1
|
Korfmann K, Abu Awad D, Tellier A. Weak seed banks influence the signature and detectability of selective sweeps. J Evol Biol 2023; 36:1282-1294. [PMID: 37551039 DOI: 10.1111/jeb.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023]
Abstract
Seed banking (or dormancy) is a widespread bet-hedging strategy, generating a form of population overlap, which decreases the magnitude of genetic drift. The methodological complexity of integrating this trait implies it is ignored when developing tools to detect selective sweeps. But, as dormancy lengthens the ancestral recombination graph (ARG), increasing times to fixation, it can change the genomic signatures of selection. To detect genes under positive selection in seed banking species it is important to (1) determine whether the efficacy of selection is affected, and (2) predict the patterns of nucleotide diversity at and around positively selected alleles. We present the first tree sequence-based simulation program integrating a weak seed bank to examine the dynamics and genomic footprints of beneficial alleles in a finite population. We find that seed banking does not affect the probability of fixation and confirm expectations of increased times to fixation. We also confirm earlier findings that, for strong selection, the times to fixation are not scaled by the inbreeding effective population size in the presence of seed banks, but are shorter than would be expected. As seed banking increases the effective recombination rate, footprints of sweeps appear narrower around the selected sites and due to the scaling of the ARG are detectable for longer periods of time. The developed simulation tool can be used to predict the footprints of selection and draw statistical inference of past evolutionary events in plants, invertebrates, or fungi with seed banks.
Collapse
Affiliation(s)
- Kevin Korfmann
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, München, Germany
| | - Diala Abu Awad
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, München, Germany
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, France
| | - Aurélien Tellier
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, München, Germany
| |
Collapse
|
2
|
Zhang K, Wu J, Deng D, Zhao H, Liu Q, Peng S, Zhang Y, Zhou Z. Population genetic differentiation of Daphnia sinensis in a lasting high-phosphorus Chinese lake, Lake Chaohu. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.913738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ecological shifts (e.g., eutrophication) can affect the genetic differentiation of zooplankton populations in lakes. However, the role of environmental change in a lasting high-phosphorus lake driving the genetic differentiation of zooplankton population structure over time is poorly understood. In this paper, the changes of the genetic diversity and differentiation of Daphnia sinensis population were studied by using the mitochondrial COI gene and microsatellite markers on modern groups (from January to June 2016) and historic groups (obtained from resting eggs in the sediments) in Lake Chaohu. Based on the microsatellite markers, six modern groups were clustered into two clusters (the WG cluster and SG cluster) during the seasonal dynamics, whereas the genetic differentiation of the five historic groups showed a wave-like pattern and had evolved into four clusters. Moreover, the haplotype network showed that six modern groups had one origin center whereas five historic groups had two origin centers based on the mitochondrial COI gene marker. Fu’s Fs neutral test and Tajima’s test indicated that the five historic groups deviated from neutral evolution and showed a bottleneck effect in the history process. Water temperature and total dissolved phosphorus were obviously associated with the seasonal genetic differentiation of D. sinensis, whereas nitrogen content of the sediments was significantly related to the long-term microevolution of D. sinensis in the high-phosphorus environment. Therefore, the changing pattern of D. sinensis population genetic structure was one of the environmental selections probably combined with co-evolutionary, where rapid-increasing nitrogen level had a large impact on D. sinensis population genetic structure in lasting high phosphorus environment in Lake Chaohu.
Collapse
|
3
|
Nickel J, Cordellier M. Cost-saving population genomic investigation of Daphnia longispina complex resting eggs using whole-genome amplification and pre-sequencing screening. Ecol Evol 2022; 12:e9682. [PMID: 36582775 PMCID: PMC9793289 DOI: 10.1002/ece3.9682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Resting stages of aquatic organisms that accumulate in the sediment over time are an exceptional resource that allows direct insights into past populations and addressing evolutionary questions. This is of particular interest in taxa that face relatively new environmental challenges, e.g., climate change and eutrophication, such as the Daphnia longispina species complex, a keystone zooplankton group in European freshwater ecosystems. However, genomic analysis might be challenging as DNA yield from many of these resting stages can be low and the material degraded. To reliably allow the resequencing of single Daphnia resting eggs from different sediment layers and characterize genomic changes through time, we performed whole-genome amplification to obtain DNA amounts suitable for genome resequencing and tested multiple protocols involving egg isolation, whole-genome amplification kits, and library preparation. A pre-sequencing contamination screening was developed, consisting of amplifying mitochondrial Daphnia and bacterial markers, to quickly assess and exclude possibly contaminated samples. In total, we successfully amplified and sequenced nine genomes from Daphnia resting eggs that could be identified as Daphnia longispina species. We analyzed the genome coverage and heterozygosity of these samples to optimize this method for future projects involving population genomic investigation of the resting egg bank.
Collapse
Affiliation(s)
- Jana Nickel
- Institute of Animal Cell and Systems BiologyUniversity of HamburgHamburgGermany
| | - Mathilde Cordellier
- Institute of Animal Cell and Systems BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
4
|
Wang Z, Zhang F, Jin Q, Wang Y, Wang W, Deng D. Transcriptome analysis of different life-history stages and screening of male-biased genes in Daphnia sinensis. BMC Genomics 2022; 23:589. [PMID: 35964016 PMCID: PMC9375365 DOI: 10.1186/s12864-022-08824-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the life history of Daphnia, the reproductive mode of parthenogenesis and sexual reproduction alternate in aquatic ecosystem, which are often affected by environmental and genetic factors. Recently, the sex-biased genes are of great significance for clarifying the origin and evolution of reproductive transformation and the molecular regulation mechanism of sex determination in Daphnia. Although some genes on reproductive transition of Daphnia had been researched, molecular mechanism on the maintenance of sexually dimorphic phenotypes of Daphnia are still not well known, including differentially expressed genes in different life-history stages. Results In this study, four life-history stages of Daphnia sinensis, juvenile female (JF), parthenogenetic female (PF), sexual female (SF) and male (M), were performed for transcriptome, and male-biased genes were screened. A total of 110437 transcripts were obtained and assembled into 22996 unigenes. In the four life-history stages (JF, PF, SF and M), the number of unique unigenes is respectively 2863, 445, 437 and 586, and the number of common unigenes is 9708. The differentially expressed genes (DEGs) between male and other three female stages (M vs JF, M vs PF and M vs SF) were 4570, 4358 and 2855, respectively. GO gene enrichment analysis showed that the up-regulated genes in male were mainly enriched in hydrolase activity and peptidase activity. Thirty-six genes in male were significantly higher expression than in the three female stages, including one Doublesex (Dsx) gene, one laminin gene, five trypsin genes and one serine protease genes, and one chitin synthase gene and two chitinase genes. Conclusions Our results showed that thirty-six candidate genes may be as the male-biased genes involving in the maintenance of sexually dimorphic phenotypes. This work will provide a reference for further exploring the functional genes related to sex differentiation in Daphnia species. Moreover, according to previous investigations, we thought that the expression level of functional genes may be related to the life-history stages of organisms, and may be also affected by different Daphnia species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08824-x.
Collapse
Affiliation(s)
- Ziyan Wang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Feiyun Zhang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Qide Jin
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Yeping Wang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Wenping Wang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China.
| | - Daogui Deng
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China.
| |
Collapse
|
5
|
Tsugeki N, Nakane K, Doi H, Ochi N, Kuwae M. Reconstruction of 100-year dynamics in Daphnia spawning activity revealed by sedimentary DNA. Sci Rep 2022; 12:1741. [PMID: 35110566 PMCID: PMC8810866 DOI: 10.1038/s41598-021-03899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Environmental DNA (eDNA) is currently developing as a powerful tool for assessing aquatic species dynamics. However, its utility as an assessment tool for quantification remain under debate as the sources of eDNA for different species is not always known. Therefore, accumulating information about eDNA sources from different species is urgently required. The objective of our study was to evaluate whether sedimentary DNA targeting two Daphnia species, D. galeata and D. pulicaria, could track Daphnia population dynamics and resting egg production. Applying a quantitative PCR targeting the mitochondrial 12S rRNA gene on sediment cores collected in Lake Biwa, Japan, we compared sedimentary DNA concentration of Daphnia with the abundance of remains and ephippia, reflecting their abundance and resting egg production, respectively. We found that the sedimentary DNA concentrations of Daphnia for the past century were inconsistent with their population abundance. However, the concentration was highly correlated with the resting egg production. Our results provide evidence that ephippia with resting eggs, released during spawning activities, was a significant source of Daphnia DNA archived in sediments. Our work provides critical insights for using sedimentary DNA as a monitoring tool for egg production dating back 100 years.
Collapse
Affiliation(s)
- Narumi Tsugeki
- Faculty of Law, Matsuyama University, Matsuyama, 790-8578, Ehime, Japan.
| | - Kai Nakane
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Ehime, Japan
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, Kobe, 650-0047, Hyogo, Japan
| | - Natsuki Ochi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Ehime, Japan
| | - Michinobu Kuwae
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Ehime, Japan
| |
Collapse
|
6
|
Le Cam S, Daguin‐Thiébaut C, Bouchemousse S, Engelen AH, Mieszkowska N, Viard F. A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity. Evol Appl 2020; 13:500-514. [PMID: 32431732 PMCID: PMC7045713 DOI: 10.1111/eva.12837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).
Collapse
Affiliation(s)
- Sabrina Le Cam
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| | - Claire Daguin‐Thiébaut
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| | - Sarah Bouchemousse
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| | | | - Nova Mieszkowska
- Marine Biological Association of the U.K. (MBA)PlymouthUK
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Frédérique Viard
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| |
Collapse
|
7
|
Isanta Navarro J, Kowarik C, Wessels M, Straile D, Martin‐Creuzburg D. Resilience to changes in lake trophic state: Nutrient allocation into Daphnia resting eggs. Ecol Evol 2019; 9:12813-12825. [PMID: 31788216 PMCID: PMC6875673 DOI: 10.1002/ece3.5759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
During past decades, many lakes underwent drastic human-caused changes in trophic state with strong implications for population dynamics and food web processes. We investigated the influence of trophic state on nutrient allocation into Daphnia resting eggs. The production of resting eggs is an important survival strategy, allowing Daphnia to cope with unfavorable environmental conditions. Allocation of essential nutrients into resting eggs may crucially influence embryonic development and offspring survival and thus is of great ecological and evolutionary interest. The capacity of Daphnia to adjust the allocation of nutrients into resting eggs may depend on the dietary nutrient supply, which may vary with trophic state-related changes in the phytoplankton community composition. Resting eggs were isolated from sediment cores taken from Lake Constance, a large prealpine lake with a distinct eutrophication and reoligotrophication history, and analyzed for elemental (carbon, nitrogen, and phosphorus) and biochemical (sterols and fatty acids) nutrients. Carbon allocation into Daphnia resting eggs continuously decreased over time, irrespective of changes in trophic state. The allocation of nitrogen into Daphnia resting eggs followed the changes in trophic state, that is, nitrogen concentrations in resting eggs increased with eutrophication and decreased again with reoligotrophication. The allocation of phosphorus, sterols and long-chain polyunsaturated fatty acids, such as eicosapentaenoic acid, into Daphnia resting eggs did not change significantly over time. Changes in trophic state strikingly influenced all trophic levels in Lake Constance. However, nutrient allocation into Daphnia resting eggs was mostly resilient to changes in lake trophic state.
Collapse
Affiliation(s)
| | - Carmen Kowarik
- Limnological InstituteUniversity of KonstanzKonstanzGermany
- Present address:
EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | | | | | | |
Collapse
|
8
|
Tellier A. Persistent seed banking as eco-evolutionary determinant of plant nucleotide diversity: novel population genetics insights. THE NEW PHYTOLOGIST 2019; 221:725-730. [PMID: 30346030 DOI: 10.1111/nph.15424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/31/2018] [Indexed: 05/12/2023]
Abstract
Contents Summary 725 I. Introduction 725 II. Seed banks decrease the population extinction rate 726 III. Seed banks define the effective population size 727 IV. Seed banks affect the mutation rate 728 V. Seed banks affect the effective recombination rate 728 VI. Seed banks influence the rate and signatures of natural selection 729 VII. Conclusion 729 Acknowledgements 729 References 729 SUMMARY: Long-term persistent seed banking is a common temporal bet-hedging strategy in plants to adapt to unpredictable environments. The population genomics perspective developed in this article suggests that seed banking determines plant nucleotide diversity by decreasing the rate of genetic drift and the effect of linked selection while increasing mutational input. As a result, persistent seed banks are important factors determining the magnitude of the discrepancy between the census size of the above-ground plant population and its genetic diversity, an effect known as the Lewontin paradox. The theoretical population genetics predictions presented here can be tested by combining genome-wide polymorphism data with ecological studies of dormancy.
Collapse
Affiliation(s)
- Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, Liesel-Beckmann Strasse 2, 85354, Freising, Germany
| |
Collapse
|
9
|
Vandepitte K, Helsen K, Van Acker K, Mergeay J, Honnay O. Retention of gene diversity during the spread of a non-native plant species. Mol Ecol 2017; 26:3141-3150. [PMID: 28345193 DOI: 10.1111/mec.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/23/2017] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
Spatial expansion, which is a crucial stage in the process to successful biological invasion, is anticipated to profoundly affect the magnitude and spatial distribution of genetic diversity in novel colonized areas. Here, we show that, contrasting common expectations, Pyrenean rocket (Sisymbrium austriacum), retained SNP diversity as this introduced plant species descended in the Meuse River Basin. Allele frequencies did not mirror between-population distances along the predominant expansion axis. Reconstruction of invasion history based on the genotypes of historical herbarium specimens indicated no influence of additional introductions or multiple points of entry on this nongradual pattern. Assignment analysis suggested the admixture of distant upstream sources in recently founded downstream populations. River dynamics seem to have facilitated occasional long-distance dispersal which brought diversity to the expansion front and so maintained evolutionary potential. Our findings highlight the merit of a historical framework in interpreting extant patterns of genetic diversity in introduced species and underscore the need to integrate long-distance dispersal events in theoretical work on the genetic consequences of range expansion.
Collapse
Affiliation(s)
- Katrien Vandepitte
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Heverlee, Belgium
| | - Kenny Helsen
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Heverlee, Belgium.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kasper Van Acker
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Heverlee, Belgium
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Heverlee, Belgium
| |
Collapse
|
10
|
Abstract
Using data from 83 isolates from a single population, the population genomics of the microcrustacean Daphnia pulex are described and compared to current knowledge for the only other well-studied invertebrate, Drosophila melanogaster These two species are quite similar with respect to effective population sizes and mutation rates, although some features of recombination appear to be different, with linkage disequilibrium being elevated at short ([Formula: see text] bp) distances in D. melanogaster and at long distances in D. pulex The study population adheres closely to the expectations under Hardy-Weinberg equilibrium, and reflects a past population history of no more than a twofold range of variation in effective population size. Fourfold redundant silent sites and a restricted region of intronic sites appear to evolve in a nearly neutral fashion, providing a powerful tool for population genetic analyses. Amino acid replacement sites are predominantly under strong purifying selection, as are a large fraction of sites in UTRs and intergenic regions, but the majority of SNPs at such sites that rise to frequencies [Formula: see text] appear to evolve in a nearly neutral fashion. All forms of genomic sites (including replacement sites within codons, and intergenic and UTR regions) appear to be experiencing an [Formula: see text] higher level of selection scaled to the power of drift in D. melanogaster, but this may in part be a consequence of recent demographic changes. These results establish D. pulex as an excellent system for future work on the evolutionary genomics of natural populations.
Collapse
|
11
|
Viengkone M, Derocher AE, Richardson ES, Malenfant RM, Miller JM, Obbard ME, Dyck MG, Lunn NJ, Sahanatien V, Davis CS. Assessing polar bear ( Ursus maritimus) population structure in the Hudson Bay region using SNPs. Ecol Evol 2016; 6:8474-8484. [PMID: 28031799 PMCID: PMC5167041 DOI: 10.1002/ece3.2563] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 12/28/2022] Open
Abstract
Defining subpopulations using genetics has traditionally used data from microsatellite markers to investigate population structure; however, single‐nucleotide polymorphisms (SNPs) have emerged as a tool for detection of fine‐scale structure. In Hudson Bay, Canada, three polar bear (Ursus maritimus) subpopulations (Foxe Basin (FB), Southern Hudson Bay (SH), and Western Hudson Bay (WH)) have been delineated based on mark–recapture studies, radiotelemetry and satellite telemetry, return of marked animals in the subsistence harvest, and population genetics using microsatellites. We used SNPs to detect fine‐scale population structure in polar bears from the Hudson Bay region and compared our results to the current designations using 414 individuals genotyped at 2,603 SNPs. Analyses based on discriminant analysis of principal components (DAPC) and STRUCTURE support the presence of four genetic clusters: (i) Western—including individuals sampled in WH, SH (excluding Akimiski Island in James Bay), and southern FB (south of Southampton Island); (ii) Northern—individuals sampled in northern FB (Baffin Island) and Davis Strait (DS) (Labrador coast); (iii) Southeast—individuals from SH (Akimiski Island in James Bay); and (iv) Northeast—individuals from DS (Baffin Island). Population structure differed from microsatellite studies and current management designations demonstrating the value of using SNPs for fine‐scale population delineation in polar bears.
Collapse
Affiliation(s)
- Michelle Viengkone
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | | | - Evan Shaun Richardson
- Wildlife Research Division Science and Technology Branch Environment and Climate Change Canada University of Alberta Edmonton AB Canada
| | - René Michael Malenfant
- Department of Biological Sciences University of Alberta Edmonton AB Canada; Department of Biology University of New Brunswick Fredericton NB Canada
| | - Joshua Moses Miller
- Department of Biological Sciences University of Alberta Edmonton AB Canada; Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Martyn E Obbard
- Wildlife Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Trent University Peterborough ON Canada
| | - Markus G Dyck
- Department of Environment Government of Nunavut Igloolik NU Canada
| | - Nick J Lunn
- Wildlife Research Division Science and Technology Branch Environment and Climate Change Canada University of Alberta Edmonton AB Canada
| | - Vicki Sahanatien
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Corey S Davis
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| |
Collapse
|