1
|
Wessinger CA, Katzer AM, Hime PM, Rausher MD, Kelly JK, Hileman LC. A few essential genetic loci distinguish Penstemon species with flowers adapted to pollination by bees or hummingbirds. PLoS Biol 2023; 21:e3002294. [PMID: 37769035 PMCID: PMC10538765 DOI: 10.1371/journal.pbio.3002294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023] Open
Abstract
In the formation of species, adaptation by natural selection generates distinct combinations of traits that function well together. The maintenance of adaptive trait combinations in the face of gene flow depends on the strength and nature of selection acting on the underlying genetic loci. Floral pollination syndromes exemplify the evolution of trait combinations adaptive for particular pollinators. The North American wildflower genus Penstemon displays remarkable floral syndrome convergence, with at least 20 separate lineages that have evolved from ancestral bee pollination syndrome (wide blue-purple flowers that present a landing platform for bees and small amounts of nectar) to hummingbird pollination syndrome (bright red narrowly tubular flowers offering copious nectar). Related taxa that differ in floral syndrome offer an attractive opportunity to examine the genomic basis of complex trait divergence. In this study, we characterized genomic divergence among 229 individuals from a Penstemon species complex that includes both bee and hummingbird floral syndromes. Field plants are easily classified into species based on phenotypic differences and hybrids displaying intermediate floral syndromes are rare. Despite unambiguous phenotypic differences, genome-wide differentiation between species is minimal. Hummingbird-adapted populations are more genetically similar to nearby bee-adapted populations than to geographically distant hummingbird-adapted populations, in terms of genome-wide dXY. However, a small number of genetic loci are strongly differentiated between species. These approximately 20 "species-diagnostic loci," which appear to have nearly fixed differences between pollination syndromes, are sprinkled throughout the genome in high recombination regions. Several map closely to previously established floral trait quantitative trait loci (QTLs). The striking difference between the diagnostic loci and the genome as whole suggests strong selection to maintain distinct combinations of traits, but with sufficient gene flow to homogenize the genomic background. A surprisingly small number of alleles confer phenotypic differences that form the basis of species identity in this species complex.
Collapse
Affiliation(s)
- Carolyn A. Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Amanda M. Katzer
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Paul M. Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, United States of America
| | - Mark D. Rausher
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Lena C. Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
2
|
DiBiase C, Godtfredsen E, Dahl J, Shapiro A, Brown K, Martin A, Wermuth A, Heschel MS. Maternal flower color, ultraviolet protection, and germination in
Ipomopsis aggregata
(Polemoniaceae). POPUL ECOL 2022. [DOI: 10.1002/1438-390x.12111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Charlotte DiBiase
- Department of Organismal Biology and Ecology Colorado College Colorado Springs Colorado USA
| | - Elsa Godtfredsen
- Department of Organismal Biology and Ecology Colorado College Colorado Springs Colorado USA
| | - Julian Dahl
- Department of Organismal Biology and Ecology Colorado College Colorado Springs Colorado USA
| | - Alex Shapiro
- Department of Organismal Biology and Ecology Colorado College Colorado Springs Colorado USA
| | - Keirsten Brown
- Department of Organismal Biology and Ecology Colorado College Colorado Springs Colorado USA
| | - Amanda Martin
- Department of Organismal Biology and Ecology Colorado College Colorado Springs Colorado USA
| | - Anna Wermuth
- Department of Organismal Biology and Ecology Colorado College Colorado Springs Colorado USA
| | - M. Shane Heschel
- Department of Organismal Biology and Ecology Colorado College Colorado Springs Colorado USA
| |
Collapse
|
3
|
A conserved genetic architecture among populations of the maize progenitor, teosinte, was radically altered by domestication. Proc Natl Acad Sci U S A 2021; 118:2112970118. [PMID: 34686607 PMCID: PMC8639367 DOI: 10.1073/pnas.2112970118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
We investigated the genetic architecture of maize domestication using a quantitative genetics approach. With multiple populations of teosinte and maize, we also compared the genetic architecture among populations within maize and teosinte. We showed that genetic architecture among populations within teosinte or maize is generally conserved, in contrast to the radical differences between teosinte and maize. Our results suggest that while selection drove changes in essentially all traits between teosinte and maize, selection is far less important for explaining domestication trait differences among populations within teosinte or maize. Very little is known about how domestication was constrained by the quantitative genetic architecture of crop progenitors and how quantitative genetic architecture was altered by domestication. Yang et al. [C. J. Yang et al., Proc. Natl. Acad. Sci. U.S.A. 116, 5643–5652 (2019)] drew multiple conclusions about how genetic architecture influenced and was altered by maize domestication based on one sympatric pair of teosinte and maize populations. To test the generality of their conclusions, we assayed the structure of genetic variances, genetic correlations among traits, strength of selection during domestication, and diversity in genetic architecture within teosinte and maize. Our results confirm that additive genetic variance is decreased, while dominance genetic variance is increased, during maize domestication. The genetic correlations are moderately conserved among traits between teosinte and maize, while the genetic variance–covariance matrices (G-matrices) of teosinte and maize are quite different, primarily due to changes in the submatrix for reproductive traits. The inferred long-term selection intensities during domestication were weak, and the neutral hypothesis was rejected for reproductive and environmental response traits, suggesting that they were targets of selection during domestication. The G-matrix of teosinte imposed considerable constraint on selection during the early domestication process, and constraint increased further along the domestication trajectory. Finally, we assayed variation among populations and observed that genetic architecture is generally conserved among populations within teosinte and maize but is radically different between teosinte and maize. While selection drove changes in essentially all traits between teosinte and maize, selection explains little of the difference in domestication traits among populations within teosinte or maize.
Collapse
|
4
|
Sapir Y, Gallagher MK, Senden E. What Maintains Flower Colour Variation within Populations? Trends Ecol Evol 2021; 36:507-519. [PMID: 33663870 DOI: 10.1016/j.tree.2021.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Natural selection acts on phenotypic trait variation. Understanding the mechanisms that create and maintain trait variation is fundamental to understanding the breadth of diversity seen on Earth. Flower colour is among the most conspicuous and highly diverse traits in nature. Most flowering plant populations have uniform floral colours, but a minority exhibit within-population colour variation, either discrete (polymorphic) or continuous. Colour variation is commonly maintained by balancing selection through multiple pollinators, opposing selection regimes, or fluctuating selection. Variation can also be maintained by heterozygote advantage or frequency-dependent selection. Neutral processes, or a lack of selection, may maintain variation, although this remains largely untested. We suggest several prospective research directions that may provide insight into the evolutionary drivers of trait variation.
Collapse
Affiliation(s)
- Yuval Sapir
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - M Kate Gallagher
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Esther Senden
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Cronk Q, Yang JY. Hybridization between pollination syndromes as an ecological and evolutionary resource. Mol Ecol 2019; 25:5827-5829. [PMID: 27900850 DOI: 10.1111/mec.13903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Abstract
In plants, pollination syndromes (the correlated presence of many features of relevance to pollination mode, for instance pollination by a particular animal clade) are a striking feature of plant biodiversity, providing great floral phenotypic diversity (Fenster et al. ). Adaptation to a particular animal pollinator provides an explanation for why recently diverged plants can have such extreme differentiation in floral form. One might expect such elaborate adaptations to provide a high degree of pollinator specificity and hence reproductive isolation, but there are many cases where substantial gene flow exists between extreme floral morphs (see Table 1), and the resulting hybrids may be highly fertile. This gene flow provides tremendous opportunities to study the genetics and biology of the pollination syndromes by providing intermediate forms and segregating genotypes. If it is true that pollination syndromes result from adaptation under strong selection, we will expect such flowers to be crucibles of natural selection. If strong selection for particular floral phenotypes can be shown, then this, when coupled with hybridization, will give us one of the most valuable of all experimental systems for evolutionary research: gene flow and selection in balance. In this issue of Molecular Ecology, the paper of Milano et al. () delivers this. It shows that in populations of the Ipomopsis aggregata complex, gene flow between pollination morphs is high and selection to stabilize those morphs is also high: a probable case of gene flow-selection balance.
Collapse
Affiliation(s)
- Quentin Cronk
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ji Yong Yang
- Department of Biology, Langara College, Vancouver, BC, V5Y 2Z6, Canada
| |
Collapse
|
6
|
Campbell DR, Faidiga A, Trujillo G. Clines in traits compared over two decades in a plant hybrid zone. ANNALS OF BOTANY 2018; 122:315-324. [PMID: 29800076 PMCID: PMC6070099 DOI: 10.1093/aob/mcy072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/17/2018] [Indexed: 05/30/2023]
Abstract
Background and Aims Clines in traits across hybrid zones reflect a balance between natural selection and gene flow. Changes over time in average values for traits, and especially the shapes of their clines, are rarely investigated in plants, but could result from evolution in an unstable hybrid zone. Differences in clines between floral and vegetative traits could indicate different strengths of divergent selection. Methods Five floral and two vegetative traits were measured in 12 populations along an elevational gradient spanning a natural hybrid zone between Ipomopsis aggregata and Ipomopsis tenuituba. We compared clines in the floral traits with those measured 25 years ago. Observed changes in mean trait values were compared with predictions based on prior estimates of natural selection. We also compared the steepness and position of clines between the floral and vegetative traits. Key Results Corolla length has increased over five generations to an extent that matches predictions from measurements of phenotypic selection and heritability. The shape of its cline, and that of other traits, has not changed detectably. Clines varied across traits, but not all floral traits showed steeper clines than did vegetative traits. Both suites of morphological traits had steeper clines than did neutral molecular markers. Conclusions The increase in corolla length provides a rare example of a match between predicted and observed evolution of a plant trait in natural populations. The clinal properties are consistent with the hypothesis that habitat-mediated divergent selection on vegetative traits and pollinator-mediated selection on floral traits both maintain species differences across the hybrid zone.
Collapse
Affiliation(s)
- Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | | | - Gabriel Trujillo
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
7
|
Campitelli BE, Kenney AM, Hopkins R, Soule J, Lovell JT, Juenger TE. Genetic Mapping Reveals an Anthocyanin Biosynthesis Pathway Gene Potentially Influencing Evolutionary Divergence between Two Subspecies of Scarlet Gilia (Ipomopsis aggregata). Mol Biol Evol 2017; 35:807-822. [DOI: 10.1093/molbev/msx318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brandon E Campitelli
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Amanda M Kenney
- Biotechnology Risk Analysis Programs, USDA-APHIS-BRS, Riverdale, MD
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Robin Hopkins
- Department of Organismic and Evolution Biology, Harvard University, Boston, MA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Jacob Soule
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - John T Lovell
- Hudson Alpha Institute for Biotechnology, Huntsville, AL
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
8
|
Roda F, Walter GM, Nipper R, Ortiz‐Barrientos D. Genomic clustering of adaptive loci during parallel evolution of an Australian wildflower. Mol Ecol 2017; 26:3687-3699. [DOI: 10.1111/mec.14150] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/07/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Federico Roda
- School of Biological Sciences The University of Queensland St. Lucia QLD Australia
- Harvard University Boston MA USA
| | - Greg M. Walter
- School of Biological Sciences The University of Queensland St. Lucia QLD Australia
| | | | | |
Collapse
|