1
|
Pantel JH, Becks L. Statistical methods to identify mechanisms in studies of eco-evolutionary dynamics. Trends Ecol Evol 2023; 38:760-772. [PMID: 37437547 DOI: 10.1016/j.tree.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 07/14/2023]
Abstract
While the reciprocal effects of ecological and evolutionary dynamics are increasingly recognized as an important driver for biodiversity, detection of such eco-evolutionary feedbacks, their underlying mechanisms, and their consequences remains challenging. Eco-evolutionary dynamics occur at different spatial and temporal scales and can leave signatures at different levels of organization (e.g., gene, protein, trait, community) that are often difficult to detect. Recent advances in statistical methods combined with alternative hypothesis testing provides a promising approach to identify potential eco-evolutionary drivers for observed data even in non-model systems that are not amenable to experimental manipulation. We discuss recent advances in eco-evolutionary modeling and statistical methods and discuss challenges for fitting mechanistic models to eco-evolutionary data.
Collapse
Affiliation(s)
- Jelena H Pantel
- Ecological Modelling, Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany.
| | - Lutz Becks
- University of Konstanz, Aquatic Ecology and Evolution, Limnological Institute University of Konstanz Mainaustraße 252 78464, Konstanz/Egg, Germany
| |
Collapse
|
2
|
Yamamichi M. How does genetic architecture affect eco-evolutionary dynamics? A theoretical perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200504. [PMID: 35634922 PMCID: PMC9149794 DOI: 10.1098/rstb.2020.0504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have revealed the importance of feedbacks between contemporary rapid evolution (i.e. evolution that occurs through changes in allele frequencies) and ecological dynamics. Despite its inherent interdisciplinary nature, however, studies on eco-evolutionary feedbacks have been mostly ecological and tended to focus on adaptation at the phenotypic level without considering the genetic architecture of evolutionary processes. In empirical studies, researchers have often compared ecological dynamics when the focal species under selection has a single genotype with dynamics when it has multiple genotypes. In theoretical studies, common approaches are models of quantitative traits where mean trait values change adaptively along the fitness gradient and Mendelian traits with two alleles at a single locus. On the other hand, it is well known that genetic architecture can affect short-term evolutionary dynamics in population genetics. Indeed, recent theoretical studies have demonstrated that genetic architecture (e.g. the number of loci, linkage disequilibrium and ploidy) matters in eco-evolutionary dynamics (e.g. evolutionary rescue where rapid evolution prevents extinction and population cycles driven by (co)evolution). I propose that theoretical approaches will promote the synthesis of functional genomics and eco-evolutionary dynamics through models that combine population genetics and ecology as well as nonlinear time-series analyses using emerging big data.
This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Martino C, Chianese T, Chiarelli R, Roccheri MC, Scudiero R. Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. Int J Mol Sci 2022; 23:ijms23052876. [PMID: 35270017 PMCID: PMC8911218 DOI: 10.3390/ijms23052876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The growing presence of lanthanides in the environment has drawn the attention of the scientific community on their safety and toxicity. The sources of lanthanides in the environment include diagnostic medicine, electronic devices, permanent magnets, etc. Their exponential use and the poor management of waste disposal raise serious concerns about the quality and safety of the ecosystems at a global level. This review focused on the impact of lanthanides in marine organisms on reproductive fitness, fertilization and embryonic development, using the sea urchin as a biological model system. Scientific evidence shows that exposure to lanthanides triggers a wide variety of toxic insults, including reproductive performance, fertilization, redox metabolism, embryogenesis, and regulation of embryonic gene expression. This was thoroughly demonstrated for gadolinium, the most widely used lanthanide in diagnostic medicine, whose uptake in sea urchin embryos occurs in a time- and concentration-dependent manner, correlates with decreased calcium absorption and primarily affects skeletal growth, with incorrect regulation of the skeletal gene regulatory network. The results collected on sea urchin embryos demonstrate a variable sensitivity of the early life stages of different species, highlighting the importance of testing the effects of pollution in different species. The accumulation of lanthanides and their emerging negative effects make risk assessment and consequent legislative intervention on their disposal mandatory.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
- Correspondence:
| |
Collapse
|
4
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
5
|
Wood ZT, Wiegardt AK, Barton KL, Clark JD, Homola JJ, Olsen BJ, King BL, Kovach AI, Kinnison MT. Meta-analysis: Congruence of genomic and phenotypic differentiation across diverse natural study systems. Evol Appl 2021; 14:2189-2205. [PMID: 34603492 PMCID: PMC8477602 DOI: 10.1111/eva.13264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/17/2023] Open
Abstract
Linking genotype to phenotype is a primary goal for understanding the genomic underpinnings of evolution. However, little work has explored whether patterns of linked genomic and phenotypic differentiation are congruent across natural study systems and traits. Here, we investigate such patterns with a meta-analysis of studies examining population-level differentiation at subsets of loci and traits putatively responding to divergent selection. We show that across the 31 studies (88 natural population-level comparisons) we examined, there was a moderate (R 2 = 0.39) relationship between genomic differentiation (F ST ) and phenotypic differentiation (P ST ) for loci and traits putatively under selection. This quantitative relationship between P ST and F ST for loci under selection in diverse taxa provides broad context and cross-system predictions for genomic and phenotypic adaptation by natural selection in natural populations. This context may eventually allow for more precise ideas of what constitutes "strong" differentiation, predictions about the effect size of loci, comparisons of taxa evolving in nonparallel ways, and more. On the other hand, links between P ST and F ST within studies were very weak, suggesting that much work remains in linking genomic differentiation to phenotypic differentiation at specific phenotypes. We suggest that linking genotypes to specific phenotypes can be improved by correlating genomic and phenotypic differentiation across a spectrum of diverging populations within a taxon and including wide coverage of both genomes and phenomes.
Collapse
Affiliation(s)
- Zachary T. Wood
- School of Biology and EcologyUniversity of MaineOronoMEUSA
- Maine Center for Genetics in the EnvironmentOronoMEUSA
| | - Andrew K. Wiegardt
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Kayla L. Barton
- Department of Molecular & Biomedical SciencesUniversity of MaineOronoMEUSA
| | - Jonathan D. Clark
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Jared J. Homola
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMIUSA
| | - Brian J. Olsen
- Maine Center for Genetics in the EnvironmentOronoMEUSA
- Department of Wildlife, Fisheries, and Conservation BiologyUniversity of MaineOronoMEUSA
| | - Benjamin L. King
- Department of Molecular & Biomedical SciencesUniversity of MaineOronoMEUSA
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Michael T. Kinnison
- School of Biology and EcologyUniversity of MaineOronoMEUSA
- Maine Center for Genetics in the EnvironmentOronoMEUSA
| |
Collapse
|
6
|
Abstract
Microbial communities are constantly challenged with environmental stressors, such as antimicrobials, pollutants, and global warming. How do they respond to these changes? Answering this question is crucial given that microbial communities perform essential functions for life on Earth. Our research aims to understand and predict communities' responses to change by addressing the following questions. (i) How do eco-evolutionary feedbacks influence microbial community dynamics? (ii) How do multiple interacting species in a microbial community alter evolutionary processes? (iii) To what extent do microbial communities respond to change by ecological versus evolutionary processes? To answer these questions, we use microbial communities of reduced complexity coupled with experimental evolution, genome sequencing, and mathematical modeling. The overall expectation from this integrative research approach is to generate general concepts that extend beyond specific bacterial species and provide fundamental insights into the consequences of evolution on the functioning of whole microbial communities.
Collapse
|
7
|
Turner KG, Ostevik KL, Grassa CJ, Rieseberg LH. Genomic Analyses of Phenotypic Differences Between Native and Invasive Populations of Diffuse Knapweed (Centaurea diffusa). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.577635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive species represent excellent opportunities to study the evolutionary potential of traits important to success in novel environments. Although some ecologically important traits have been identified in invasive species, little is typically known about the genetic mechanisms that underlie invasion success in non-model species. Here, we use a genome-wide association (GWAS) approach to identify the genetic basis of trait variation in the non-model, invasive, diffuse knapweed [Centaurea diffusa Lam. (Asteraceae)]. To assist with this analysis, we have assembled the first draft genome reference and fully annotated plastome assembly for this species, and one of the first from this large, weedy, genus, which is of major ecological and economic importance. We collected phenotype data from 372 individuals from four native and four invasive populations of C. diffusa grown in a common environment. Using these individuals, we produced reduced-representation genotype-by-sequencing (GBS) libraries and identified 7,058 SNPs. We identify two SNPs associated with leaf width in these populations, a trait which significantly varies between native and invasive populations. In this rosette forming species, increased leaf width is a major component of increased biomass, a common trait in invasive plants correlated with increased fitness. Finally, we use annotations from Arabidopsis thaliana to identify 98 candidate genes that are near the associated SNPs and highlight several good candidates for leaf width variation.
Collapse
|
8
|
Stange M, Barrett RDH, Hendry AP. The importance of genomic variation for biodiversity, ecosystems and people. Nat Rev Genet 2020; 22:89-105. [PMID: 33067582 DOI: 10.1038/s41576-020-00288-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/09/2022]
Abstract
The 2019 United Nations Global assessment report on biodiversity and ecosystem services estimated that approximately 1 million species are at risk of extinction. This primarily human-driven loss of biodiversity has unprecedented negative consequences for ecosystems and people. Classic and emerging approaches in genetics and genomics have the potential to dramatically improve these outcomes. In particular, the study of interactions among genetic loci within and between species will play a critical role in understanding the adaptive potential of species and communities, and hence their direct and indirect effects on biodiversity, ecosystems and people. We explore these population and community genomic contexts in the hope of finding solutions for maintaining and improving ecosystem services and nature's contributions to people.
Collapse
Affiliation(s)
- Madlen Stange
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
9
|
De Meester L, Brans KI, Govaert L, Souffreau C, Mukherjee S, Vanvelk H, Korzeniowski K, Kilsdonk L, Decaestecker E, Stoks R, Urban MC. Analysing eco‐evolutionary dynamics—The challenging complexity of the real world. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13261] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Héléne Vanvelk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Konrad Korzeniowski
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Laurens Kilsdonk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, IRF Life Sciences, KULAK KU Leuven Kortrijk Belgium
| | - Robby Stoks
- Laboratory or Evolutionary Stress Ecology and Ecotoxicology KU Leuven Leuven Belgium
| | - Mark C. Urban
- Department of Ecology and Evolutionary Biology, Center for Biodiversity and Ecological Risk University of Connecticut Storrs Connecticut
| |
Collapse
|
10
|
DiBlasi E, Johnson KP, Stringham SA, Hansen AN, Beach AB, Clayton DH, Bush SE. Phoretic dispersal influences parasite population genetic structure. Mol Ecol 2018; 27:2770-2779. [PMID: 29752753 DOI: 10.1111/mec.14719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023]
Abstract
Dispersal is a fundamental component of the life history of most species. Dispersal influences fitness, population dynamics, gene flow, genetic drift and population genetic structure. Even small differences in dispersal can alter ecological interactions and trigger an evolutionary cascade. Linking such ecological processes with evolutionary patterns is difficult, but can be carried out in the proper comparative context. Here, we investigate how differences in phoretic dispersal influence the population genetic structure of two different parasites of the same host species. We focus on two species of host-specific feather lice (Phthiraptera: Ischnocera) that co-occur on feral rock pigeons (Columba livia). Although these lice are ecologically very similar, "wing lice" (Columbicola columbae) disperse phoretically by "hitchhiking" on pigeon flies (Diptera: Hippoboscidae), while "body lice" (Campanulotes compar) do not. Differences in the phoretic dispersal of these species are thought to underlie observed differences in host specificity, as well as the degree of host-parasite cospeciation. These ecological and macroevolutionary patterns suggest that body lice should exhibit more genetic differentiation than wing lice. We tested this prediction among lice on individual birds and among lice on birds from three pigeon flocks. We found higher levels of genetic differentiation in body lice compared to wing lice at two spatial scales. Our results indicate that differences in phoretic dispersal can explain microevolutionary differences in population genetic structure and are consistent with macroevolutionary differences in the degree of host-parasite cospeciation.
Collapse
Affiliation(s)
- Emily DiBlasi
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | | | - Angela N Hansen
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Andrew B Beach
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Dale H Clayton
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Sarah E Bush
- Department of Biology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
11
|
Abstract
The five most pervasive anthropogenic threats to biodiversity are over-exploitation, habitat changes, climate change, invasive species, and pollution. Since all of these threats can affect intraspecific biodiversity—including genetic variation within populations—humans have the potential to induce contemporary microevolution in wild populations. We highlight recent empirical studies that have explored the effects of these anthropogenic threats to intraspecific biodiversity in the wild. We conclude that it is critical that we move towards a predictive framework that integrates a better understanding of contemporary microevolution to multiple threats to forecast the fate of natural populations in a changing world.
Collapse
|
12
|
|
13
|
Matthews B, Best RJ, Feulner PGD, Narwani A, Limberger R. Evolution as an ecosystem process: insights from genomics. Genome 2017; 61:298-309. [PMID: 29241022 DOI: 10.1139/gen-2017-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights. Specifically, studies of biodiversity and ecosystem functioning, evolutionary rescue, and eco-evolutionary dynamics could all benefit from information about variation in genome structure and the genetic architecture of traits, whereas genomic studies could benefit from information about the ecological context of evolutionary dynamics. We propose new ways to help link research on functional genomic diversity with (reciprocal) interactions between phenotypic evolution and ecosystem change. Despite numerous challenges, we anticipate that the wealth of genomic data being collected on natural populations will improve our understanding of ecosystems.
Collapse
Affiliation(s)
- Blake Matthews
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Rebecca J Best
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,b School of Earth Sciences and Environmental Sustainability, Northern Arizona University, 525 S. Beaver Street, Flagstaff, AZ 86011, USA
| | - Philine G D Feulner
- c Eawag, Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,d University of Bern, Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, Bern, Switzerland
| | - Anita Narwani
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Romana Limberger
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,e Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
14
|
Why Sex? A Pluralist Approach Revisited. Trends Ecol Evol 2017; 32:589-600. [DOI: 10.1016/j.tree.2017.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/08/2023]
|