitate further investigation into the role and regulation of protein trafficking in the early embryo, as well as serve as a tool for manipulating the life cycle for other studies such as those involving aging.
Collapse
Affiliation(s)
- Steven E Weicksel
- Dept. of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Assaf Mahadav
- Dept. of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA Center for Genomics and Systems Biology, Dept. of Biology, New York University, New York, NY 10003, USA
| | - Mark Moyle
- Dept. of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patricia G Cipriani
- Center for Genomics and Systems Biology, Dept. of Biology, New York University, New York, NY 10003, USA
| | - Michelle Kudron
- Dept. of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zachary Pincus
- Dept. of Developmental Biology and Dept. of Genetics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Shirin Bahmanyar
- Dept. of Molecular Cell and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, West Haven, CT 06516, USA
| | - Janie Merkel
- Yale Center for Molecular Discovery, West Haven, CT 06516, USA
| | - Michelle Gutwein
- Center for Genomics and Systems Biology, Dept. of Biology, New York University, New York, NY 10003, USA
| | | | - Fabio Piano
- Center for Genomics and Systems Biology, Dept. of Biology, New York University, New York, NY 10003, USA Division of Biological Sciences, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Dept. of Biology, New York University, New York, NY 10003, USA Division of Biological Sciences, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Valerie Reinke
- Dept. of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Patiño S, Keever CC, Sunday JM, Popovic I, Byrne M, Hart MW. SpermBindinDivergence under Sexual Selection and Concerted Evolution in Sea Stars. Mol Biol Evol 2016; 33:1988-2001. [DOI: 10.1093/molbev/msw081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
30
|
Do female newts modify thermoregulatory behavior to manipulate egg size? J Therm Biol 2016; 57:72-7. [PMID: 27033041 DOI: 10.1016/j.jtherbio.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 01/02/2023]
Abstract
Reproductive females manipulate offspring phenotypes by modifying conditions during embryogenesis. In ectotherms, the environmental control over embryogenesis is often realized by changes in maternal thermoregulation during gravidity. To determine if reproduction influences thermoregulatory behavior in species where females lay eggs shortly after fertilization (strict oviparity), we compared preferred body temperatures (Tp) between reproductive (egg-laying) and non-reproductive female newts, Ichthyosaura alpestris. Next, we exposed reproductive females to temperatures mimicking Tp ranges of reproductive and non-reproductive individuals to find out whether the maternally modified thermal regime influences ovum and jelly coat volume, and early cleavage rates at the time of oviposition. In the thermal gradient, reproductive females maintained their body temperatures within a narrower range than non-reproductive individuals. The exposure of ovipositing females to temperatures preferred during their reproductive and non-reproductive period had a negligible influence on egg size and early cleavage rates. We conclude that the modification of maternal thermoregulatory behavior provides a limited opportunity to manipulate egg traits in newts.
Collapse
|
31
|
Shu L, Laurila A, Räsänen K. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis. Sci Rep 2015; 5:14201. [PMID: 26381453 PMCID: PMC4585641 DOI: 10.1038/srep14201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/19/2015] [Indexed: 02/01/2023] Open
Abstract
Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca(2+) influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca(2+) balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress.
Collapse
Affiliation(s)
- Longfei Shu
- Eawag, Department of Aquatic Ecology, Switzerland and ETH Zurich, Institute of Integrative Biology, Switzerland
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Sweden
| | - Katja Räsänen
- Eawag, Department of Aquatic Ecology, Switzerland and ETH Zurich, Institute of Integrative Biology, Switzerland
| |
Collapse
|