1
|
Lyakurwa J, Loader S, Ngalason W, Gumbs R, Ofori‐Boateng C, Liedtke H. Kimboza, a Small Lowland Forest With an Outstanding Herpetofauna Diversity in East Africa. Ecol Evol 2024; 14:e70406. [PMID: 39398633 PMCID: PMC11470088 DOI: 10.1002/ece3.70406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
The Eastern Arc Mountains (EAM) and Coastal forests of Tanzania are renowned for harboring large number of threatened and endemic vertebrate species, yet most of these areas have been partially studied. The Kimboza Nature Forest Reserve (KNFR) is a small forest which is in transition between the EAM and Coastal forests, and among the poorly surveyed areas for amphibians and reptiles. We conducted systematic surveys across the KNFR in 2012 and between 2020 and 2023 using a range of approaches with the aim of establishing a comprehensive and updated list of reptile and amphibian species and assess the contribution of EAM and Coastal forests to the KNFR's herpetofauna. We identified 77 species, 29 amphibians and 48 reptiles, substantially updating previous species lists. Three of these species (Kinyongia magomberae, Trachylepis boulengeri and Philothamnus macrops) represent range extensions from previously known ranges. Fourteen species are endemic to East Africa, 11 of them being restricted to Tanzania. These results make the KNFR the richest forest reserve for herpetofauna per square km in Tanzania, and most similar in its composition to the Coastal, rather than Eastern Arc forests. With the caveats concerning taxonomic uncertainties and the inequalities of sampling intensity across the region, this study shows that the KNFR is an important area that deserves conservation attention. The KNFR, like other Coastal forests, is under significant pressure from anthropogenic activities which call for an urgent action to protect this small but rich forest.
Collapse
Affiliation(s)
- John V. Lyakurwa
- Department of Zoology and Wildlife ConservationUniversity of Dar Es SalaamDar es SalaamTanzania
- EDGE of Existence ProgrammeZoological Society of LondonLondonUK
| | | | - Wilirk Ngalason
- Department of Zoology and Wildlife ConservationUniversity of Dar Es SalaamDar es SalaamTanzania
| | - Rikki Gumbs
- EDGE of Existence ProgrammeZoological Society of LondonLondonUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Caleb Ofori‐Boateng
- EDGE of Existence ProgrammeZoological Society of LondonLondonUK
- CSIR‐Forestry Research Institute of GhanaKumasiGhana
| | - H. Christoph Liedtke
- EcologyEvolution and Development Group, Estación Biológica de Doñana (CSIC)SevillaSpain
| |
Collapse
|
2
|
Rota F, Carnicero P, Casazza G, Nascimbene J, Schönswetter P, Wellstein C. Survival in nunatak and peripheral glacial refugia of three alpine plant species is partly predicted by altitudinal segregation. Mol Ecol 2024; 33:e17343. [PMID: 38596873 DOI: 10.1111/mec.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Mountain biota survived the Quaternary cold stages most probably in peripheral refugia and/or ice-free peaks within ice-sheets (nunataks). While survival in peripheral refugia has been broadly demonstrated, evidence for nunatak refugia is still scarce. We generated RADseq data from three mountain plant species occurring at different elevations in the southeastern European Alps to investigate the role of different glacial refugia during the Last Glacial Maximum (LGM). We tested the following hypotheses. (i) The deep Piave Valley forms the deepest genetic split in the species distributed across it, delimiting two peripheral refugia. (ii) The montane to alpine species Campanula morettiana and Primula tyrolensis survived the LGM in peripheral refugia, while high-alpine to subnival Saxifraga facchinii likely survived in several nunatak refugia. (iii) The lower elevation species suffered a strong population decline during the LGM. By contrast, the higher elevation species shows long-term stability of population sizes due to survival on permanently ice-free peaks and small population sizes at present. We found peripheral refugia on both sides of the Piave Valley, which acted as a major genetic barrier. Demographic modelling confirmed nunatak survival not only for S. facchinii but also for montane to alpine C. morettiana. Altitudinal segregation influenced the species' demographic fluctuations, with the lower elevation species showing a significant population increase at the end of the LGM, and the higher elevation species either showing decrease towards the present or stable population sizes with a short bottleneck. Our results highlight the role of nunatak survival and species ecology in the demographic history of mountain species.
Collapse
Affiliation(s)
- Francesco Rota
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pau Carnicero
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gabriele Casazza
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Juri Nascimbene
- BIOME Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Camilla Wellstein
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
3
|
Jiao X, Wu L, Zhang D, Wang H, Dong F, Yang L, Wang S, Amano HE, Zhang W, Jia C, Rheindt FE, Lei F, Song G. Landscape Heterogeneity Explains the Genetic Differentiation of a Forest Bird across the Sino-Himalayan Mountains. Mol Biol Evol 2024; 41:msae027. [PMID: 38318973 PMCID: PMC10919924 DOI: 10.1093/molbev/msae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Le Yang
- Tibet Plateau Institute of Biology, Lhasa 850000, China
| | - Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Weiwei Zhang
- Center for Wildlife Resources Conservation Research, Jiangxi Agricultural University, Nanchang, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Ju M, Yang J, Yue M, Zhao G. Speciation patterns of related species under the hybrid zone: A case study of three sclerophyllous oaks in the east Himalaya-Hengduan Mountains. Mol Ecol 2023; 32:4610-4626. [PMID: 37395683 DOI: 10.1111/mec.17060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/28/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
Speciation is often accompanied by frequent gene exchanges, which have been gradually recognized as a common phenomenon in nature. Although gene flow may influence different reproductive isolations, the specific mechanism of the process still requires more experimental evidence, especially in hybrid populations that have no significant differentiation and isolation. To address this challenge, this study aims to elucidate the underlying mechanisms of sympatry and parapatry in related species. Three sclerophyllous oaks (Quercus spinosa, Quercus aquifolioides and Quercus rehderiana), which are mainly distributed in the sympatry/parapatry of the East Himalaya-Hengduan Mountains and adjacent regions, were used to explore the population dynamics and evolutionary history. Based on 12,420 genome-wide single nucleotide polymorphism datasets, gene flow detection showed that the three species did not present any obvious genetic barriers. Evolutionary analysis indicated that the three species diverged during the Tertiary Period, and no migration events occurred in the early stages of species divergence. Combined with the data of 19 ecological factors, geological movements and climatic turbulence caused the rapid radiated differentiation of the three species during the Neocene, and similar selective pressures resulted in the same evolutionary pattern based on demographic history analysis. In addition, the predicted niche occupancy profiles and Generalized Dissimilarity Modelling revealed that the three species occupied distinct niches and had significant differences in ecological adaptation, which may explain the specific morphological characteristics of the different species. Therefore, we believe that the populations of the three related species underwent adaptive evolution in different habitats during the early stages of divergence. This study provides new experimental evidence of the formation patterns of parallel speciation.
Collapse
Affiliation(s)
- Miaomiao Ju
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Ramsay MS, Sgarlata GM, Barratt CD, Salmona J, Andriatsitohaina B, Kiene F, Manzi S, Ramilison ML, Rakotondravony R, Chikhi L, Lehman SM, Radespiel U. Effects of Forest Fragmentation on Connectivity and Genetic Diversity in an Endemic and an Invasive Rodent in Northwestern Madagascar. Genes (Basel) 2023; 14:1451. [PMID: 37510355 PMCID: PMC10378931 DOI: 10.3390/genes14071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Habitat loss and fragmentation are of concern to conservation biologists worldwide. However, not all organisms are affected equally by these processes; thus, it is important to study the effects of living in fragmented habitats on species that differ in lifestyle and habitat requirements. In this study, we examined the dispersal and connectivity patterns of rodents, one endemic (Eliurus myoxinus) and one invasive (Rattus rattus), in two landscapes containing forest fragments and adjacent continuous forest patches in northwestern Madagascar. We generated genetic (RADseq) data for 66 E. myoxinus and 81 R. rattus individuals to evaluate differences in genetic diversity as well as inbreeding and connectivity in two landscapes. We found higher levels of inbreeding and lower levels of genetic diversity in E. myoxinus compared with R. rattus. We observed related dyads both within and between habitat patches and positive spatial autocorrelation at lower distance classes for both species, with a stronger pattern of spatial autocorrelation in R. rattus. Across each site, we identified contrasting migration rates for each species, but these did not correspond to habitat-matrix dichotomies. The relatively low genetic diversity in the endemic E. myoxinus suggests ecological constraints that require further investigation.
Collapse
Affiliation(s)
- Malcolm S Ramsay
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | - Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Jordi Salmona
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 31062 Toulouse, France
| | - Bertrand Andriatsitohaina
- Planet Madagascar, Antananarivo 101, Madagascar
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga 401, Madagascar
| | - Frederik Kiene
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Sophie Manzi
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 31062 Toulouse, France
| | - Miarisoa L Ramilison
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga 401, Madagascar
- Department of Primate Behavior and Ecology, Central Washington University, Ellensburg, WA 98926, USA
| | - Romule Rakotondravony
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga 401, Madagascar
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 31062 Toulouse, France
| | - Shawn M Lehman
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
6
|
Freedman AH, Harrigan RJ, Zhen Y, Hamilton AM, Smith TB. Evidence for ecotone speciation across an African rainforest-savanna gradient. Mol Ecol 2023; 32:2287-2300. [PMID: 36718952 DOI: 10.1111/mec.16867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Accelerating climate change and habitat loss make it imperative that plans to conserve biodiversity consider species' ability to adapt to changing environments. However, in biomes where biodiversity is highest, the evolutionary mechanisms responsible for generating adaptative variation and, ultimately, new species are frequently poorly understood. African rainforests represent one such biome, as decadal debates continue concerning the mechanisms generating African rainforest biodiversity. These debates hinge on the relative importance of geographic isolation versus divergent natural selection across environmental gradients. Hindering progress is a lack of robust tests of these competing hypotheses. Because African rainforests are severely at-risk due to climate change and other anthropogenic activities, addressing this long-standing debate is critical for making informed conservation decisions. We use demographic inference and allele frequency-environment relationships to investigate mechanisms of diversification in an African rainforest skink, Trachylepis affinis, a species inhabiting the gradient between rainforest and rainforest-savanna mosaic (ecotone). We provide compelling evidence of ecotone speciation, in which gene flow has all but ceased between rainforest and ecotone populations, at a level consistent with infrequent hybridization between sister species. Parallel patterns of genomic, morphological, and physiological divergence across this environmental gradient and pronounced allele frequency-environment correlation indicate speciation is mostly probably driven by ecological divergence, supporting a central role for divergent natural selection. Our results provide strong evidence for the importance of ecological gradients in African rainforest speciation and inform conservation strategies that preserve the processes that produce and maintain biodiversity.
Collapse
Affiliation(s)
- Adam H Freedman
- Faculty of Arts and Sciences Informatics Group, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan J Harrigan
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
| | - Ying Zhen
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Alison M Hamilton
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Thomas B Smith
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Penna A, Dillon R, Bearder SK, Karlsson J, Perkin A, Pozzi L. Phylogeography and evolutionary lineage diversity in the small-eared greater galago, Otolemur garnettii (Primates: Galagidae). Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Assessing the true lineage diversity in elusive nocturnal organisms is particularly challenging due to their subtle phenotypic variation in diagnostic traits. The cryptic small-eared greater galago (Otolemur garnettii) offers a great opportunity to test if currently recognized subspecies, suggested by discontinuities in coat colour pattern and geographic barriers, represent distinct evolutionary lineages. To answer this question, we conducted the first population-level phylogeographic study of the species, sampling wild specimens from across almost its entire latitudinal range, including the Zanzibar Archipelago. We applied five species-delimitation algorithms to investigate the genetic diversity and distribution pattern of mitochondrial DNA across the geographic range of three out of four subspecies. Our results suggest that far-northern populations of O. g. lasiotis potentially represent an independently evolving lineage, but populations assigned to O. g. garnettii from Zanzibar Island and of O. g panganiensis from mainland Tanzania do not constitute two independent lineages. A dated phylogeny suggests that this northern clade diverged from all remaining samples approximately 4 Mya. Such old divergence age is in line with the split between many galagid species. This northern lineage could potentially represent an incipient species; however, there is not yet enough evidence to support a new taxonomic status for this unique mitochondrial group.
Collapse
Affiliation(s)
- Anna Penna
- Department of Anthropology, University of Texas at San Antonio , San Antonio, Texas , USA
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Rosemarie Dillon
- Department of Anthropology, University of Texas at San Antonio , San Antonio, Texas , USA
| | - Simon K Bearder
- Nocturnal Primate Research Group, Oxford Brookes University , Oxford , UK
| | - Johan Karlsson
- Nocturnal Primate Research Group, Oxford Brookes University , Oxford , UK
| | - Andrew Perkin
- Nocturnal Primate Research Group, Oxford Brookes University , Oxford , UK
| | - Luca Pozzi
- Department of Anthropology, University of Texas at San Antonio , San Antonio, Texas , USA
| |
Collapse
|
8
|
Chak STC, Harris SE, Hultgren KM, Duffy JE, Rubenstein DR. Demographic inference provides insights into the extirpation and ecological dominance of eusocial snapping shrimps. J Hered 2022; 113:552-562. [PMID: 35921239 DOI: 10.1093/jhered/esac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Although eusocial animals often achieve ecological dominance in the ecosystems where they occur, many populations are unstable, resulting in local extinction. Both patterns may be linked to the characteristic demography of eusocial species-high reproductive skew and reproductive division of labor support stable effective population sizes that make eusocial groups more competitive in some species, but also lower effective population sizes that increase susceptibility to population collapse in others. Here, we examine the relationship between demography and social organization in Synalpheus snapping shrimps, a group in which eusociality has evolved recently and repeatedly. We show using coalescent demographic modelling that eusocial species have had lower but more stable effective population sizes across 100,000 generations. Our results are consistent with the idea that stable population sizes may enable competitive dominance in eusocial shrimps, but they also suggest that recent population declines are likely caused by eusocial shrimps' heightened sensitivity to environmental changes, perhaps as a result of their low effective population sizes and localized dispersal. Thus, although the unique life histories and demography of eusocial shrimps have likely contributed to their persistence and ecological dominance over evolutionary timescales, these social traits may also make them vulnerable to contemporary environmental change.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Department of Biological Sciences, SUNY College at Old Westbury, Old Westbury, NY, USA
| | - Stephen E Harris
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Biology Department, SUNY Purchase College, Purchase, NY, USA
| | | | - J Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian Institution, Edgewater, MD, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Speciation with gene flow in a narrow endemic West Virginia cave salamander (Gyrinophilus subterraneus). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Smith D, O'Brien D, Hall J, Sergeant C, Brookes LM, Harrison XA, Garner TWJ, Jehle R. Challenging a host-pathogen paradigm: Susceptibility to chytridiomycosis is decoupled from genetic erosion. J Evol Biol 2022; 35:589-598. [PMID: 35167143 PMCID: PMC9306973 DOI: 10.1111/jeb.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The putatively positive association between host genetic diversity and the ability to defend against pathogens has long attracted the attention of evolutionary biologists. Chytridiomycosis, a disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has emerged in recent decades as a cause of dramatic declines and extinctions across the amphibian clade. Bd susceptibility can vary widely across populations of the same species, but the relationship between standing genetic diversity and susceptibility has remained notably underexplored so far. Here, we focus on a putatively Bd-naive system of two mainland and two island populations of the common toad (Bufo bufo) at the edge of the species' range and use controlled infection experiments and dd-RAD sequencing of >10 000 SNPs across 95 individuals to characterize the role of host population identity, genetic variation and individual body mass in mediating host response to the pathogen. We found strong genetic differentiation between populations and marked variation in their susceptibility to Bd. This variation was not, however, governed by isolation-mediated genetic erosion, and individual heterozygosity was even found to be negatively correlated with survival. Individual survival during infection experiments was strongly positively related to body mass, which itself was unrelated to population of origin or heterozygosity. Our findings underscore the general importance of context-dependency when assessing the role of host genetic variation for the ability of defence against pathogens.
Collapse
Affiliation(s)
- Donal Smith
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | | | | | - Chris Sergeant
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Lola M. Brookes
- Institute of ZoologyZoological Society of LondonLondonUK
- Highland Amphibian and Reptile ProjectDingwallUK
- MRC Centre for Global Infectious Disease AnalysisImperial College School of Public HealthLondonUK
- Royal Veterinary CollegeHatfieldUK
| | - Xavier A. Harrison
- Institute of ZoologyZoological Society of LondonLondonUK
- Centre for Ecology and ConservationUniversity of ExeterExeterUK
| | | | - Robert Jehle
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| |
Collapse
|
11
|
Rivera D, Prates I, Firneno TJ, Rodrigues MT, Caldwell JP, Fujita MK. Phylogenomics, introgression, and demographic history of South American true toads (Rhinella). Mol Ecol 2021; 31:978-992. [PMID: 34784086 DOI: 10.1111/mec.16280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/24/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
The effects of genetic introgression on species boundaries and how they affect species' integrity and persistence over evolutionary time have received increased attention. The increasing availability of genomic data has revealed contrasting patterns of gene flow across genomic regions, which impose challenges to inferences of evolutionary relationships and of patterns of genetic admixture across lineages. By characterizing patterns of variation across thousands of genomic loci in a widespread complex of true toads (Rhinella), we assess the true extent of genetic introgression across species thought to hybridize to extreme degrees based on natural history observations and multi-locus analyses. Comprehensive geographic sampling of five large-ranged Neotropical taxa revealed multiple distinct evolutionary lineages that span large geographic areas and, at times, distinct biomes. The inferred major clades and genetic clusters largely correspond to currently recognized taxa; however, we also found evidence of cryptic diversity within taxa. While previous phylogenetic studies revealed extensive mito-nuclear discordance, our genetic clustering analyses uncovered several admixed individuals within major genetic groups. Accordingly, historical demographic analyses supported that the evolutionary history of these toads involved cross-taxon gene flow both at ancient and recent times. Lastly, ABBA-BABA tests revealed widespread allele sharing across species boundaries, a pattern that can be confidently attributed to genetic introgression as opposed to incomplete lineage sorting. These results confirm previous assertions that the evolutionary history of Rhinella was characterized by various levels of hybridization even across environmentally heterogeneous regions, posing exciting questions about what factors prevent complete fusion of diverging yet highly interdependent evolutionary lineages.
Collapse
Affiliation(s)
- Danielle Rivera
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, TX, USA
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Firneno
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, TX, USA
| | - Miguel Trefaut Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Janalee P Caldwell
- Sam Noble Museum & Department of Biology, University of Oklahoma, Norman, Oklahoma, 73072-7029, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, TX, USA
| |
Collapse
|
12
|
Burbrink FT, Ruane S. Contemporary Philosophy and Methods for Studying Speciation and Delimiting Species. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024; . Send reprint requests to this address
| | - Sara Ruane
- Earth and Environmental Sciences: Ecology and Evolution, Rutgers University–Newark, 195 University Avenue, Newark, New Jersey 07102
| |
Collapse
|
13
|
Barratt CD, Lester JD, Gratton P, Onstein RE, Kalan AK, McCarthy MS, Bocksberger G, White LC, Vigilant L, Dieguez P, Abdulai B, Aebischer T, Agbor A, Assumang AK, Bailey E, Bessone M, Buys B, Carvalho JS, Chancellor R, Cohen H, Danquah E, Deschner T, Dongmo ZN, Doumbé OA, Dupain J, Duvall CS, Eno-Nku M, Etoga G, Galat-Luong A, Garriga R, Gatti S, Ghiurghi A, Goedmakers A, Granjon AC, Hakizimana D, Head J, Hedwig D, Herbinger I, Hermans V, Jones S, Junker J, Kadam P, Kambi M, Kienast I, Kouakou CY, N Goran KP, Langergraber KE, Lapuente J, Laudisoit A, Lee KC, Maisels F, Mirghani N, Moore D, Morgan B, Morgan D, Neil E, Nicholl S, Nkembi L, Ntongho A, Orbell C, Ormsby LJ, Pacheco L, Piel AK, Pintea L, Plumptre AJ, Rundus A, Sanz C, Sommer V, Sop T, Stewart FA, Sunderland-Groves J, Tagg N, Todd A, Ton E, van Schijndel J, VanLeeuwe H, Vendras E, Welsh A, Wenceslau JFC, Wessling EG, Willie J, Wittig RM, Yoshihiro N, Yuh YG, Yurkiw K, Boesch C, Arandjelovic M, Kühl H. Quantitative estimates of glacial refugia for chimpanzees (Pan troglodytes) since the Last Interglacial (120,000 BP). Am J Primatol 2021; 83:e23320. [PMID: 34402081 DOI: 10.1002/ajp.23320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
Paleoclimate reconstructions have enhanced our understanding of how past climates have shaped present-day biodiversity. We hypothesize that the geographic extent of Pleistocene forest refugia and suitable habitat fluctuated significantly in time during the late Quaternary for chimpanzees (Pan troglodytes). Using bioclimatic variables representing monthly temperature and precipitation estimates, past human population density data, and an extensive database of georeferenced presence points, we built a model of changing habitat suitability for chimpanzees at fine spatio-temporal scales dating back to the Last Interglacial (120,000 BP). Our models cover a spatial resolution of 0.0467° (approximately 5.19 km2 grid cells) and a temporal resolution of between 1000 and 4000 years. Using our model, we mapped habitat stability over time using three approaches, comparing our modeled stability estimates to existing knowledge of Afrotropical refugia, as well as contemporary patterns of major keystone tropical food resources used by chimpanzees, figs (Moraceae), and palms (Arecacae). Results show habitat stability congruent with known glacial refugia across Africa, suggesting their extents may have been underestimated for chimpanzees, with potentially up to approximately 60,000 km2 of previously unrecognized glacial refugia. The refugia we highlight coincide with higher species richness for figs and palms. Our results provide spatio-temporally explicit insights into the role of refugia across the chimpanzee range, forming the empirical foundation for developing and testing hypotheses about behavioral, ecological, and genetic diversity with additional data. This methodology can be applied to other species and geographic areas when sufficient data are available.
Collapse
Affiliation(s)
- Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jack D Lester
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paolo Gratton
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Biology, University of Rome "Tor Vergata", Roma, Italy
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Ammie K Kalan
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maureen S McCarthy
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Gaëlle Bocksberger
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lauren C White
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paula Dieguez
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Barrie Abdulai
- Research for Evidence-based and Achievable Decisions Sierra Leone (READ-SL), Sierra Leone
| | - Thierry Aebischer
- Conservation et Plan d'aménagement de l'Aire de Conservation de Chinko, African Parks Network, Chinko Project, Kocho, RCA and active collaborator of the University of Fribourg, WegmannLab, Fribourg, Switzerland
| | - Anthony Agbor
- African Parks Centurion Building, Lonehill, South Africa
| | - Alfred K Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mattia Bessone
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Joana S Carvalho
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rebecca Chancellor
- Departments of Anthropology & Sociology and Psychology, West Chester University, West Chester, Pennsylvania, USA
| | - Heather Cohen
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | - Jef Dupain
- Antwerp Zoo Foundation, Antwerp Zoo Society, Antwerpen, Belgium
| | - Chris S Duvall
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, New Mexico, USA
| | - Manasseh Eno-Nku
- World Wide Fund for Nature, Panda House Bastos, Yaounde, Cameroon
| | - Gilles Etoga
- World Wide Fund for Nature, Panda House Bastos, Yaounde, Cameroon
| | - Anh Galat-Luong
- IRD (The French National Research Institute for Development), France
| | - Rosa Garriga
- Tacugama Chimpanzee Sanctuary, Freetown, Sierra Leone
| | - Sylvain Gatti
- West African Primate Conservation Action (WAPCA), Accra, Ghana
| | | | | | - Anne-Céline Granjon
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Josephine Head
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Daniela Hedwig
- Elephant Listening Project, Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | | | - Veerle Hermans
- Taï Chimpanzee Project, CSRS, Abidjan, Ivory Coast.,Centre for Research and Conservation, Antwerp Zoo Society, Antwerpen, Belgium
| | - Sorrel Jones
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Parag Kadam
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, UK
| | - Mohamed Kambi
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ivonne Kienast
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Kouamé P N Goran
- World Wide Fund for Nature, Panda House Bastos, Yaounde, Cameroon
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Institute of Human Origins, Arizona State University, Tempe, Arizona, USA
| | - Juan Lapuente
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Comoé Chimpanzee Conservation Project, Comoé National Park, Kakpin, Ivory Coast
| | - Anne Laudisoit
- Ecohealth Alliance, New York City, New York, USA.,Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerpen, Belgium
| | - Kevin C Lee
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Fiona Maisels
- Wildlife Conservation Society (WCS), Bronx, New York, USA.,Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Nadia Mirghani
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Deborah Moore
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Bethan Morgan
- Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK.,San Diego Zoo Global, Escondido, California, USA.,Ebo Forest Research Project, Yaounde, Cameroon
| | - David Morgan
- Lester E Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, USA
| | - Emily Neil
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sonia Nicholl
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Louis Nkembi
- Environment and Rural Development Foundation, Buea, Cameroon
| | - Anne Ntongho
- World Wide Fund for Nature, Panda House Bastos, Yaounde, Cameroon
| | | | - Lucy Jayne Ormsby
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Alex K Piel
- Department of Anthropology, University College London, London, UK
| | | | - Andrew J Plumptre
- Key Biodiversity Area Secretariat, c/o BirdLife International, Cambridge, UK
| | - Aaron Rundus
- Department of Psychology, West Chester University, West Chester, Pennsylvania, USA
| | - Crickette Sanz
- Department of Anthropology, Washington University in St. Louis, Saint Louis, Missouri, USA.,Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Volker Sommer
- Department of Anthropology, University College London, London, UK.,Gashaka Primate Project, Serti, Taraba State, Nigeria
| | - Tenekwetche Sop
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fiona A Stewart
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | | | - Nikki Tagg
- Centre for Research and Conservation, Antwerp Zoo Society, Antwerpen, Belgium
| | | | - Els Ton
- Chimbo Foundation, Oudemirdum, Netherlands
| | | | | | - Elleni Vendras
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam Welsh
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jacob Willie
- Centre for Research and Conservation, Antwerp Zoo Society, Antwerpen, Belgium
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, CSRS, Abidjan, Ivory Coast
| | | | - Yisa Ginath Yuh
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Geography, Planning and Environmental Studies, University of Concordia, Montréal, Quebec, Canada
| | - Kyle Yurkiw
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Pan Verus Project, Outamba-Kilimi National Park, Sierra Leone
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hjalmar Kühl
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
14
|
Shakya SB, Haryoko T, Irham M, Suparno, Prawiradilaga DM, Sheldon FH. Genomic investigation of colour polymorphism and phylogeographic variation among populations of black-headed bulbul (Brachypodius atriceps) in insular southeast Asia. Mol Ecol 2021; 30:4757-4770. [PMID: 34297854 DOI: 10.1111/mec.16089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
Intraspecific polymorphism in birds, especially plumage colour polymorphism, and the mechanisms that control it are an area of active research in evolutionary biology. The black-headed bulbul (Brachypodius atriceps) is a polymorphic species with two distinct morphs, yellow and grey. This species inhabits the mainland and virtually all continental islands of Southeast Asia where yellow morphs predominate, but on two islands in the Sunda region, Bawean and Maratua, grey morphs are common or exclusive. Here, we generated a high-quality reference genome of a yellow individual and resequenced genomes of multiple individuals of both yellow and grey morphs to study the genetic basis of coloration and population history of the species. Using PCA and STRUCTURE analysis, we found the Maratua Island population (which is exclusively grey) to be distinct from all other B. atriceps populations, having been isolated c. 1.9 million years ago (Ma). In contrast, Bawean grey individuals (a subset of yellow and grey individuals on that island) are embedded within an almost panmictic Sundaic clade of yellow birds. Using FST and dxy to compare variable genomic segments between Maratua and yellow individuals, we located peaks of divergence and identified candidate loci involved in the colour polymorphism. Tests of selection among coding-proteins in high FST regions, however, did not indicate selection on the candidate genes. Overall, we report on some loci that are potentially responsible for the grey/yellow polymorphism in a species that otherwise shows little genetic diversification across most of its range.
Collapse
Affiliation(s)
- Subir B Shakya
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Mohammad Irham
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Suparno
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Dewi M Prawiradilaga
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Frederick H Sheldon
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
15
|
O'Connell KA, Prates I, Scheinberg LA, Mulder KP, Bell RC. Speciation and secondary contact in a fossorial island endemic, the São Tomé caecilian. Mol Ecol 2021; 30:2859-2871. [PMID: 33969550 DOI: 10.1111/mec.15928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
A period of isolation in allopatry typically precedes local adaptation and subsequent divergence among lineages. Alternatively, locally adapted phenotypes may arise and persist in the face of gene flow, resulting in strong correlations between ecologically-relevant phenotypic variation and corresponding environmental gradients. Quantifying genetic, ecological, and phenotypic divergence in such lineages can provide insights into the abiotic and biotic mechanisms that structure populations and drive the accumulation of phenotypic and taxonomic diversity. Low-vagility organisms whose distributions span ephemeral geographic barriers present the ideal evolutionary context within which to address these questions. Here, we combine genetic (mtDNA and genome-wide SNPs) and phenotypic data to investigate the divergence history of caecilians (Amphibia: Gymnophiona) endemic to the oceanic island of São Tomé in the Gulf of Guinea archipelago. Consistent with a previous mtDNA study, we find two phenotypically and genetically distinct lineages that occur along a north-to-south axis with extensive admixture in the centre of the island. Demographic modelling supports divergence in allopatry (~300 kya) followed by secondary contact (~95 kya). Consequently, in contrast to a morphological study that interpreted latitudinal phenotypic variation in these caecilians as a cline within a single widespread species, our analyses suggest a history of allopatric lineage divergence and subsequent hybridization that may have blurred species boundaries. We propose that late Pleistocene volcanic activity favoured allopatric divergence between these lineages with local adaptation to climate maintaining a stable hybrid zone in the centre of São Tomé Island. Our study joins a growing number of systems demonstrating lineage divergence on volcanic islands with stark environmental transitions across small geographic distances.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Ivan Prates
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren A Scheinberg
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Kevin P Mulder
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
16
|
Bouzid NM, Archie JW, Anderson RA, Grummer JA, Leaché AD. Evidence for ephemeral ring species formation during the diversification history of western fence lizards (Sceloporus occidentalis). Mol Ecol 2021; 31:620-631. [PMID: 33565164 DOI: 10.1111/mec.15836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
Divergence is often ephemeral, and populations that diverge in response to regional topographic and climatic factors may not remain reproductively isolated when they come into secondary contact. We investigated the geographical structure and evolutionary history of population divergence within Sceloporus occidentalis (western fence lizard), a habitat generalist with a broad distribution that spans the major biogeographical regions of Western North America. We used double digest RAD sequencing to infer population structure, phylogeny and demography. Population genetic structure is hierarchical and geographically structured with evidence for gene flow between biogeographical regions. Consistent with the isolation-expansion model of divergence during Quaternary glacial-interglacial cycles, gene flow and secondary contact are supported as important processes explaining the demographic histories of populations. Although populations may have diverged as they spread northward in a ring-like manner around the Sierra Nevada and southern Cascade Ranges, there is strong evidence for gene flow among populations at the northern terminus of the ring. We propose the concept of an "ephemeral ring species" and contrast S. occidentalis with the classic North American ring species, Ensatina eschscholtzii. Contrary to expectations of lower genetic diversity at northern latitudes following post-Quaternary-glaciation expansion, the ephemeral nature of divergence in S. occidentalis has produced centres of high genetic diversity for different reasons in the south (long-term stability) vs. the north (secondary contact).
Collapse
Affiliation(s)
- Nassima M Bouzid
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - James W Archie
- Biological Sciences, California State University, Long Beach, CA, USA
| | - Roger A Anderson
- Biology Department, Western Washington University, Bellingham, WA, USA
| | - Jared A Grummer
- Department of Zoology, University of British Columbia, Beaty Biodiversity Museum, Vancouver, BC, Canada
| | - Adam D Leaché
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Couvreur TL, Dauby G, Blach‐Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC, Mackinder BA, Sonké B, Sosef MS, Stévart T, Svenning J, Wieringa JJ, Faye A, Missoup AD, Tolley KA, Nicolas V, Ntie S, Fluteau F, Robin C, Guillocheau F, Barboni D, Sepulchre P. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol Rev Camb Philos Soc 2021; 96:16-51. [PMID: 32924323 PMCID: PMC7821006 DOI: 10.1111/brv.12644] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.
Collapse
Affiliation(s)
| | - Gilles Dauby
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - Anne Blach‐Overgaard
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Vincent Deblauwe
- Center for Tropical Research (CTR), Institute of the Environment and SustainabilityUniversity of California, Los Angeles (UCLA)Los AngelesCA90095U.S.A.
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | | | - Vincent Droissart
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Oliver J. Hardy
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - David J. Harris
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghU.K.
| | | | - Alexandra C. Ley
- Institut für Geobotanik und Botanischer GartenUniversity Halle‐WittenbergNeuwerk 21Halle06108Germany
| | | | - Bonaventure Sonké
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
| | | | - Tariq Stévart
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Jan J. Wieringa
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333 CRThe Netherlands
| | - Adama Faye
- Laboratoire National de Recherches sur les Productions Végétales (LNRPV)Institut Sénégalais de Recherches Agricoles (ISRA)Route des Hydrocarbures, Bel Air BP 1386‐ CP18524DakarSenegal
| | - Alain D. Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaPO Box 24157DoualaCameroon
| | - Krystal A. Tolley
- South African National Biodiversity InstituteKirstenbosch Research CentrePrivate Bag X7, ClaremontCape Town7735South Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag 3Wits2050South Africa
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesCP51, 57 rue CuvierParis75005France
| | - Stéphan Ntie
- Département de Biologie, Faculté des SciencesUniversité des Sciences et Techniques de MasukuFrancevilleBP 941Gabon
| | - Frédiéric Fluteau
- Institut de Physique du Globe de Paris, CNRSUniversité de ParisParisF‐75005France
| | - Cécile Robin
- CNRS, Géosciences Rennes, UMR6118University of RennesRennes35042France
| | | | - Doris Barboni
- CEREGE, Aix‐Marseille University, CNRS, IRD, Collège de France, INRA, Technopole Arbois MéditerranéeBP80Aix‐en‐Provence cedex413545France
| | - Pierre Sepulchre
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteF‐91191France
| |
Collapse
|
18
|
O'Connell KA, Oaks JR, Hamidy A, Shaney KJ, Kurniawan N, Smith EN, Fujita MK. Impacts of the Toba eruption and montane forest expansion on diversification in Sumatran parachuting frogs (Rhacophorus). Mol Ecol 2020; 29:2994-3009. [PMID: 32633832 DOI: 10.1111/mec.15541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023]
Abstract
Catastrophic events, such as volcanic eruptions, can have profound impacts on the demographic histories of resident taxa. Due to its presumed effect on biodiversity, the Pleistocene eruption of super-volcano Toba has received abundant attention. We test the effects of the Toba eruption on the diversification, genetic diversity, and demography of three co-distributed species of parachuting frogs (Genus Rhacophorus) on Sumatra. We generate target-capture data (~950 loci and ~440,000 bp) for three species of parachuting frogs and use these data paired with previously generated double digest restriction-site associated DNA (ddRADseq) data to estimate population structure and genetic diversity, to test for population size changes using demographic modelling, and to estimate the temporal clustering of size change events using a full-likelihood Bayesian method. We find that populations around Toba exhibit reduced genetic diversity compared with southern populations, and that northern populations exhibit a shift in effective population size around the time of the eruption (~80 kya). However, we infer a stronger signal of expansion in southern populations around ~400 kya, and at least two of the northern populations may have also expanded at this time. Taken together, these findings suggest that the Toba eruption precipitated population declines in northern populations, but that the demographic history of these three species was also strongly impacted by mid-Pleistocene forest expansion during glacial periods. We propose local rather than regional effects of the Toba eruption, and emphasize the dynamic nature of diversification on the Sunda Shelf.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institute, Washington, DC, USA.,Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institute, Washington, DC, USA.,Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA.,Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Jamie R Oaks
- Department of Biological Sciences and Museum of Natural History, Auburn University, Auburn, Alabama, USA
| | - Amir Hamidy
- Zoology Division, Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences. Gd, Bogor, West Java, Indonesia
| | - Kyle J Shaney
- Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nia Kurniawan
- Department of Biology, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Eric N Smith
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Matthew K Fujita
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
19
|
Feng L, Ruhsam M, Wang YH, Li ZH, Wang XM. Using demographic model selection to untangle allopatric divergence and diversification mechanisms in the Rheum palmatum complex in the Eastern Asiatic Region. Mol Ecol 2020; 29:1791-1805. [PMID: 32306487 DOI: 10.1111/mec.15448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Abstract
Allopatric divergence is often initiated by geological uplift and restriction to sky-islands, climate oscillations, or river capture. However, it can be difficult to establish which mechanism was the most likely to generate the current phylogeographical structure of a species. Recently, genomic data in conjunction with a model testing framework have been applied to address this issue in animals. To test whether such an approach is also likely to be successful in plants, we used population genomic data of the Rheum palmatum complex from the Eastern Asiatic Region, in conjunction with biogeographical reconstruction and demographic model selection, to identify the potential mechanism(s) which have led to the current level of divergence. Our results indicate that the R. palmatum complex originated in the central Hengduan Mts and possibly in regions further east, and then dispersed westward and eastward resulting in genetically distinct lineages. Populations are likely to have diverged in refugia during climate oscillations followed by subsequent expansion and secondary contact. However, model simulations within the western lineage of the R. palmatum complex cannot reject a restriction to sky-islands as a possible mechanism of diversification due to the genetically ambiguous position of one population. This highlights that genetically mixed populations might introduce ambiguity regarding the best diversification model in some cases. Although it might be possible to resolve this ambiguity using other data, sometimes this could prove to be difficult in complex biogeographical areas.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Qiyao Resources and Anti-tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | | | - Yi-Han Wang
- College of Life Sciences, Henan Agriculture University, Zhengzhou, China
| | - Zhong-Hu Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xu-Mei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Qiyao Resources and Anti-tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Wogan GOU, Voelker G, Oatley G, Bowie RCK. Biome stability predicts population structure of a southern African aridland bird species. Ecol Evol 2020; 10:4066-4081. [PMID: 32489631 PMCID: PMC7244808 DOI: 10.1002/ece3.6175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 11/07/2022] Open
Abstract
Environments are heterogeneous in space and time, and the permeability of landscape and climatic barriers to gene flow may change over time. When barriers are present, they may start populations down the path toward speciation, but if they become permeable before the process of speciation is complete, populations may once more merge. In Southern Africa, aridland biomes play a central role in structuring the organization of biodiversity. These biomes were subject to substantial restructuring during Plio-Pleistocene climatic fluctuations, and the imprint of this changing environment should leave genetic signatures on the species living there. Here, we investigate the role of adjacent aridland biome boundaries in structuring the genetic diversity within a widespread generalist bird, the Cape Robin-chat (Cossypha caffra). We find evidence supporting a central role for aridland biomes in structuring populations across Southern Africa. Our findings support a scenario wherein populations were isolated in different biome refugia, due to separation by the exceptionally arid Nama Karoo biome. This biome barrier may have arisen through a combination of habitat instability and environmental unsuitability, and was highly unstable throughout the Plio-Pleistocene. However, we also recovered a pattern of extensive contemporary gene flow and admixture across the Nama Karoo, potentially driven by the establishment of homesteads over the past 200 years. Thus, the barrier has become permeable, and populations are currently merging. This represents an instance where initial formation of a barrier to gene flow enabled population differentiation, with subsequent gene flow and the merging of populations after the barrier became permeable.
Collapse
Affiliation(s)
- Guinevere O. U. Wogan
- Department of Integrative BiologyMuseum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCAUSA
| | - Gary Voelker
- Department of Wildlife and Fisheries SciencesBiodiversity Research and Teaching CollectionsTexas A&M UniversityCollege StationTXUSA
| | - Graeme Oatley
- Department of GeographyCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
- DST/NRF Centre of Excellence at the Percy FitzPatrick InstituteUniversity of Cape TownRondeboschSouth Africa
| | - Rauri C. K. Bowie
- Department of Integrative BiologyMuseum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCAUSA
- DST/NRF Centre of Excellence at the Percy FitzPatrick InstituteUniversity of Cape TownRondeboschSouth Africa
| |
Collapse
|
21
|
Xue AT, Hickerson MJ. Comparative phylogeographic inference with genome‐wide data from aggregated population pairs. Evolution 2020; 74:808-830. [DOI: 10.1111/evo.13945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alexander T. Xue
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyGraduate Center of City University of New York New York NY 10016
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyCity College of City University of New York New York NY 10031
- Human Genetics Institute of New Jersey and Department of GeneticsRutgers University Piscataway NJ 08854
- Simons Center for Quantitative BiologyCold Spring Harbor Laboratory Cold Spring Harbor NY 11724
| | - Michael J. Hickerson
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyGraduate Center of City University of New York New York NY 10016
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyCity College of City University of New York New York NY 10031
- Division of Invertebrate ZoologyAmerican Museum of Natural History New York NY 10024
| |
Collapse
|
22
|
Joordens JC, Feibel CS, Vonhof HB, Schulp AS, Kroon D. Relevance of the eastern African coastal forest for early hominin biogeography. J Hum Evol 2019; 131:176-202. [DOI: 10.1016/j.jhevol.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
|
23
|
Crotti M, Barratt CD, Loader SP, Gower DJ, Streicher JW. Causes and analytical impacts of missing data in RADseq phylogenetics: Insights from an African frog (Afrixalus
). ZOOL SCR 2019. [DOI: 10.1111/zsc.12335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Crotti
- Department of Life Sciences; The Natural History Museum; London UK
- Department of Life Sciences; Imperial College London; London UK
- Institute of Biodiversity, Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| | - Christopher D. Barratt
- Department of Environmental Sciences; University of Basel; Basel Switzerland
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig Germany
| | - Simon P. Loader
- Department of Life Sciences; The Natural History Museum; London UK
- Department of Environmental Sciences; University of Basel; Basel Switzerland
| | - David J. Gower
- Department of Life Sciences; The Natural History Museum; London UK
| | | |
Collapse
|