1
|
Wohlleben AM, Tabima JF, Meyer NP, Steinel NC. Population-level immunologic variation in wild threespine stickleback (Gasterosteusaculeatus). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109580. [PMID: 38663464 DOI: 10.1016/j.fsi.2024.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 04/19/2024] [Indexed: 05/09/2024]
Abstract
Wild organisms are regularly exposed to a wide range of parasites, requiring the management of an effective immune response while avoiding immunopathology. Currently, our knowledge of immunoparasitology primarily derives from controlled laboratory studies, neglecting the genetic and environmental diversity that contribute to immune phenotypes observed in wild populations. To gain insight into the immunologic variability in natural settings, we examined differences in immune gene expression of two Alaskan stickleback (Gasterosteus aculeatus) populations with varying susceptibility to infection by the cestode Schistocephalus solidus. Between these two populations, we found distinct immune gene expression patterns at the population level in response to infection with fish from the high-infection population displaying signs of parasite-driven immune manipulation. Further, we found significant differences in baseline immune gene profiles between the populations, with uninfected low-infection population fish showing signatures of inflammation compared to uninfected high-infection population fish. These results shed light on divergent responses of wild populations to the same parasite, providing valuable insights into host-parasite interactions in natural ecosystems.
Collapse
Affiliation(s)
- Anika M Wohlleben
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany; Biology Department, Clark University, Worcester, MA, USA.
| | | | - Néva P Meyer
- Biology Department, Clark University, Worcester, MA, USA
| | - Natalie C Steinel
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA; Center for Pathogen Research and Training, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
2
|
Pu YC, Wang R, Liu HH, Lu SP, Tang FX, Hou YM. Immunosenescence along with direct physiological allocation trade-offs between life history and immunity in the red palm weevil Rhynchophorus ferrugineus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104143. [PMID: 34051204 DOI: 10.1016/j.dci.2021.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Recent works have generally indicated that insects exhibit two immune response strategies: external and internal immune defense. However, the immune-related trade-offs and physiological regulatory mechanisms in red palm weevil, a major invasive pest, remain unclear. Based on postinfection survivorship experiments, we initially measured baseline constitutive external immunity (antibacterial activity of external secretions) and internal immunity (phenoloxidase and antibacterial activity of hemolymph) in uninfected individuals. Then, we challenged the individual immune system and examined subsequent investment in immune function. Our data showed that multiple factors (instar, age, sex, mating status, immune treatment) interacted to affect immune components and infection outcomes, but the magnitude and nature of the impact varied in each case. Although immune senescence is a common phenomenon in which immune function decreases with age, different components of the immune system changed differentially. Notably, mating activity may impose an immunity-related cost, with some evidence of sexual dimorphism and age-associated differences. Finally, parameters related to life-history traits usually decreased temporarily because of increased immunity, suggesting that the ultimate consequences of immune function fitness may be physiologically traded off with other fitness aspects, including growth, development, mating, reproduction, and longevity. These results reveal the complex factors that impact immunity as well as the physiological regulation of individual immunity, which may determine the evolution and outcome of immune senescence and trade-offs.
Collapse
Affiliation(s)
- Yu-Chen Pu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Rui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hui-Hui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Sheng-Ping Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fan-Xi Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
3
|
Hierarchical genetic structure in an evolving species complex: Insights from genome wide ddRAD data in Sebastes mentella. PLoS One 2021; 16:e0251976. [PMID: 34043665 PMCID: PMC8158871 DOI: 10.1371/journal.pone.0251976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
The diverse biology and ecology of marine organisms may lead to complex patterns of intraspecific diversity for both neutral and adaptive genetic variation. Sebastes mentella displays a particular life-history as livebearers, for which existence of multiple ecotypes has been suspected to complicate the genetic population structure of the species. Double digest restriction-site associated DNA was used to investigate genetic population structure in S. mentella and to scan for evidence of selection. In total, 42,288 SNPs were detected in 277 fish, and 1,943 neutral and 97 tentatively adaptive loci were selected following stringent filtration. Unprecedented levels of genetic differentiation were found among the previously defined ‘shallow pelagic’, ‘deep pelagic’ and ‘demersal slope’ ecotypes, with overall mean FST = 0.05 and 0.24 in neutral and outlier SNPs, respectively. Bayesian computation estimated a concurrent and historical divergence among these three ecotypes and evidence of local adaptation was found in the S. mentella genome. Overall, these findings imply that the depth-defined habitat divergence of S. mentella has led to reproductive isolation and possibly adaptive radiation among these ecotypes. Additional sub-structuring was detected within the ‘shallow’ and ‘deep’ pelagic ecotypes. Population assignment of individual fish showed more than 94% agreement between results based on SNP and previously generated microsatellite data, but the SNP data provided a lower estimate of hybridization among the ecotypes than that by microsatellite data. We identified a SNP panel with only 21 loci to discriminate populations in mixed samples based on a machine-learning algorithm. This first SNP based investigation clarifies the population structure of S. mentella, and provides novel and high-resolution genomic tools for future investigations. The insights and tools provided here can readily be incorporated into the management of S. mentella and serve as a template for other exploited marine species exhibiting similar complex life history traits.
Collapse
|
4
|
Palacios MG, Gangloff EJ, Reding DM, Bronikowski AM. Genetic background and thermal environment differentially influence the ontogeny of immune components during early life in an ectothermic vertebrate. J Anim Ecol 2020; 89:1883-1894. [PMID: 32472604 DOI: 10.1111/1365-2656.13271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022]
Abstract
An understudied aspect of vertebrate ecoimmunology has been the relative contributions of environmental factors (E), genetic background (G) and their interaction (G × E) in shaping immune development and function. Environmental temperature is known to affect many aspects of immune function and alterations in temperature regimes have been implicated in emergent disease outbreaks, making it a critical environmental factor to study in the context of immune phenotype determinants of wild animals. We assessed the relative influences of environmental temperature, genetic background and their interaction on first-year development of innate and adaptive immune defences of captive-born garter snakes Thamnophis elegans using a reciprocal transplant laboratory experiment. We used a full-factorial design with snakes from two divergent life-history ecotypes, which are known to differ in immune function in their native habitats, raised under conditions mimicking the natural thermal regime-that is, warmer and cooler-of each habitat. Genetic background (ecotype) and thermal regime influenced innate and adaptive immune parameters of snakes, but in an immune-component specific manner. We found some evidence of G × E interactions but no indication of adaptive plasticity with respect to thermal environment. At the individual level, the effects of thermal environment on resource allocation decisions varied between the fast- and the slow-paced life-history ecotypes. Under warmer conditions, which increased food consumption of individuals in both ecotypes, the former invested mostly in growth, whereas the latter invested more evenly between growth and immune development. Overall, immune parameters were highly flexible, but results suggest that other environmental factors are likely more important than temperature per se in driving the ecotype differences in immunity previously documented in the snakes under field conditions. Our results also add to the understanding of investment in immune development and growth during early postnatal life under different thermal environments. Our finding of immune-component specific patterns strongly cautions against oversimplification of the highly complex immune system in ecoimmunological studies. In conjunction, these results deepen our understanding of the degree of immunological flexibility wild animals present, information that is ever more vital in the context of rapid global environmental change.
Collapse
Affiliation(s)
- Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Eric J Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Dawn M Reding
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
5
|
Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, Martin LB, Plowright RK. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 2020; 89:972-995. [PMID: 31856309 DOI: 10.1111/1365-2656.13166] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre-empt infectious disease risks, especially in the context of how large-scale factors such as urbanization affect defence by changing environmental conditions. We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large-scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small-scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods. We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence. We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed-effects models that account for spatial variability while also allowing researchers to account for both individual- and habitat-level covariates. We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large-scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large-scale field studies with small-scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta-analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual- to habitat-level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Tamika J Lunn
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Caylee A Falvo
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
6
|
Whiting JR, Magalhaes IS, Singkam AR, Robertson S, D'Agostino D, Bradley JE, MacColl ADC. A genetics-based approach confirms immune associations with life history across multiple populations of an aquatic vertebrate (Gasterosteus aculeatus). Mol Ecol 2018; 27:3174-3191. [PMID: 29924437 PMCID: PMC6221044 DOI: 10.1111/mec.14772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Understanding how wild immune variation covaries with other traits can reveal how costs and trade‐offs shape immune evolution in the wild. Divergent life history strategies may increase or alleviate immune costs, helping shape immune variation in a consistent, testable way. Contrasting hypotheses suggest that shorter life histories may alleviate costs by offsetting them against increased mortality, or increase the effect of costs if immune responses are traded off against development or reproduction. We investigated the evolutionary relationship between life history and immune responses within an island radiation of three‐spined stickleback, with discrete populations of varying life histories and parasitism. We sampled two short‐lived, two long‐lived and an anadromous population using qPCR to quantify current immune profile and RAD‐seq data to study the distribution of immune variants within our assay genes and across the genome. Short‐lived populations exhibited significantly increased expression of all assay genes, which was accompanied by a strong association with population‐level variation in local alleles and divergence in a gene that may be involved in complement pathways. In addition, divergence around the eda gene in anadromous fish is likely associated with increased inflammation. A wider analysis of 15 populations across the island revealed that immune genes across the genome show evidence of having diverged alongside life history strategies. Parasitism and reproductive investment were also important sources of variation for expression, highlighting the caution required when assaying immune responses in the wild. These results provide strong, gene‐based support for current hypotheses linking life history and immune variation across multiple populations of a vertebrate model.
Collapse
Affiliation(s)
- James R Whiting
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.,School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Isabel S Magalhaes
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.,Department of Life Sciences, Whitelands College, University of Roehampton, London, UK
| | - Abdul R Singkam
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.,Pendidikan Biologi JPMIPA FKIP, University of Bengkulu, Bengkulu, Indonesia
| | - Shaun Robertson
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Daniele D'Agostino
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Janette E Bradley
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Andrew D C MacColl
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|