1
|
Bae EK, Kang MJ, Lee SJ, Park EJ, Kim KT. Chromosome-level genome assembly of the Asian aspen Populus davidiana Dode. Sci Data 2023; 10:431. [PMID: 37414813 PMCID: PMC10326025 DOI: 10.1038/s41597-023-02350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
The genome of Populus davidiana, a keystone aspen species, has been sequenced to improve our understanding of the evolutionary and functional genomics of the Populus genus. The Hi-C scaffolding genome assembly resulted in a 408.1 Mb genome with 19 pseudochromosomes. The BUSCO assessment revealed that 98.3% of the genome matched the embryophytes dataset. A total of 31,862 protein-coding sequences were predicted, of which 31,619 were functionally annotated. The assembled genome was composed of 44.9% transposable elements. These findings provide new knowledge about the characteristics of the P. davidiana genome and will facilitate comparative genomics and evolutionary research on the genus Populus.
Collapse
Affiliation(s)
- Eun-Kyung Bae
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Min-Jeong Kang
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Seung-Jae Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Eung-Jun Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Republic of Korea.
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
2
|
Liu X, Wang Z, Wang W, Huang Q, Zeng Y, Jin Y, Li H, Du S, Zhang J. Origin and evolutionary history of Populus (Salicaceae): Further insights based on time divergence and biogeographic analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1031087. [PMID: 36618663 PMCID: PMC9815717 DOI: 10.3389/fpls.2022.1031087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Populus (Salicaceae) species harbour rich biodiversity and are widely distributed throughout the Northern Hemisphere. However, the origin and biogeography of Populus remain poorly understood. METHODS We infer the divergence times and the historical biogeography of the genus Populus through phylogenetic analysis of 34 chloroplast fragments based on a large sample. RESULTS AND DISCUSSION Eurasia is the likely location of the early divergences of Salicaceae after the Cretaceous-Paleogene (K-Pg) mass extinction, followed by recurrent spread to the remainder of the Old World and the New World beginning in the Eocene; the extant Populus species began to diversity during the early Oligocene (approximately 27.24 Ma), climate changes during the Oligocene may have facilitated the diversification of modern poplar species; three separate lineages of Populus from Eurasia colonized North America in the Cenozoic via the Bering Land Bridges (BLB); We hypothesize that the present day disjunction in Populus can be explained by two scenarios: (i) Populus likely originated in Eurasia and subsequently colonized other regions, including North America; and (ii) the fact that the ancestor of the genus Populus that was once widely distributed in the Northern Hemisphere and eventually wiped out due to the higher extinction rates in North America, similar to the African Rand flora. We hypothesize that disparities in extinction across the evolutionary history of Populus in different regions shape the modern biogeography of Populus. Further studies with dense sampling and more evidence are required to test these hypotheses. Our research underscores the significance of combining phylogenetic analyses with biogeographic interpretations to enhance our knowledge of the origin, divergence, and distribution of biodiversity in temperate plant floras.
Collapse
Affiliation(s)
- Xia Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qinqin Huang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yanfei Zeng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Jin
- Henan Academy of Forestry/Quality Testing Center for Forestry Products of National and Grassland Administration, Zhengzhou, China
| | - Honglei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
| | - Shuhui Du
- Forestry College, Shanxi Agricultural University, Shanxi, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
3
|
Du S, Hu X, Yang X, Yu W, Wang Z. Genetic diversity and population dynamic of Ziziphus jujuba var. spinosa (Bunge) Hu ex H. F. Chow in Central China. Ecol Evol 2022; 12:e9101. [PMID: 35898427 PMCID: PMC9309028 DOI: 10.1002/ece3.9101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/04/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Phylogeographic research concerning Central China has been rarely conducted. Population genetic and phylogeography of Ziziphus jujuba var. spinosa (also called sour jujube) were investigated to improve our understanding of plant phylogeographic patterns in Central China. Single-copy nuclear gene markers and complete chloroplast genome data were applied to 328 individuals collected from 21 natural populations of sour jujube in China. Nucleotide variation of sour jujube was relatively high (π = 0.00720, θ w = 0.00925), which resulted from the mating system and complex population dynamics. Analysis of molecular variation analysis revealed that most of the total variation was attributed to variation within populations, and a high level of genetic differentiation among populations was detected (F st = 0.197). Relatively low long-distance dispersal capability and vitality of pollen contributed to high genetic differentiation among populations. Differences in the environmental conditions and long distance among populations further restricted gene flow. Structure clustering analysis uncovered intraspecific divergence between central and marginal populations. Migrate analysis found a high level of gene flow between these two intraspecific groups. Bayesian skyline plot detected population expansion of these two intraspecific groups. Network and phylogeny analysis of chloroplast haplotypes also found intraspecific divergence, and the divergence time was estimated to occur at about 55.86 Ma. Haplotype native to the Loess Plateau was more ancient, and multiple glacial refugia of sour jujube were found to locate at the Loess Plateau, areas adjacent to the Qinling Mountains and Tianmu Mountains. Species distribution model analysis found a typical contraction-expansion model corresponding to the Quaternary climatic oscillations. In the future, the distribution of sour jujube may shift to high-latitude areas. This study provides new insights for phylogeographic research of temperate plant species distributed in Central China and sets a solid foundation for the application of the scientific management strategy of Z. jujuba var. spinosa.
Collapse
Affiliation(s)
- Shuhui Du
- College of Forestry, Shanxi Key Laboratory of Cultivation and Development on Functional Oil Trees in the Northern ChinaShanxi Agricultural University TaiguJinzhongChina
| | - Xiaoyan Hu
- College of Forestry, Shanxi Key Laboratory of Cultivation and Development on Functional Oil Trees in the Northern ChinaShanxi Agricultural University TaiguJinzhongChina
| | - Xiuyun Yang
- College of Forestry, Shanxi Key Laboratory of Cultivation and Development on Functional Oil Trees in the Northern ChinaShanxi Agricultural University TaiguJinzhongChina
| | - Wendong Yu
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| |
Collapse
|
4
|
Tang L, Liao X, Tembrock LR, Ge S, Wu Z. A chromosome-scale genome and transcriptomic analysis of the endangered tropical tree Vatica mangachapoi (Dipterocarpaceae). DNA Res 2022; 29:6529388. [PMID: 35171284 PMCID: PMC8882376 DOI: 10.1093/dnares/dsac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/12/2022] [Indexed: 11/23/2022] Open
Abstract
Vatica mangachapoi is a tropical tree species native to Southeast Asia. It has long been valued as a timber species because the wood resists decay, but it is now considered vulnerable to extinction due to habitat loss and overexploitation. Here, we present the first chromosome-level genome assembly of V. mangachapoi that we created by combining data from PacBio long read sequencing with Hi-C proximity ligation and Illumina short-read sequencing. The assembled genome was 456.21 Mb, containing 11 chromosome and a BUSCO score of 93.4%. From the newly assembled genome, 46,811 protein-coding genes were predicted. Repetitive DNA accounted for 53% of the genome. Phylogenomic and gene family analyses showed that V. mangachapoi diverged from a common ancestor of Gossypium raimondii 70 million years ago. Transcriptome analyses found 227 genes that were differentially expressed in the leaves of plants grown in normal soil relative to plants grown in dry, coastal, sandy soil. For these genes, we identified three significantly enriched with GO terms: responses to organonitrogen compounds, chitin-triggered immunity, and wound response. This genome provides an important comparative benchmark not only for future conservation work on V. mangachapoi but also for phylogenomics work on Dipterocarpaceae.
Collapse
Affiliation(s)
- Liang Tang
- Center for Terrestrial Biodiversity of the South China Sea, Hainan University , Haikou, Hainan 570228, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen , Shenzhen 518120, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University , Fort Collins, CO 80523, USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences , Beijing 100093, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen , Shenzhen 518120, China
| |
Collapse
|
5
|
Yang Z, Ma W, He X, Zhao T, Yang X, Wang L, Ma Q, Liang L, Wang G. Species divergence and phylogeography of Corylus heterophylla Fisch complex (Betulaceae): Inferred from molecular, climatic and morphological data. Mol Phylogenet Evol 2022; 168:107413. [PMID: 35031460 DOI: 10.1016/j.ympev.2022.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Historical geo-climatic changes have shaped the geographical distributions and genetic diversity of numerous plant taxa in East Asia, which promote species divergence and ultimately speciation. Here, we integrated multiple approaches, including molecular phylogeography, ecological niche modeling, and morphological traits to examine the nucleotide diversity and interspecific divergence within Corylus heterophylla complex (C. heterophylla, C. kweichowensis, and C. yunnanensis). These three sibling taxa harbored similar high levels of nucleotide diversity at the species level. The molecular data (SCNG and cpDNA) unanimously supported the division of C. heterophylla complex into two major clades, with C. yunnanensis diverged earlier from the complex, whereas C. heterophylla and C. kweichowensis could hardly be separated. The split between the two clades (c. 12.89 Ma) coincided with the formation of Sichuan Basin in the middle Miocene, while the divergence among and within the five subclades (YUN1-YUN3, HK1-HK2) occurred from the late Miocene to the Pleistocene. C. heterophylla of northern China experienced glacial contraction and interglacial expansion during the Quaternary, whereas C. kweichowensis and C. yunnanensis of southern China presented population expansion even during the last glacial maximum. Despite of high levels of genetic admixture between C. heterophylla and C. kweichowensis, significant ecological and morphological discrepancy as well as incomplete geographic isolation indicated that adaptive evolution triggered by divergent selection may have played important roles in incipient ecological speciation.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Wenxu Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Xin He
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Tiantian Zhao
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | | | - Lujun Wang
- Anhui Academy of Forestry, Hefei, 230031, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Guixi Wang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China.
| |
Collapse
|
6
|
Dang H, Zhang T, Li Y, Li G, Zhuang L, Pu X. Population Evolution, Genetic Diversity and Structure of the Medicinal Legume, Glycyrrhiza uralensis and the Effects of Geographical Distribution on Leaves Nutrient Elements and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:708709. [PMID: 35069610 PMCID: PMC8782460 DOI: 10.3389/fpls.2021.708709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/13/2021] [Indexed: 05/27/2023]
Abstract
Glycyrrhiza uralensis is a valuable medicinal legume, which occurs widely in arid and semi-arid regions. G. uralensis demand has risen steeply due to its high medical and commercial value. Interpret genome-wide information can stimulate the G. uralensis development as far as its increased bioactive compound levels, and plant yield are concerned. In this study, leaf nutrient concentration and photosynthetic chlorophyll index of G. uralensis were evaluated to determine the G. uralensis growth physiology in three habitats. We observed that G. uralensis nutrient levels and photosynthesis differed significantly in three regions (p < 0.05). Whole-genome re-sequencing of the sixty G. uralensis populations samples from different habitats was performed using an Illumina HiSeq sequencing platform to elucidate the distribution patterns, population evolution, and genetic diversity of G. uralensis. 150.06 Gb high-quality clean data was obtained after strict filtering. The 895237686 reads were mapped against the reference genome, with an average 89.7% mapping rate and 87.02% average sample coverage rate. A total of 6985987 SNPs were identified, and 117970 high-quality SNPs were obtained after filtering, which were subjected to subsequent analysis. Principal component analysis (PCA) based on interindividual SNPs and phylogenetic analysis based on interindividual SNPs showed that the G. uralensis samples could be categorized into central, southern, and eastern populations, which reflected strong genetic differentiation due to long periods of geographic isolation. In this study, a total of 131 candidate regions were screened, and 145 candidate genes (such as Glyur001802s00036258, Glyur003702s00044485, Glyur001802s00036257, Glyur007364s00047495, Glyur000028s00003476, and Glyur000398s00034457) were identified by selective clearance analysis based on Fst and θπ values. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed significant enrichment of 110 GO terms including carbohydrate metabolic process, carbohydrate biosynthetic process, carbohydrate derivative biosynthetic process, and glucose catabolic process (p < 0.05). Alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways were significantly enriched (p < 0.05). This study provides information on the genetic diversity, genetic structure, and population adaptability of the medicinal legumes, G. uralensis. The data obtained in this study provide valuable information for plant development and future optimization of breeding programs for functional genes.
Collapse
Affiliation(s)
- Hanli Dang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Tao Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yuanyuan Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Guifang Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Li Zhuang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Xiaozhen Pu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Li A, Hou Z. Phylogeographic analyses of poplar revealed potential glacial refugia and allopatric divergence in southwest China. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 32:66-72. [PMID: 33305612 DOI: 10.1080/24701394.2020.1856828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The distribution pattern and genetic structure of plant species have been profoundly influenced by climate oscillations. Phylogeographic analyses have been numerously conducted in biodiversity hotspot regions and some general conclusions have been documented. However, other regions have received less attentions and these places may serve as potential glacial refugia for plant species to survive the Quaternary glaciation. Here, we used six nuclear and three cpDNA markers to estimate the phylogeographic pattern of Populus davidiana, a widespread species distributed in southwest China. As a widely distributed species in southwest China, the nucleotide diversity of P. davidiana was relatively high (N a = 6.28, H O = 0.534, and H E = 0.658). Genetic differentiation (F ST) between the two main distribution regions, Yunnan and Guizhou provinces, was 0.21221. According to the composition of chloroplast haplotypes and the result of structure in these populations, we clearly distinguished two distantly sublineages corresponding to two distribution regions. Results of the Mantel test showed that there was a significant correlation between genetic distance and geographical distance (R 2 = 0.8252, p<.05). The topographically heterogeneous regions and the low dispersal ability of seed and pollen may lead to high genetic differentiation between these two regions. A potential glacial refugia for P. davidiana located in adjacent regions to the Hengduan range was revealed and allopatric divergence in separated glacial refugia may directly lead to the present phylogeographic pattern of this species.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Zhe Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.,Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China.,MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Hou Z, Li A, Zhang J. Genetic architecture, demographic history, and genomic differentiation of Populus davidiana revealed by whole-genome resequencing. Evol Appl 2020; 13:2582-2596. [PMID: 33294010 PMCID: PMC7691461 DOI: 10.1111/eva.13046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/16/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Forest trees are an excellent resource from which to understand population differentiation and heterogeneous genome variation patterns due to the majority of forest trees being distributed widely and able to adapt to different climates and environments. Populus davidiana is among the most geographically widespread and ecologically important tree species in China. Whole-genome resequencing data of 75 individual examples of P. davidiana throughout China were conducted, finding that all examples from different regions were clearly divided into either Northeast (N), Central (C), and South (S) populations. The ancestors of P. davidiana diverged into Northern group, comprising both N and C and Southern populations approximately 792,548 years ago. This time point of differentiation suggests that divergence of P. davidiana populations might have been triggered by the mid-Pleistocene transition. The three populations experienced considerable periods of bottleneck following divergence, with population expansion beginning around 5,000 years ago after the end of the last glacial maximum. We found N to be the center of origin of P. davidiana in China. The migration route of P. davidiana in China was from N to S. Although the majority of the regions of genomic differentiation between N and S populations can be explained by neutral processes, a number of tested outlier regions were also found to have been significantly influenced by natural selection. Our results highlight that linked selection and rates of recombination were important factors in genomic differentiation between the N and S populations. Finally, we identified a substantial number of functional genes related to climate change during population differentiation and adaptive evolution.
Collapse
Affiliation(s)
- Zhe Hou
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Silviculture of the State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| | - Ang Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Silviculture of the State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of SustainableNanjing Forestry UniversityNanjingChina
| |
Collapse
|
9
|
Hou Z, Li A. Population Genomics Reveals Demographic History and Genomic Differentiation of Populus davidiana and Populus tremula. FRONTIERS IN PLANT SCIENCE 2020; 11:1103. [PMID: 32849683 PMCID: PMC7396531 DOI: 10.3389/fpls.2020.01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Forest trees can increase our understanding of how evolutionary processes drive the genomic landscape and understand speciation due to the majority of forest trees being distributed widely and able to adapt to different climates and environments. Populus davidiana and Populus tremula are among the most geographically widespread and ecologically important tree species in Northern Hemisphere. Whole-genome resequencing data of 41 individuals of P. davidiana and P. tremula throughout Eurasia was conducted, finding that genetic differentiation was evident between the two species, the FST values between P. davidiana and P. tremula was 0.3625. The ancestors of the two aspen diverged into P. davidiana and P. tremula species approximately 3.60 million years ago (Mya), which was in accordance with the rapid uplift of Qinghai-Tibet Plateau (QTP) around the Miocene/Pliocene boundary. The two species experienced a considerable long-term bottleneck after divergence, with population expansion beginning approximately 20,000 years ago after the end of the last glacial maximum. Although the majority of regions of genomic differentiation between the two species can be explained by neutral evolutionary processes, some outlier regions have also been tested that are significantly influenced by natural selection. We found that the highly differentiated regions of the two species exhibited significant positive selection characteristics, and also identified long-term balancing selection in the poorly differentiated regions in both species. Our results provide strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between P. davidiana and P. tremula. These results provide the detailed and comprehensive genomic insights into genetic diversity, demography, genetic burden, and adaptation in P. davidiana and P. tremula.
Collapse
Affiliation(s)
- Zhe Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ang Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| |
Collapse
|
10
|
Wang J, Street NR, Park EJ, Liu J, Ingvarsson PK. Evidence for widespread selection in shaping the genomic landscape during speciation of Populus. Mol Ecol 2020; 29:1120-1136. [PMID: 32068935 DOI: 10.1111/mec.15388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome-wide patterns of within- and between- species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole-genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long-term balancing selection have also been crucial components in shaping patterns of genome-wide variation during the speciation process.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Eung-Jun Park
- Department of Bioresources, National Institute of Forest Science, Suwon, Korea
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Zhu L, Song J, Zhou JL, Si J, Cui BK. Species Diversity, Phylogeny, Divergence Time, and Biogeography of the Genus Sanghuangporus (Basidiomycota). Front Microbiol 2019; 10:812. [PMID: 31057518 PMCID: PMC6478708 DOI: 10.3389/fmicb.2019.00812] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/01/2019] [Indexed: 11/17/2022] Open
Abstract
"Sanghuang" is a popular fungus used as a Chinese traditional medicine. In fact, it represents a group of fungi belonging to the genus Sanghuangporus, but little is known about its origin and biogeography. The aim of this study was to characterize the molecular relationships, origin and biogeographical distribution of Sanghuangporus. The multi-locus phylogenetic analyses were used to infer the phylogenetic relationships. In addition, based on Bayesian evolutionary analysis using sequences from the internal transcribed spacer (ITS), nuclear large subunit rDNA (nLSU), translation elongation factor 1-α (EF1-α), and the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2), we used a fungus fossil-based approach to gain insight into the divergence time of species in Sanghuangporus. The molecular phylogeny strongly supports the monophyly of Sanghuangporus (MP = 100%, ML = 100%, and BPP = 1.00), and 13 species are recognized in this genus. The Bayesian uncorrelated lognormal relaxed molecular clock using BEAST and reconstructed ancestral areas indicate that the maximum crown age of Sanghuangporus is approximately 30.85 million years. East Asia is the likely ancestral area (38%). Dispersal and differentiation to other continents then occurred during the late Middle Miocene and Pliocene. The ancestor of Sanghuangporus probably originated in palaeotropical Northeast Asia and covered Northeast Asia and East Africa during the Oligocene-Miocene, hosted by plants that expanded via the "Gomphotherium Landbridge." Six kinds of dispersal routes are proposed, including intercontinental dispersal events of three clades between Northeast Asia and East Africa, between East Asia and North America, and between Northeast Asia and Europe.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Kai Cui
- Institute of Microbiology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Wang D, Wang Z, Kang X, Zhang J. Genetic analysis of admixture and hybrid patterns of Populus hopeiensis and P. tomentosa. Sci Rep 2019; 9:4821. [PMID: 30886279 PMCID: PMC6423230 DOI: 10.1038/s41598-019-41320-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
Hybridization and introgression have resulted in reticulate evolution within the genus Populus. Consequently, the origin and evolutionary history of some hybrids has become blurred. P. hopeiensis and P. tomentosa are endemic to China, and there is still controversy about their origin. We employ phylogeny, Bayesian estimation of admixture, and approximate Bayesian computation to investigate their origin with 10 nuclear DNA and 6 cpDNA regions. The combined evidences firmly support the hypothesis that they are hybrids and dominated by F1s. P. hopeiensis was generated via hybridization between the paternal species P. alba and maternal species P. davidiana. Surprisingly, P. tomentosa was divided into two genetic types with different maternal parents. P. adenopoda hybridized with P. alba directly to generate the first genetic type (mb1) and hybridized with P. davidiana followed by P. alba to generate the second (mb2). In both genetic types, P. alba acted as the male parent. The maternal parent was P. adenopoda and P. davidiana for mb1 and mb2, respectively. Hybridization not only generated these hybrids but also resulted in a unidirectional gene flow from P. davidiana to P. adenopoda. The Populus species have maintained a delicate balance between their genetic integrity and gene exchange.
Collapse
Affiliation(s)
- Dongsheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- College of Horticulture Sciences & Technology, Hebei Normal University of Science & Technology, 066004, Qinhuangdao, China
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiangyang Kang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100091, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
13
|
Hou Z, Wang Z, Ye Z, Du S, Liu S, Zhang J. Phylogeographic analyses of a widely distributed Populus davidiana: Further evidence for the existence of glacial refugia of cool-temperate deciduous trees in northern East Asia. Ecol Evol 2018; 8:13014-13026. [PMID: 30619601 PMCID: PMC6308874 DOI: 10.1002/ece3.4755] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
Despite several phylogeographic studies had provided evidence to support the existence of glacial refugia of cool-temperate deciduous trees in northeast China, the species used in these studies were limited by the species ranges, which could not exclude the possibility that northern populations were the colonists from southern refugial populations during the last glacial maximum (LGM). Here, we estimated the nucleotide variation in Populus davidiana, a widespread species distributed in Eurasia. Three groups in northeast, central, and southwest China were constructed according to the simulation results from SAMOVA, composition of chloroplast haplotypes and structure results. We revealed that the northeast China had endemic haplotypes, the haplotypes and nucleotide diversity in northern regions were not lower than that in southern China, and this species has not experienced population expansion base on the estimation of Bayesian skyline plots. Ecological niche modeling (ENM) indicated that the northeast China had a high suitability score during the last glacial maximum. The combined evidence clearly demonstrated that northeastern and southwestern refugia were maintained across the current distributional range of P. davidiana during the LGM. The genetic differentiation between these two refugia might be mainly caused by differences of climate among these areas. The phylogeographic analyses of a widely distributed P. davidiana provided robust evidence to clarify the issue of refugia in northeast China, and these results are of great importance for understanding the influence of Quaternary glaciations on the distribution and evolution of species in East Asia.
Collapse
Affiliation(s)
- Zhe Hou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable, Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Zhanyang Ye
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Shuhui Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- College of ForestryShanxi Agriculture UniversityTaiguShanxiChina
| | - Shuyu Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable, Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
14
|
Song J, Cui BK. Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales). BMC Evol Biol 2017; 17:102. [PMID: 28424048 PMCID: PMC5397748 DOI: 10.1186/s12862-017-0948-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize the molecular relationship, origin and historical biogeography of the species in important brown rot fungal genus Laetiporus from East Asia, Europe, Pan-America, Hawaii and South Africa. We used six genetic markers to estimate a genus-level phylogeny including (1) the internal transcribed spacer (ITS), (2) nuclear large subunit rDNA (nrLSU), (3) nuclear small subunit rDNA (nrSSU), (4) translation elongation factor 1-α (EF-1α), (5) DNA-directed RNA polymerase II subunit 2 (RPB2), and (6) mitochondrial small subunit rDNA (mtSSU). RESULTS Results of multi-locus phylogenetic analyses show clade support for at least seventeen species-level lineages including two new Laetiporus in China. Molecular dating using BEAST estimated the present crown group diverged approximately 20.16 million years ago (Mya) in the early Miocene. Biogeographic analyses using RASP indicated that Laetiporus most likely originated in temperate zones with East Asia and North America having the highest probability (48%) of being the ancestral area. CONCLUSIONS Four intercontinental dispersal routes and a possible concealed dispersal route were established for the first time.
Collapse
Affiliation(s)
- Jie Song
- Institute of Microbiology, Beijing Forestry University, P.O. Box 61, 35#, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Bao-Kai Cui
- Institute of Microbiology, Beijing Forestry University, P.O. Box 61, 35#, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
15
|
Zheng H, Fan L, Milne RI, Zhang L, Wang Y, Mao K. Species Delimitation and Lineage Separation History of a Species Complex of Aspens in China. FRONTIERS IN PLANT SCIENCE 2017; 8:375. [PMID: 28377782 PMCID: PMC5359289 DOI: 10.3389/fpls.2017.00375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/06/2017] [Indexed: 05/13/2023]
Abstract
Species delimitation in tree species is notoriously challenging due to shared polymorphisms among species. An integrative survey that considers multiple operational criteria is a possible solution, and we aimed to test it in a species complex of aspens in China. Genetic [four chloroplast DNA (cpDNA) fragments and 14 nuclear microsatellite loci (nSSR)] and morphological variations were collected for 76 populations and 53 populations, respectively, covering the major geographic distribution of the Populus davidiana-rotundifolia complex. Bayesian clustering, analysis of molecular variance (AMOVA), Principle Coordinate Analysis (PCoA), ecological niche modeling (ENM), and gene flow (migrants per generation), were employed to detect and test genetic clustering, morphological and habitat differentiation, and gene flow between/among putative species. The nSSR data and ENM suggested that there are two separately evolving meta-population lineages that correspond to P. davidiana (pd) and P. rotundifolia (pr). Furthermore, several lines of evidence supported a subdivision of P. davidiana into Northeastern (NEC) and Central-North (CNC) groups, yet they are still functioning as one species. CpDNA data revealed that five haplotype clades formed a pattern of [pdNEC, ((pdCNC, pr), (pdCNC, pr))], but most haplotypes are species-specific. Meanwhile, PCA based on morphology suggested a closer relationship between the CNC group (P. davidiana) and P. rontundifolia. Discrepancy of nSSR and ENM vs. cpDNA and morphology could have reflected a complex lineage divergence and convergence history. P. davidiana and P. rotundifolia can be regarded as a recently diverged species pair that experienced parapatric speciation due to ecological differentiation in the face of gene flow. Our findings highlight the importance of integrative surveys at population level, as we have undertaken, is an important approach to detect the boundary of a group of species that have experienced complex evolutionary history.
Collapse
Affiliation(s)
- Honglei Zheng
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan UniversityChengdu, China
| | - Liqiang Fan
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan UniversityChengdu, China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of EdinburghEdinburgh, UK
| | - Lei Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan UniversityChengdu, China
| | - Yaling Wang
- Life Science and Engineering College, Northwest University for NationalitiesLanzhou, China
| | - Kangshan Mao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan UniversityChengdu, China
- *Correspondence: Kangshan Mao ;
| |
Collapse
|
16
|
Phylogeny and biogeography of the remarkable genus Bondarzewia (Basidiomycota, Russulales). Sci Rep 2016; 6:34568. [PMID: 27680391 PMCID: PMC5041112 DOI: 10.1038/srep34568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022] Open
Abstract
Bondarzewia is a conspicuous and widely distributed mushroom genus, but little is known about its origin and biogeography. Here, we investigated the systematics and biogeography of Bondarzewia species using multi-locus phylogenetic analysis. Four genetic markers, including the internal transcribed spacer (ITS), large nuclear ribosomal RNA subunit (nLSU), elongation factor 1-α (tef1) and mitochondrial small subunit rDNA (mtSSU), were used to infer the phylogenetic relationships of Bondarzewia. We performed Bayesian evolutionary analysis on the gene datasets of the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2). From the results, we inferred that the maximum crown age of Bondarzewia is approximately 25.5 million-years-ago (Mya) and that tropical East Asia is likely to be its ancestral area, with three possible expansions leading to its distribution in North America, Europe and Oceania.
Collapse
|
17
|
Christe C, Stölting KN, Paris M, Fraїsse C, Bierne N, Lexer C. Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow. Mol Ecol 2016; 26:59-76. [PMID: 27447453 DOI: 10.1111/mec.13765] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Abstract
Speciation often involves repeated episodes of genetic contact between divergent populations before reproductive isolation (RI) is complete. Whole-genome sequencing (WGS) holds great promise for unravelling the genomic bases of speciation. We have studied two ecologically divergent, hybridizing species of the 'model tree' genus Populus (poplars, aspens, cottonwoods), Populus alba and P. tremula, using >8.6 million single nucleotide polymorphisms (SNPs) from WGS of population pools. We used the genomic data to (i) scan these species' genomes for regions of elevated and reduced divergence, (ii) assess key aspects of their joint demographic history based on genomewide site frequency spectra (SFS) and (iii) infer the potential roles of adaptive and deleterious coding mutations in shaping the genomic landscape of divergence. We identified numerous small, unevenly distributed genome regions without fixed polymorphisms despite high overall genomic differentiation. The joint SFS was best explained by ancient and repeated gene flow and allowed pinpointing candidate interspecific migrant tracts. The direction of selection (DoS) differed between genes in putative migrant tracts and the remainder of the genome, thus indicating the potential roles of adaptive divergence and segregating deleterious mutations on the evolution and breakdown of RI. Genes affected by positive selection during divergence were enriched for several functionally interesting groups, including well-known candidate 'speciation genes' involved in plant innate immunity. Our results suggest that adaptive divergence affects RI in these hybridizing species mainly through intrinsic and demographic processes. Integrating genomic with molecular data holds great promise for revealing the effects of particular genetic pathways on speciation.
Collapse
Affiliation(s)
- Camille Christe
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Kai N Stölting
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Margot Paris
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Christelle Fraїsse
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugene Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200, Séte, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugene Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200, Séte, France
| | - Christian Lexer
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030, Vienna, Austria
| |
Collapse
|
18
|
Wang J, Street NR, Scofield DG, Ingvarsson PK. Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens. Mol Biol Evol 2016; 33:1754-1767. [PMID: 26983554 DOI: 10.1101/029561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE, Sweden
| | - Douglas G Scofield
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden
| |
Collapse
|
19
|
Wang J, Street NR, Scofield DG, Ingvarsson PK. Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens. Mol Biol Evol 2016; 33:1754-67. [PMID: 26983554 PMCID: PMC4915356 DOI: 10.1093/molbev/msw051] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2–3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE, Sweden
| | - Douglas G Scofield
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden
| |
Collapse
|
20
|
Zhou T, Chen C, Wei Y, Chang Y, Bai G, Li Z, Kanwal N, Zhao G. Comparative Transcriptome and Chloroplast Genome Analyses of Two Related Dipteronia Species. FRONTIERS IN PLANT SCIENCE 2016; 7:1512. [PMID: 27790228 PMCID: PMC5061820 DOI: 10.3389/fpls.2016.01512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/23/2016] [Indexed: 05/21/2023]
Abstract
Dipteronia (order Sapindales) is an endangered genus endemic to China and has two living species, D.sinensis and D. dyeriana. The plants are closely related to the genus Acer, which is also classified in the order Sapindales. Evolutionary studies on Dipteronia have been hindered by the paucity of information on their genomes and plastids. Here, we used next generation sequencing to characterize the transcriptomes and complete chloroplast genomes of both Dipteronia species. A comparison of the transcriptomes of both species identified a total of 7814 orthologs. Estimation of selection pressures using Ka/Ks ratios showed that only 30 of 5435 orthologous pairs had a ratio significantly >1, i.e., showing positive selection. However, 4041 orthologs had a Ka/Ks < 0.5 (p < 0.05), suggesting that most genes had likely undergone purifying selection. Based on orthologous unigenes, 314 single copy nuclear genes (SCNGs) were identified. Through a combination of de novo and reference guided assembly, plastid genomes were obtained; that of D. sinensis was 157,080 bp and that of D. dyeriana was 157,071 bp. Both plastid genomes encoded 87 protein coding genes, 40 tRNAs, and 8 rRNAs; no significant differences were detected in the size, gene content, and organization of the two plastomes. We used the whole chloroplast genomes to determine the phylogeny of D. sinensis and D. dyeriana and confirmed that the two species were highly divergent. Overall, our study provides comprehensive transcriptomic and chloroplast genomic resources, which will be valuable for future evolutionary studies of Dipteronia.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Chen Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Yue Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Yongxia Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Guoqing Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi ProvinceXi'an, China
| | - Zhonghu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Nazish Kanwal
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
- *Correspondence: Guifang Zhao
| |
Collapse
|
21
|
Liu X, Wang Z, Shao W, Ye Z, Zhang J. Phylogenetic and Taxonomic Status Analyses of the Abaso Section from Multiple Nuclear Genes and Plastid Fragments Reveal New Insights into the North America Origin of Populus (Salicaceae). FRONTIERS IN PLANT SCIENCE 2016; 7:2022. [PMID: 28101098 PMCID: PMC5209371 DOI: 10.3389/fpls.2016.02022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/19/2016] [Indexed: 05/12/2023]
Abstract
Although, the Abaso section is widely accepted as an independent section, the taxonomic status of Populus mexicana (section Abaso) has not yet been resolved due to the limited availability markers and/or the lack of P. mexicana specimens in previous studies. Thirty-one poplar species that represent six sections of the Populus genus were sampled, and 23 single-copy nuclear DNA and 34 chloroplast fragments were sequenced. The present study obtained two updated phylogenies of Populus. We found that monophyly of the genus Populus is strongly supported by nuclear and plastid gene, which is consistent with previous studies. P. mexicana, diverged first in the nuclear DNA tree, which occupied the basal position, implying that the section Abaso may be the most ancestral lineage in extant populous species. Given that the short branches and low statistical support for the divergence of sections Abaso and Turanga, this observation probably indicated that a rapid radiation evolution following the early split of the genus Populus. In the plastid tree, P. mexicana clustered with modern-day species of section Tacamahaca in the plastid tree. Based on cytoplasmic and single-copy nuclear marker sequences, we hypothesized that chloroplast capture resulted in the inconsistent position of P. mexicana between the phylogenetic trees. Given the first unequivocal records of poplar fossils from the Eocene with similar leaf morphology to the extant P. mexicana and the phylogenetic positions of P. mexicana in our study, we support the hypothesis that the Populus genus originated in North America, which will provide new insights to the development of the origin of Populus species.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Wenhao Shao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Research Institute of Subtropical Forestry, Chinese academy of ForestryHangzhou, China
| | - Zhanyang Ye
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Jianguo Zhang,
| |
Collapse
|
22
|
Ortego J, Noguerales V, Gugger PF, Sork VL. Evolutionary and demographic history of the Californian scrub white oak species complex: an integrative approach. Mol Ecol 2015; 24:6188-208. [PMID: 26547661 DOI: 10.1111/mec.13457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 01/17/2023]
Abstract
Understanding the factors promoting species formation is a major task in evolutionary research. Here, we employ an integrative approach to study the evolutionary history of the Californian scrub white oak species complex (genus Quercus). To infer the relative importance of geographical isolation and ecological divergence in driving the speciation process, we (i) analysed inter- and intraspecific patterns of genetic differentiation and employed an approximate Bayesian computation (ABC) framework to evaluate different plausible scenarios of species divergence. In a second step, we (ii) linked the inferred divergence pathways with current and past species distribution models (SDMs) and (iii) tested for niche differentiation and phylogenetic niche conservatism across taxa. ABC analyses showed that the most plausible scenario is the one considering the divergence of two main lineages followed by a more recent pulse of speciation. Genotypic data in conjunction with SDMs and niche differentiation analyses support that different factors (geography vs. environment) and modes of speciation (parapatry, allopatry and maybe sympatry) have played a role in the divergence process within this complex. We found no significant relationship between genetic differentiation and niche overlap, which probably reflects niche lability and/or that multiple factors, have contributed to speciation. Our study shows that different mechanisms can drive divergence even among closely related taxa representing early stages of species formation and exemplifies the importance of adopting integrative approaches to get a better understanding of the speciation process.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| | - Víctor Noguerales
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| | - Paul F Gugger
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA.,Institute of the Environment and Sustainability, University of California, Box 951496, Los Angeles, CA, 90095-1496, USA
| |
Collapse
|