1
|
Monjaraz-Ruedas R, Mendez RW, Hedin M. Species delimitation, biogeography, and natural history of dwarf funnel web spiders (Mygalomorphae, Hexurellidae, Hexurella) from the United States / Mexico borderlands. Zookeys 2023; 1167:109-157. [PMID: 37363739 PMCID: PMC10285686 DOI: 10.3897/zookeys.1167.103463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/29/2023] [Indexed: 06/28/2023] Open
Abstract
The rarely encountered spider genus Hexurella Gertsch & Platnick, 1979 includes some of the smallest mygalomorph spiders in the world, with four poorly known taxa from central and southeastern montane Arizona, southern California, and northern Baja California Norte. At time of description the genus was known from fewer than 20 individuals, with sparse natural history information suggesting a vagrant, web-building, litter-dwelling natural history. Here the first published taxonomic and natural history information for this taxon is provided in more than 50 years, working from extensive new geographic sampling, consideration of male and female morphology, and sequence capture-based nuclear phylogenomics and mitogenomics. Several new species are easily diagnosed based on distinctive male morphologies, while a complex of populations from central and northern Arizona required an integrative combination of genomic algorithmic species delimitation analyses and morphological study. Four new species are described, including H.ephedrasp. nov., H.uwiiltilsp. nov., H.xericasp. nov., and H.zassp. nov. Females of H.encina Gertsch & Platnick, 1979 are also described for the first time. It is predicted that additional new species will ultimately be found in the mountains of central and northwestern Arizona, northern mainland Mexico, and the Mojave Desert of California.
Collapse
Affiliation(s)
- Rodrigo Monjaraz-Ruedas
- Department of Biology, San Diego State University, San Diego, California 92182–4614, USASan Diego State UniversitySan DiegoUnited States of America
| | | | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, California 92182–4614, USASan Diego State UniversitySan DiegoUnited States of America
| |
Collapse
|
2
|
Harrington S, Burbrink F. Complex cycles of divergence and migration shape lineage structure in the common kingsnake species complex. JOURNAL OF BIOGEOGRAPHY 2023; 50:341-351. [PMID: 36817740 PMCID: PMC9937589 DOI: 10.1111/jbi.14536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/17/2022] [Indexed: 06/18/2023]
Abstract
Aim The Nearctic is a complex patchwork of habitats and geologic features that form barriers to gene flow resulting in phylogeographic structure and speciation in many lineages. Habitats are rarely stable over geologic time, and the Nearctic has undergone major climatic changes in the past few million years. We use the common kingsnake species complex to study how climate, geography, and history influence lineage formation over a large, complex landscape. Location Nearctic/North America. Taxon Common kingsnake, Lampropeltis getula, species complex. Methods We analyzed genome-wide sequence data from 51 snakes spanning the majority of the species complex's range. We used population clustering, generalized dissimilarity modeling, and coalescent methods to identify the number of genetic clusters within the L. getula complex, infer the environmental correlates of genetic differentiation, and estimate models of divergence and gene flow among lineages. Results We identified three major lineages within the L. getula complex and further continuous spatial structure within lineages. The most important ecological correlates of genetic distance in the complex are related to aridity and precipitation, consistent with lineage breaks at the Great Plains/Desert ecotone and the Cochise Filter Barrier. Lineages are estimated to have undergone multiple rounds of isolation and secondary contact, with highly asymmetric migration occurring at present. Main conclusions Changing climates combined with a large and geologically complex landscape have resulted in a mosaic of discrete and spatially continuous genetic structure. Multiple rounds of isolation and secondary contact as climate fluctuated over the past ~4.4 My have likely driven the evolution of discrete lineages that maintain high levels of gene flow. Continuous structure is strongly shaped by aridity and precipitation, suggesting roles for major precipitation gradients in helping to maintain lineage identity in the face of gene flow when lineages are in geographic contact.
Collapse
Affiliation(s)
- Sean Harrington
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
- INBRE Data Science Core, University of Wyoming, Laramie, WY 82071, USA
| | - Frank Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
| |
Collapse
|
3
|
Derkarabetian S, Starrett J, Hedin M. Using natural history to guide supervised machine learning for cryptic species delimitation with genetic data. Front Zool 2022; 19:8. [PMID: 35193622 PMCID: PMC8862334 DOI: 10.1186/s12983-022-00453-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
The diversity of biological and ecological characteristics of organisms, and the underlying genetic patterns and processes of speciation, makes the development of universally applicable genetic species delimitation methods challenging. Many approaches, like those incorporating the multispecies coalescent, sometimes delimit populations and overestimate species numbers. This issue is exacerbated in taxa with inherently high population structure due to low dispersal ability, and in cryptic species resulting from nonecological speciation. These taxa present a conundrum when delimiting species: analyses rely heavily, if not entirely, on genetic data which over split species, while other lines of evidence lump. We showcase this conundrum in the harvester Theromaster brunneus, a low dispersal taxon with a wide geographic distribution and high potential for cryptic species. Integrating morphology, mitochondrial, and sub-genomic (double-digest RADSeq and ultraconserved elements) data, we find high discordance across analyses and data types in the number of inferred species, with further evidence that multispecies coalescent approaches over split. We demonstrate the power of a supervised machine learning approach in effectively delimiting cryptic species by creating a "custom" training data set derived from a well-studied lineage with similar biological characteristics as Theromaster. This novel approach uses known taxa with particular biological characteristics to inform unknown taxa with similar characteristics, using modern computational tools ideally suited for species delimitation. The approach also considers the natural history of organisms to make more biologically informed species delimitation decisions, and in principle is broadly applicable for taxa across the tree of life.
Collapse
Affiliation(s)
- Shahan Derkarabetian
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA.
| | - James Starrett
- Department of Entomology and Nematology, University of California, Davis, Briggs Hall, Davis, CA, 95616-5270, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| |
Collapse
|
4
|
Graham MR, Santibáñez‐López CE, Derkarabetian S, Hendrixson BE. Pleistocene persistence and expansion in tarantulas on the Colorado Plateau and the effects of missing data on phylogeographical inferences from RADseq. Mol Ecol 2020; 29:3684-3701. [DOI: 10.1111/mec.15588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Matthew R. Graham
- Department of Biology Eastern Connecticut State University Willimantic CT USA
| | | | - Shahan Derkarabetian
- Department of Organismic and Evolutionary Biology Museum of Comparative Zoology Harvard University Cambridge MA USA
| | | |
Collapse
|
5
|
Garcia EL, Griswold CE, Esposito LA. Systematics and evolution of
Kibramoa
Chamberlin 1924 (Araneae: Plectreuridae) from the California Floristic Province. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erika L. Garcia
- Institute for Biodiversity and Sustainable Science California Academy of Sciences San Francisco CA USA
- Department of Biology San Francisco State University San Francisco CA USA
| | - Charles E. Griswold
- Institute for Biodiversity and Sustainable Science California Academy of Sciences San Francisco CA USA
- Department of Biology San Francisco State University San Francisco CA USA
| | - Lauren A. Esposito
- Institute for Biodiversity and Sustainable Science California Academy of Sciences San Francisco CA USA
- Department of Biology San Francisco State University San Francisco CA USA
| |
Collapse
|
6
|
Phylogeography of Sodreaninae harvestmen (Arachnida: Opiliones: Gonyleptidae): Insights into the biogeography of the southern Brazilian Atlantic Forest. Mol Phylogenet Evol 2019; 138:1-16. [DOI: 10.1016/j.ympev.2019.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/18/2019] [Accepted: 05/22/2019] [Indexed: 11/17/2022]
|
7
|
Rödin‐Mörch P, Luquet E, Meyer‐Lucht Y, Richter‐Boix A, Höglund J, Laurila A. Latitudinal divergence in a widespread amphibian: Contrasting patterns of neutral and adaptive genomic variation. Mol Ecol 2019; 28:2996-3011. [DOI: 10.1111/mec.15132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Patrik Rödin‐Mörch
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Emilien Luquet
- CNRS, ENTPE, UMR5023 LEHNA Univ Lyon, Université Claude Bernard Lyon 1 Villeurbanne France
| | - Yvonne Meyer‐Lucht
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Alex Richter‐Boix
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
8
|
Huang JP. Holocene Population Decline and Conservation Implication for the Western Hercules Beetle, Dynastes grantii (Coleoptera, Scarabaeidae). J Hered 2019; 110:629-637. [DOI: 10.1093/jhered/esz036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/25/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
The Western Hercules beetle (Dynastes grantii) is endemic to the highland forest habitats of southwestern United States and northern Mexico. The habitats harbor many endemic species, but are being threatened by rapid climate change and urban development. In this study, the genetic structure of D. grantii populations from southwestern United States was investigated. Specifically, genomic data from double-digest restriction-site-associated DNA sequencing libraries were utilized to test whether geographically distant populations from the Mogollon Rim (Arizona [N = 12 individuals] and New Mexico [N = 10 individuals]) are genetically structured. The study also estimated the effective population size of the Mogollon Rim populations based on genetic diversity. The results indicated that the 2 geographic populations from the Mogollon Rim were not genetically structured. A population size reduction was detected since the end of the last glacial period, which coincided with a reduction of forest habitat in the study area. The results implied that the connectivity and the size of highland forest habitats in the Mogollon Rim could have been the major factors shaping the population genetic structure and demographic history of D. grantii. The Western Hercules beetle could be a useful flagship species for local natural history education and to promote the conservation of highland forest habitats.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
- Integrative Research Center, The Field Museum of Natural History, Chicago, IL
| |
Collapse
|
9
|
Mammola S, Schönhofer AL, Isaia M. Tracking the ice: Subterranean harvestmen distribution matches ancient glacier margins. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Mammola
- Department of Life Sciences and Systems Biology; University of Turin; Turin Italy
| | - Axel L. Schönhofer
- Abteilung Evolutionsbiologie; Institut für Zoologie; Johannes Gutenberg Universität Mainz; Mainz Germany
| | - Marco Isaia
- Department of Life Sciences and Systems Biology; University of Turin; Turin Italy
| |
Collapse
|
10
|
Stubbs RL, Folk RA, Xiang CL, Soltis DE, Cellinese N. Pseudo-parallel patterns of disjunctions in an Arctic-alpine plant lineage. Mol Phylogenet Evol 2018; 123:88-100. [DOI: 10.1016/j.ympev.2018.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 12/22/2022]
|
11
|
Starrett J, Hayashi CY, Derkarabetian S, Hedin M. Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada. Mol Phylogenet Evol 2018; 118:403-413. [DOI: 10.1016/j.ympev.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/24/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
12
|
Leblois R, Gautier M, Rohfritsch A, Foucaud J, Burban C, Galan M, Loiseau A, Sauné L, Branco M, Gharbi K, Vitalis R, Kerdelhué C. Deciphering the demographic history of allochronic differentiation in the pine processionary moth Thaumetopoea pityocampa. Mol Ecol 2017; 27:264-278. [DOI: 10.1111/mec.14411] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 01/01/2023]
Affiliation(s)
- R. Leblois
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier; Montferrier sur Lez Cedex France
- Institut de Biologie Computationnelle (IBC); Université de Montpellier; Montpellier France
| | - M. Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier; Montferrier sur Lez Cedex France
- Institut de Biologie Computationnelle (IBC); Université de Montpellier; Montpellier France
| | - A. Rohfritsch
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier; Montferrier sur Lez Cedex France
| | - J. Foucaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier; Montferrier sur Lez Cedex France
| | - C. Burban
- INRA, UMR1202 BIOGECO (INRA - Université de Bordeaux); Cestas Cedex France
| | - M. Galan
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier; Montferrier sur Lez Cedex France
| | - A. Loiseau
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier; Montferrier sur Lez Cedex France
| | - L. Sauné
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier; Montferrier sur Lez Cedex France
| | - M. Branco
- Centro de Estudos Florestais (CEF); Instituto Superior de Agronomia (ISA); University of Lisbon; Lisbon Portugal
| | - K. Gharbi
- Edinburgh Genomics; School of Biological Sciences; University of Edinburgh; Edinburgh UK
| | - R. Vitalis
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier; Montferrier sur Lez Cedex France
- Institut de Biologie Computationnelle (IBC); Université de Montpellier; Montpellier France
| | - C. Kerdelhué
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier; Montferrier sur Lez Cedex France
| |
Collapse
|
13
|
Grewe F, Huang JP, Leavitt SD, Lumbsch HT. Reference-based RADseq resolves robust relationships among closely related species of lichen-forming fungi using metagenomic DNA. Sci Rep 2017; 7:9884. [PMID: 28852019 PMCID: PMC5575168 DOI: 10.1038/s41598-017-09906-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023] Open
Abstract
Despite increasing availability of phylogenomic datasets, strategies to generate genome-scale data from organisms involved in symbiotic relationships remains challenging. Restriction site-associated DNA sequencing (RADseq) can effectively generated reduced representation genomic loci. However, when using metagenomic DNA from inseparable symbiotic organisms, RADseq loci may belong to any number of the organisms involved in these intimate associations. In this study, we explored the potential for a reference-based RADseq approach to generate data for lichen-forming fungi from metagenomic DNA extracted from intact lichens. We simulated RAD data from draft genomes of closely related lichenized fungi to test if RADseq can reconstruct robust evolutionary relationships. Subsequently, we generated empirical RADseq data from metagenomic lichen DNA, with RADseq loci mapped back to a reference genome to exclude loci from other lichen symbionts that are represented in metagenomic libraries. In all cases, phylogenetic reconstructions using RADseq loci recovered diversification histories consistent with a previous study based on more comprehensive genome sampling. Furthermore, RADseq loci were found to resolve relationships among closely related species, which were otherwise indistinguishable using a phylogenetic species recognition criterion. Our studies revealed that a modified, reference-based RADseq approach can successfully be implemented to generate symbiont-specific phylogenomic data from metagenomic reads.
Collapse
Affiliation(s)
- Felix Grewe
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400S Lake Shore Drive, Chicago, IL, 60605, USA.
| | - Jen-Pen Huang
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400S Lake Shore Drive, Chicago, IL, 60605, USA
| | - Steven D Leavitt
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400S Lake Shore Drive, Chicago, IL, 60605, USA.,Department of Biology & M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, 84602, USA
| | - H Thorsten Lumbsch
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400S Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
14
|
Termignoni-García F, Jaramillo-Correa JP, Chablé-Santos J, Liu M, Shultz AJ, Edwards SV, Escalante-Pliego P. Genomic footprints of adaptation in a cooperatively breeding tropical bird across a vegetation gradient. Mol Ecol 2017; 26:4483-4496. [DOI: 10.1111/mec.14224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 05/06/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Flavia Termignoni-García
- Department of Zoology; National Collection of Birds (CNAV); Institute of Biology; Universidad Nacional Autónoma de México; CdMx México
| | - Juan P. Jaramillo-Correa
- Department of Evolutionary Ecology; Institute of Ecology; Universidad Nacional Autónoma de México; CdMx México
| | - Juan Chablé-Santos
- Department of Zoology; Facultad de Medicina Veterinaria y Zootecnia; Universidad Autónoma de Yucatán; Yucatán México
| | - Mark Liu
- Biodiversity Research Center; Academia Sinica; Taipei Nankang Taiwan
| | - Allison J. Shultz
- Department of Organismic and Evolutionary Biology (OEB); Harvard University; Cambridge MA USA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology (OEB); Harvard University; Cambridge MA USA
| | - Patricia Escalante-Pliego
- Department of Zoology; National Collection of Birds (CNAV); Institute of Biology; Universidad Nacional Autónoma de México; CdMx México
| |
Collapse
|
15
|
Starrett J, Derkarabetian S, Hedin M, Bryson RW, McCormack JE, Faircloth BC. High phylogenetic utility of an ultraconserved element probe set designed for Arachnida. Mol Ecol Resour 2016; 17:812-823. [PMID: 27768256 DOI: 10.1111/1755-0998.12621] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/24/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
Abstract
Arachnida is an ancient, diverse and ecologically important animal group that contains a number of species of interest for medical, agricultural and engineering applications. Despite their importance, many aspects of the arachnid tree of life remain unresolved, hindering comparative approaches to arachnid biology. Biologists have made considerable efforts to resolve the arachnid phylogeny; yet, limited and challenging morphological characters, as well as a dearth of genetic resources, have hindered progress. Here, we present a genomic toolkit for arachnids featuring hundreds of conserved DNA regions (ultraconserved elements or UCEs) that allow targeted sequencing of any species in the arachnid tree of life. We used recently developed capture probes designed from conserved regions of available arachnid genomes to enrich a sample of loci from 32 diverse arachnids. Sequence capture returned an average of 487 UCE loci for all species, with a range from 170 to 722. Phylogenetic analysis of these UCEs produced a highly resolved arachnid tree with relationships largely consistent with recent transcriptome-based phylogenies. We also tested the phylogenetic informativeness of UCE probes within the spider, scorpion and harvestman orders, demonstrating the utility of these markers at shallower taxonomic scales and suggesting that these loci will be useful for species-level differences. This probe set will open the door to phylogenomic and population genomic studies across the arachnid tree of life, enabling systematics, species delimitation, species discovery and conservation of these diverse arthropods.
Collapse
Affiliation(s)
- James Starrett
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Shahan Derkarabetian
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.,Department of Biology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Robert W Bryson
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, 4331 Memorial Way Northeast, Seattle, WA, 98195, USA.,Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, 90041, USA
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, 90041, USA
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
16
|
DiDomenico A, Hedin M. New species in the Sitalcina sura species group (Opiliones, Laniatores, Phalangodidae), with evidence for a biogeographic link between California desert canyons and Arizona sky islands. Zookeys 2016:1-36. [PMID: 27199607 PMCID: PMC4857029 DOI: 10.3897/zookeys.586.7832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/23/2016] [Indexed: 11/12/2022] Open
Abstract
The western United States is home to numerous narrowly endemic harvestman taxa (Arachnida, Opiliones), including members of the genus Sitalcina Banks, 1911. Sitalcina is comprised of three species groups, including the monospecific Sitalcina californica and Sitalcina lobata groups, and the Sitalcina sura group with eight described species. All species in the Sitalcina sura group have very small geographic distributions, with group members distributed like disjunct "beads on a string" from Monterey south to southern California and southeast to the sky-island mountain ranges of southern Arizona. Here, molecular phylogenetic and species delimitation analyses were conducted for all described species in the Sitalcina sura group, plus several newly discovered populations. Species trees were reconstructed using multispecies coalescent methods implemented in *BEAST, and species delimitation was accomplished using Bayes Factor Delimitation (BFD). Based on quantitative species delimitation results supported by consideration of morphological characters, two new species (Sitalcina oasiensis sp. n., Sitalcina ubicki sp. n.) are described. We also provide a description of the previously unknown male of Sitalcina borregoensis Briggs, 1968. Molecular phylogenetic evidence strongly supports distinctive desert versus coastal clades, with desert canyon taxa from southern California more closely related to Arizona taxa than to geographically proximate California coastal taxa. We hypothesize that southern ancestry and plate tectonics have played a role in the diversification history of this animal lineage, similar to sclerophyllous plant taxa of the Madro-Tertiary Geoflora. Molecular clock analyses for the Sitalcina sura group are generally consistent with these hypotheses. We also propose that additional Sitalcina species await discovery in the desert canyons of southern California and northern Baja, and the mountains of northwestern mainland Mexico.
Collapse
Affiliation(s)
- Angela DiDomenico
- Department of Biology, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182-4614, USA
| | - Marshal Hedin
- Department of Biology, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182-4614, USA
| |
Collapse
|