1
|
Lim HC, Bennett KFP, Justyn NM, Powers MJ, Long KM, Kingston SE, Lindsay WR, Pease JB, Fuxjager MJ, Bolton PE, Balakrishnan CN, Day LB, Parsons TJ, Brawn JD, Hill GE, Braun MJ. Sequential introgression of a carotenoid processing gene underlies sexual ornament diversity in a genus of manakins. SCIENCE ADVANCES 2024; 10:eadn8339. [PMID: 39565864 PMCID: PMC11578183 DOI: 10.1126/sciadv.adn8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identify BCO2 as the major gene responsible for the color polymorphism. The BCO2 gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
- National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20013, USA
| | - Kevin F. P. Bennett
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Nicholas M. Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Kira M. Long
- Program in Ecology Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Willow R. Lindsay
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - James B. Pease
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew J. Fuxjager
- Department of Ecology Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Peri E. Bolton
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Christopher N. Balakrishnan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Division of Environmental Biology, National Science Foundation, Alexandria, VA 22314, USA
| | - Lainy B. Day
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - Thomas J. Parsons
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Michael J. Braun
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
2
|
Ren P, Yang L, Khan MZ, Jing Y, Zhang M, Qi C, Zhang X, Liu X, Liu Z, Zhang S, Zhu M. Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks. Animals (Basel) 2024; 14:3111. [PMID: 39518834 PMCID: PMC11544815 DOI: 10.3390/ani14213111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Plumage color is a key trait for identifying waterfowl breeds with significant economic importance. A white-feathered group has recently emerged within the native Matahu duck population, presenting an opportunity for breeding new lines. However, the genetic basis for this plumage variation is still unknown, necessitating further research. This study aims to identify the genetic mechanisms underlying the emergence of white-feathered individuals in the Matahu duck population through combined genome and transcriptome analysis, providing insights for selective breeding and the development of new white-feathered lines. In this study, a total of 1344 selected genes and 1406 significantly differentially expressed genes were identified through selection signal analysis and transcriptomic analysis, respectively. The functional enrichment of these genes revealed several key signaling pathways, including those related to cGMP-PKG, cAMP, PI3K-Akt, and MAPK. Furthermore, important candidate genes involved in melanin biosynthesis, such as MITF, MC1R, TYR, TYRP1, and ABCB6, were identified. Notably, 107 genes were detected by both methods, and, among these, DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9 are suggested to play a role in melanin formation and potentially influence plumage traits. Through the integrative approach combining genomic selection signals and transcriptomic analyses, we identified several candidate genes directly associated with plumage color, including MITF, TYR, TYRP1, and MC1R, along with multiple signaling pathways linked to melanin formation. We hypothesize that the expression of DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9, detected by both methods, may be closely related to the regulation of plumage color traits. These findings provide a foundational basis for further research aimed at elucidating the genetic mechanisms governing plumage color variation in ducks.
Collapse
Affiliation(s)
- Pengwei Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Liu Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yadi Jing
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Meixia Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Chao Qi
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Xin Zhang
- Jining Animal Husbandry and Veterinary Career Development Centre, Jining 272002, China
| | - Xiang Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Zhansheng Liu
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Shuer Zhang
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Mingxia Zhu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
3
|
Li Q, Wu J, Mao X. The roles of different gene expression regulators in acoustic variation in the intermediate horseshoe bat revealed by long-read and short-read RNA sequencing data. Curr Zool 2024; 70:575-588. [PMID: 39463690 PMCID: PMC11502156 DOI: 10.1093/cz/zoad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2024] Open
Abstract
Gene expression changes contribute greatly to phenotypic variations in nature. Studying patterns of regulators of gene expression is important to fully understand the molecular mechanism underlying phenotypic variations. In horseshoe bats, the cochleae are finely tuned to echoes of call frequency. Here, using 2 recently diverged subspecies of the intermediate horseshoe bat (Rhinolophus affinis hainanus and R. a. himalayanus) with great acoustic variations as the system, we aim to explore relative roles of different regulators of gene expression (differential gene expression, alternative splicing (AS) and long non-coding RNAs (lncRNAs)) in phenotypic variation with a combination of Illumina short-read and Nanopore long-read RNA-seq data from the cochlea. Compared to R. a. hainanus, R. a. himalayanus exhibited much more upregulated differentially expressed genes (DEGs) and multiple of them may play important roles in the maintenance and damage repair of auditory hair cells. We identified 411 differentially expressed lncRNAs and their target DEGs upregulated in R. a. himalayanus were also mainly involved in a protective mechanism for auditory hair cells. Using 3 different methods of AS analysis, we identified several candidate alternatively spliced genes (ASGs) that expressed different isoforms which may be associated with acoustic divergence of the 2 subspecies. We observed significantly less overlap than expected between DEGs and ASGs, supporting complementary roles of differential gene expression and AS in generating phenotypic variations. Overall, our study highlights the importance of a combination of short-read and long-read RNA-seq data in examining the regulation of gene expression changes responsible for phenotypic variations.
Collapse
Affiliation(s)
- Qianqian Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Jianyu Wu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Ono H, Nagai K, Higuchi H. Dark Morph of the Oriental Honey-Buzzard ( Pernis ptilorhynchus orientalis) is Attributable to Specific MC1R Haplotypes. Zoolog Sci 2024; 41:342-350. [PMID: 39093280 DOI: 10.2108/zs230092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/21/2024] [Indexed: 08/04/2024]
Abstract
A thorough understanding of the development of complex plumages in birds necessitates the acquisition of genetic data pertaining to the mechanism underlying this phenomenon from various avian species. The oriental honey-buzzard (Pernis ptilorhynchus orientalis), a tropical summer migrant to Northeast Asia, including Japan, exemplifies this aspect owing to the diversity of its ventral coloration and intra-feather barring patterns. However, genetic polymorphism responsible for this diversity has not been identified yet. This study aimed to investigate the link between dark-plumed phenotypes of this subspecies and haplotypes of the melanocortin-1-receptor (MC1R) gene. A draft sequence of MC1R was constructed using next generation sequencing and subsequently amplified using designed polymerase chain reaction (PCR) primers. The genome sequences of 32 honey-buzzard individuals were determined using PCR, and 12 MC1R haplotype sequences were obtained. Among these haplotypes, we found that unique haplotypes with nine non-synonymous substitutions and four or five synonymous substitutions in the coding region had a perfect correlation with the dark-plumed phenotype. The lack of correlation between the genotype of ASIP coding region and plumage phenotype reiterated that the dark morph is attributable to specific MC1R haplotypes. The absence of a correlation between genetic polymorphisms of MC1R and the intra-feather barring patterns, as well as the diversity observed within lighter ground color classes (pale and intermediate), implies the involvement of alternative molecular mechanisms in the manifestation of the aforementioned phenotypes.
Collapse
Affiliation(s)
- Hirotake Ono
- Department of Biology, Keio University, Yokohama, Kanagawa 223-8521, Japan,
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Kazuya Nagai
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Hiroyoshi Higuchi
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
| |
Collapse
|
5
|
Skojec C, Godfrey RK, Kawahara AY. Long read genome assembly of Automeris io (Lepidoptera: Saturniidae) an emerging model for the evolution of deimatic displays. G3 (BETHESDA, MD.) 2024; 14:jkad292. [PMID: 38324397 PMCID: PMC10917498 DOI: 10.1093/g3journal/jkad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024]
Abstract
Automeris moths are a morphologically diverse group with 135 described species that have a geographic range that spans from the New World temperate zone to the Neotropics. Many Automeris have elaborate hindwing eyespots that are thought to deter or disrupt the attack of potential predators, allowing the moth time to escape. The Io moth (Automeris io), known for its striking eyespots, is a well-studied species within the genus and is an emerging model system to study the evolution of deimatism. Existing research on the eyespot pattern development will be augmented by genomic resources that allow experimental manipulation of this emerging model. Here, we present a high-quality, PacBio HiFi genome assembly for Io moth to aid existing research on the molecular development of eyespots and future research on other deimatic traits. This 490 Mb assembly is highly contiguous (N50 = 15.78 mbs) and complete (benchmarking universal single-copy orthologs = 98.4%). Additionally, we were able to recover orthologs of genes previously identified as being involved in wing pattern formation and movement.
Collapse
Affiliation(s)
- Chelsea Skojec
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
- Department of Biology, University of Florida, 220 Bartram
Hall, Gainesville, FL 32611, USA
| | - R Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
- Department of Biology, University of Florida, 220 Bartram
Hall, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Zhao Y, Meng J, Song X, An Q. m 6A mRNA Methylation Analysis Provides Novel Insights into Pigmentation in Sheep Skin. Epigenetics 2023; 18:2230662. [PMID: 37389979 DOI: 10.1080/15592294.2023.2230662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
N6-methyladenosine (m6A) is the most universal post-transcriptional modification of mRNA which may play important roles in verious species. However, the potential roles of m6A in the pigmentation of skin are not completely understood. To explore the role of m6A modification in pigmentation of sheep skin, we used MeRIP-seq and RNA-seq to profile the skin transcriptome in black and white coat color (n=3). Our results showed that an average of 7701 m6A peaks were obtained for all samples and the average length was 305.89 bp. The GGACUU sequence was the most enrichment motif and shared in black skin and white skin. The m6A peaks were mainly enriched in the CDS, 3'UTR and 5'UTR, especially in CDS region near the stop codon of the transcript. 235 significantly differential peaks were found in black skin vs. white skin. The KEGG signaling pathways of downregulated and upregulated m6A peaks were mainly enriched in AGE-RAGE signaling pathway in diabetic complications, Viral carcinogenesis, Transcriptional misregulation in cancer, ABC transporters, Basal transcription factors and Thyroid hormone synthesis (P value <0.05). For RNA-seq, 71 differently expressed genes (DEGs) were scanned in black skin vs. white skin. DEGs were significantly enriched in tyrosine metabolism, melanogenesis, neuroactive ligand-receptor interaction pathway (P value <0.05). Combined m6A-seq and RNA-seq analysis showed that the hyper-up genes and hypo-up genes were both enriched in ErbB signaling pathway (P value <0.05). In conclusion, it provide a basis for further research into the functions of m6A methylation modifications in pigmentation.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou, P. R. China
| | - Jinzhu Meng
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou, P. R. China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, P.R. China
| | - Xingchao Song
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou, P. R. China
| | - Qingming An
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou, P. R. China
| |
Collapse
|
7
|
Yuan W, Qin H, Bi H, Zhao D, Zhang Y, Chen W. Ssc-mir-221-3p regulates melanin production in Xiang pigs melanocytes by targeting the TYRP1 gene. BMC Genomics 2023; 24:369. [PMID: 37393242 DOI: 10.1186/s12864-023-09451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/14/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate gene expression by down-regulating it. Several studies have suggested that miRNAs plays a crucial role in mammalian skin color production. The TYRP1 gene, a member of the tyrosine family, is an important candidate gene that affects melanogenesis. This study aimed to identify genes and miRNAs that affect melanin production in Xiang pigs by transcriptome sequencing, and to validate their targeted regulatory relationships. RESULTS 17 miRNAs and 1,230 genes were significantly differentially expressed (P < 0.05) in the black and white skin tissues of Jianbai Xiang pigs. miRNA-221-3p was identified as a candidate miRNA for melanin formation and its target gene, TYRP1, was selected. The TYRP1 gene is a member of the TYR gene family, which evolved from the TYR gene through chromosome segmental duplication. The function of the gene was highly conserved throughout the evolutionary process. overexpression of TYRP1 gene significantly increased the expression of TYR, TYRP1, and DCT genes P < 0.01, which led to an increase in the relative content of melanin. Silencing of TYRP1 through the use of TYRP1-siRNA significantly reduced the expression of TYR, TYRP1, and DCT genes in Jianbai Xiang pig melanocytes P < 0.01, which in turn decreased the relative melanin content. The targeted binding relationship between ssc-miR-221-3p and TYRP1 gene was validated. After transfection of porcine melanocytes with ssc-miR-221-3p mimic, the expression of ssc-miR-221-3p was significantly up-regulated (P < 0.01). Furthermore, the mRNA and protein levels of TYR, TYRP1, and DCT genes were significantly down-regulated (P < 0.01), and melanin content in cells was significantly reduced (P < 0.01). CONCLUSION The TYRP1 gene affects melanogenesis in melanocytes of Jianbai Xiang pigs, and ssc-miR-221-3p targets the TYRP1 gene to regulate melanogenesis in melanocytes of Jianbai Xiang pigs.
Collapse
Affiliation(s)
- Wei Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hai Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Huan Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Depeng Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
8
|
Diatroptov ME, Opaev AS. Melanin- and Carotenoid-Based Coloration of Plumage and the Level of Aggressiveness: The Relationship of These Parameters in the Greenfinch (Chloris chloris, Passeriformes, Fringillidae). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022090102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Sex Identification of Feather Color in Geese and the Expression of Melanin in Embryonic Dorsal Skin Feather Follicles. Animals (Basel) 2022; 12:ani12111427. [PMID: 35681891 PMCID: PMC9179848 DOI: 10.3390/ani12111427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
In production practice, we have found that the gray and black down on the backs of the Holdobaggy goslings is usually darker in females than in males. Melanin is the key pigment affecting the color of poultry plumage. Therefore, to determine whether the darkness of the dorsal plumage of the Holdobaggy goslings is related to sex, we study the melanin in the feather follicles of the dorsal skin during the embryonic period. The feather follicle structure and melanin distribution on the dorsal surface of the goose embryo is observed by HE staining and melanin-specific staining. The melanin content in the feather follicles of the dorsal skin of goslings is determined by ELISA. The results showed that the melanin content is higher in female geese than in males (p < 0.05). In addition, we also analyze the mRNA and protein expression levels of melanin-related genes (TYRP1 and ASIP) by quantitative real-time PCR and Western blotting analysis. The results show that the mRNA expression level of TYRP1 is significantly higher in the females’ dorsal skin feather follicles (p < 0.05), while the mRNA expression level of ASIP is significantly higher in the dorsal skin feather follicles of male geese (p < 0.05). In conclusion, the difference between males and females in the color of the black feathers on the dorsal track of the Holdobaggy goslings is verified, and it is feasible to identify the sex by the initial plumage color.
Collapse
|
10
|
Friis G, Vizueta J, Ketterson ED, Milá B. A high-quality genome assembly and annotation of the dark-eyed junco Junco hyemalis, a recently diversified songbird. G3 (BETHESDA, MD.) 2022; 12:jkac083. [PMID: 35404451 PMCID: PMC9157146 DOI: 10.1093/g3journal/jkac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
The dark-eyed junco (Junco hyemalis) is one of the most common passerines of North America, and has served as a model organism in studies related to ecophysiology, behavior, and evolutionary biology for over a century. It is composed of at least 6 distinct, geographically structured forms of recent evolutionary origin, presenting remarkable variation in phenotypic traits, migratory behavior, and habitat. Here, we report a high-quality genome assembly and annotation of the dark-eyed junco generated using a combination of shotgun libraries and proximity ligation Chicago and Dovetail Hi-C libraries. The final assembly is ∼1.03 Gb in size, with 98.3% of the sequence located in 30 full or nearly full chromosome scaffolds, and with a N50/L50 of 71.3 Mb/5 scaffolds. We identified 19,026 functional genes combining gene prediction and similarity approaches, of which 15,967 were associated to GO terms. The genome assembly and the set of annotated genes yielded 95.4% and 96.2% completeness scores, respectively when compared with the BUSCO avian dataset. This new assembly for J. hyemalis provides a valuable resource for genome evolution analysis, and for identifying functional genes involved in adaptive processes and speciation.
Collapse
Affiliation(s)
- Guillermo Friis
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid 28006, Spain
| | - Joel Vizueta
- Centre for Social Evolution, University of Copenhaguen, Copenhaguen 1165, Denmark
| | - Ellen D Ketterson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Borja Milá
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid 28006, Spain
| |
Collapse
|
11
|
Hunnicutt KE, Good JM, Larson EL. Unraveling patterns of disrupted gene expression across a complex tissue. Evolution 2022; 76:275-291. [PMID: 34882778 PMCID: PMC9355168 DOI: 10.1111/evo.14420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
Whole tissue RNASeq is the standard approach for studying gene expression divergence in evolutionary biology and provides a snapshot of the comprehensive transcriptome for a given tissue. However, whole tissues consist of diverse cell types differing in expression profiles, and the cellular composition of these tissues can evolve across species. Here, we investigate the effects of different cellular composition on whole tissue expression profiles. We compared gene expression from whole testes and enriched spermatogenesis populations in two species of house mice, Mus musculus musculus and M. m. domesticus, and their sterile and fertile F1 hybrids, which differ in both cellular composition and regulatory dynamics. We found that cellular composition differences skewed expression profiles and differential gene expression in whole testes samples. Importantly, both approaches were able to detect large-scale patterns such as disrupted X chromosome expression, although whole testes sampling resulted in decreased power to detect differentially expressed genes. We encourage researchers to account for histology in RNASeq and consider methods that reduce sample complexity whenever feasible. Ultimately, we show that differences in cellular composition between tissues can modify expression profiles, potentially altering inferred gene ontological processes, insights into gene network evolution, and processes governing gene expression evolution.
Collapse
Affiliation(s)
- Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208
| |
Collapse
|
12
|
Estalles C, Turbek SP, José Rodríguez-Cajarville M, Silveira LF, Wakamatsu K, Ito S, Lovette IJ, Tubaro PL, Lijtmaer DA, Campagna L. Concerted variation in melanogenesis genes underlies emergent patterning of plumage in capuchino seedeaters. Proc Biol Sci 2022; 289:20212277. [PMID: 35016545 PMCID: PMC8753160 DOI: 10.1098/rspb.2021.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coloration traits are central to animal communication; they often govern mate choice, promote reproductive isolation and catalyse speciation. Specific genetic changes can cause variation in coloration, yet far less is known about how overall coloration patterns-which involve combinations of multiple colour patches across the body-can arise and are genomically controlled. We performed genome-wide association analyses to link genomic changes to variation in melanin (eumelanin and pheomelanin) concentration in feathers from different body parts in the capuchino seedeaters, an avian radiation with diverse colour patterns despite remarkably low genetic differentiation across species. Cross-species colour variation in each plumage patch is associated with unique combinations of variants at a few genomic regions, which include mostly non-coding (presumably regulatory) areas close to known pigmentation genes. Genotype-phenotype associations can vary depending on patch colour and are stronger for eumelanin pigmentation, suggesting eumelanin production is tightly regulated. Although some genes are involved in colour variation in multiple patches, in some cases, the SNPs associated with colour changes in different patches segregate spatially. These results suggest that coloration patterning in capuchinos is generated by the modular combination of variants that regulate multiple melanogenesis genes, a mechanism that may have promoted this rapid radiation.
Collapse
Affiliation(s)
- Cecilia Estalles
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Sheela P. Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | | | - Luís Fábio Silveira
- Seção de Aves, Museu de Zoologia, Universidade de São Paulo, Caixa Postal 42.494, CEP 04218-970 São Paulo, Brazil
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Irby J. Lovette
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Pablo L. Tubaro
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Darío A. Lijtmaer
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Wu L, Jiao X, Zhang D, Cheng Y, Song G, Qu Y, Lei F. Comparative Genomics and Evolution of Avian Specialized Traits. Curr Genomics 2021; 22:496-511. [PMID: 35386431 PMCID: PMC8905638 DOI: 10.2174/1389202923666211227143952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
14
|
Sanchez-Donoso I, Ravagni S, Rodríguez-Teijeiro JD, Christmas MJ, Huang Y, Maldonado-Linares A, Puigcerver M, Jiménez-Blasco I, Andrade P, Gonçalves D, Friis G, Roig I, Webster MT, Leonard JA, Vilà C. Massive genome inversion drives coexistence of divergent morphs in common quails. Curr Biol 2021; 32:462-469.e6. [PMID: 34847353 DOI: 10.1016/j.cub.2021.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
The presence of population-specific phenotypes often reflects local adaptation or barriers to gene flow. The co-occurrence of phenotypic polymorphisms that are restricted within the range of a highly mobile species is more difficult to explain. An example of such polymorphisms is in the common quail Coturnix coturnix, a small migratory bird that moves widely during the breeding season in search of new mating opportunities, following ephemeral habitats,1,2 and whose females may lay successive clutches at different locations while migrating.3 In spite of this vagility, previous studies reported a higher frequency of heavier males with darker throat coloration in the southwest of the distribution (I. Jiménez-Blasco et al., 2015, Int. Union Game Biol., conference). We used population genomics and cytogenetics to explore the basis of this polymorphism and discovered a large inversion in the genome of the common quail. This inversion extends 115 Mbp in length and encompasses more than 7,000 genes (about 12% of the genome), producing two very different forms. Birds with the inversion are larger, have darker throat coloration and rounder wings, are inferred to have poorer flight efficiency, and are geographically restricted despite the high mobility of the species. Stable isotope analyses confirmed that birds carrying the inversion have shorter migratory distances or do not migrate. However, we found no evidence of pre- or post-zygotic isolation, indicating the two forms commonly interbreed and that the polymorphism remains locally restricted because of the effect on behavior. This illustrates a genomic mechanism underlying maintenance of geographically structured polymorphisms despite interbreeding with a lineage with high mobility.
Collapse
Affiliation(s)
- Ines Sanchez-Donoso
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville 41092, Spain.
| | - Sara Ravagni
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville 41092, Spain
| | - J Domingo Rodríguez-Teijeiro
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona 08028, Spain
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Andros Maldonado-Linares
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Manel Puigcerver
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona 08028, Spain
| | - Irene Jiménez-Blasco
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona 08028, Spain
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão 4485-661, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - David Gonçalves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão 4485-661, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Guillermo Friis
- Center for Genomics and Systems Biology, New York University-Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville 41092, Spain
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville 41092, Spain.
| |
Collapse
|
15
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
16
|
E Luzuriaga-Aveiga V, Ugarte M, Weir JT. Distinguishing genomic homogenization from parapatric speciation in an elevationally replacing pair of Ramphocelus tanagers. Mol Ecol 2021; 30:5517-5529. [PMID: 34403554 DOI: 10.1111/mec.16128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022]
Abstract
Geographically connected species pairs with weakly differentiated genomes could either represent cases of genomic homogenization in progress or of incipient parapatric speciation. Discriminating between these processes is difficult because intermediate stages of either may produce weakly differentiated genomes that diverge at few locations. We used coalescent modelling applied to a genome-wide sample of SNPs to discriminate between speciation with gene flow and genomic homogenization in two phenotypically distinct but genomically weakly diverged species of elevationally replacing Ramphocelus tanagers, forming a hybrid zone in the Andean foothills. We found overwhelming support for a model of genomic homogenization following secondary contact. Simulating under this model suggested that our species pair was differentiated (FST = 0.30) at secondary contact but that most of the genome has rapidly homogenized during 254 Ky of high gene flow towards the present (FST = 0.02). Despite extensive genome-wide homogenization, plumage remains distinctive with a narrower than expected geographic cline width, indicating divergent selection on colour. We found two SNPs significantly associated with plumage colour, which retain moderately high FST . We conclude that the majority of the genome has fused, but that divergent selection on select loci probably maintains the geographically structured colour differences between these incipient species.
Collapse
Affiliation(s)
- Vanessa E Luzuriaga-Aveiga
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Mauricio Ugarte
- Área de Ornitología, Universidad Nacional de San Agustín de Arequipa, Museo de Historia Natural Arequipa, Peru
| | - Jason T Weir
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Ornithology, Royal Ontario Museum, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Recuerda M, Carlos Illera J, Blanco G, Zardoya R, Milá B. Sequential colonization of oceanic archipelagos led to a species-level radiation in the common chaffinch complex (Aves: Fringilla coelebs). Mol Phylogenet Evol 2021; 164:107291. [PMID: 34384903 DOI: 10.1016/j.ympev.2021.107291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Oceanic archipelagos are excellent systems for studying speciation, yet inference of evolutionary process requires that the colonization history of island organisms be known with accuracy. Here, we used phylogenomics and patterns of genetic diversity to infer the sequence and timing of colonization of Macaronesia by mainland common chaffinches (Fringilla coelebs), and assessed whether colonization of the different archipelagos has resulted in a species-level radiation. To reconstruct the evolutionary history of the complex we generated a molecular phylogeny based on genome-wide SNP loci obtained from genotyping-by-sequencing, we ran ancestral range biogeographic analyses, and assessed fine-scale genetic structure between and within archipelagos using admixture analysis. To test for a species-level radiation, we applied a probabilistic tree-based species delimitation method (mPTP) and an integrative taxonomy approach including phenotypic differences. Results revealed a circuitous colonization pathway in Macaronesia, from the mainland to the Azores, followed by Madeira, and finally the Canary Islands. The Azores showed surprisingly high genetic diversity, similar to that found on the mainland, and the other archipelagos showed the expected sequential loss of genetic diversity. Species delimitation methods supported the existence of several species within the complex. We conclude that the common chaffinch underwent a rapid radiation across Macaronesia that was driven by the sequential colonization of the different archipelagos, resulting in phenotypically and genetically distinct, independent evolutionary lineages. We recommend a taxonomic revision of the complex that takes into account its genetic and phenotypic diversity.
Collapse
Affiliation(s)
- María Recuerda
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain.
| | - Juan Carlos Illera
- Biodiversity Research Unit (UO-CSIC-PA), Oviedo University, 33600 Mieres, Asturias, Spain
| | - Guillermo Blanco
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain
| | - Rafael Zardoya
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain
| |
Collapse
|
18
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Nebel C, Sumasgutner P, Rodseth E, Ingle RA, Childs DZ, Curtis‐Scott O, Amar A. Multigenerational pedigree analysis of wild individually marked black sparrowhawks suggests that dark plumage coloration is a dominant autosomal trait. J Zool (1987) 2021. [DOI: 10.1111/jzo.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Nebel
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
- Department of Biology University of Turku Turku Finland
| | - P. Sumasgutner
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
- Department of Behavioral & Cognitive Biology Konrad Lorenz Research Centre (KLF) Core Facility for Behaviour and Cognition University of Vienna Vienna Austria
| | - E. Rodseth
- Department of Molecular and Cell Biology University of Cape Town Cape Town South Africa
| | - R. A. Ingle
- Department of Molecular and Cell Biology University of Cape Town Cape Town South Africa
| | - D. Z. Childs
- School of Biosciences University of Sheffield Sheffield UK
| | - O. Curtis‐Scott
- Department of Biological Sciences University of Cape Town Cape Town South Africa
| | - A. Amar
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
| |
Collapse
|
20
|
Ren S, Lyu G, Irwin DM, Liu X, Feng C, Luo R, Zhang J, Sun Y, Shang S, Zhang S, Wang Z. Pooled Sequencing Analysis of Geese ( Anser cygnoides) Reveals Genomic Variations Associated With Feather Color. Front Genet 2021; 12:650013. [PMID: 34220935 PMCID: PMC8249929 DOI: 10.3389/fgene.2021.650013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/28/2021] [Indexed: 02/03/2023] Open
Abstract
During the domestication of the goose a change in its feather color took place, however, the molecular mechanisms responsible for this change are not completely understood. Here, we performed whole-genome resequencing on three pooled samples of geese (feral and domestic geese), with two distinct feather colors, to identify genes that might regulate feather color. We identified around 8 million SNPs within each of the three pools and validated allele frequencies for a subset of these SNPs using PCR and Sanger sequencing. Several genomic regions with signatures of differential selection were found when we compared the gray and white feather color populations using the FST and Hp approaches. When we combined previous functional studies with our genomic analyses we identified 26 genes (KITLG, MITF, TYRO3, KIT, AP3B1, SMARCA2, ROR2, CSNK1G3, CCDC112, VAMP7, SLC16A2, LOC106047519, RLIM, KIAA2022, ST8SIA4, LOC106044163, TRPM6, TICAM2, LOC106038556, LOC106038575, LOC106038574, LOC106038594, LOC106038573, LOC106038604, LOC106047489, and LOC106047492) that potentially regulate feather color in geese. These results substantially expand the catalog of potential feather color regulators in geese and provide a basis for further studies on domestication and avian feather coloration.
Collapse
Affiliation(s)
- Shuang Ren
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guangqi Lyu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xin Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chunyu Feng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Runhong Luo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Songyang Shang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
21
|
Bennett KFP, Lim HC, Braun MJ. Sexual selection and introgression in avian hybrid zones: Spotlight on Manacus. Integr Comp Biol 2021; 61:1291-1309. [PMID: 34128981 DOI: 10.1093/icb/icab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid zones offer a window into the processes and outcomes of evolution, from species formation or fusion to genomic underpinnings of specific traits and isolating mechanisms. Sexual selection is believed to be an important factor in speciation processes, and hybrid zones present special opportunities to probe its impact. The manakins (Aves, Pipridae) are a promising group in which to study the interplay of sexual selection and natural hybridization: they show substantial variation across the family in the strength of sexual selection they experience, they readily hybridize within and between genera, and they appear to have formed hybrid species, a rare event in birds. A hybrid zone between two manakins in the genus Manacus is unusual in that plumage and behavioral traits of one species have introgressed asymmetrically into populations of the second species through positive sexual selection, then apparently stalled at a river barrier. This is one of a handful of documented examples of asymmetric sexual trait introgression with a known selective mechanism. It offers opportunities to examine reproductive isolation, introgression, plumage color evolution, and natural factors enhancing or constraining the effects of sexual selection in real time. Here, we review previous work in this system, propose new hypotheses for observed patterns, and recommend approaches to test them.
Collapse
Affiliation(s)
- Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Manassas, VA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
22
|
Nicolaï MPJ, D'Alba L, Goldenberg J, Gansemans Y, Van Nieuwerburgh F, Clusella-Trullas S, Shawkey MD. Untangling the structural and molecular mechanisms underlying colour and rapid colour change in a lizard, Agama atra. Mol Ecol 2021; 30:2262-2284. [PMID: 33772941 DOI: 10.1111/mec.15901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
With functions as diverse as communication, protection and thermoregulation, coloration is one of the most important traits in lizards. The ability to change colour as a function of varying social and environmental conditions is thus an important innovation. While colour change is present in animals ranging from squids, to fish and reptiles, not much is known about the mechanisms behind it. Traditionally, colour change was attributed to migration of pigments, in particular melanin. More recent work has shown that the changes in nanostructural configuration inside iridophores are able to produce a wide palette of colours. However, the genetic mechanisms underlying colour, and colour change in particular, remain unstudied. Here we use a combination of transcriptomic and microscopic data to show that melanin, iridophores and pteridines are the main colour-producing mechanisms in Agama atra, and provide molecular and structural data suggesting that rapid colour change is achieved via melanin dispersal in combination with iridophore organization. This work demonstrates the power of combining genotypic (gene expression) and phenotypic (microscopy) information for addressing physiological questions, providing a basis for future studies of colour change.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| | - Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| | - Jonathan Goldenberg
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Susana Clusella-Trullas
- Department of Botany and Zoology & Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| |
Collapse
|
23
|
Turbek SP, Browne M, Di Giacomo AS, Kopuchian C, Hochachka WM, Estalles C, Lijtmaer DA, Tubaro PL, Silveira LF, Lovette IJ, Safran RJ, Taylor SA, Campagna L. Rapid speciation via the evolution of pre-mating isolation in the Iberá Seedeater. Science 2021; 371:371/6536/eabc0256. [PMID: 33766854 DOI: 10.1126/science.abc0256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Behavioral isolation can catalyze speciation and permit the slow accumulation of additional reproductive barriers between co-occurring organisms. We illustrate how this process occurs by examining the genomic and behavioral bases of pre-mating isolation between two bird species (Sporophila hypoxantha and the recently discovered S. iberaensis) that belong to the southern capuchino seedeaters, a recent, rapid radiation characterized by variation in male plumage coloration and song. Although these two species co-occur without obvious ecological barriers to reproduction, we document behaviors indicating species recognition by song and plumage traits and strong assortative mating associated with genomic regions underlying male plumage patterning. Plumage differentiation likely originated through the reassembly of standing genetic variation, indicating how novel sexual signals may quickly arise and maintain species boundaries.
Collapse
Affiliation(s)
- Sheela P Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Melanie Browne
- Centro de Ecología Aplicada del Litoral (CECOAL, CONICET), Corrientes, Argentina
| | - Adrián S Di Giacomo
- Centro de Ecología Aplicada del Litoral (CECOAL, CONICET), Corrientes, Argentina
| | - Cecilia Kopuchian
- Centro de Ecología Aplicada del Litoral (CECOAL, CONICET), Corrientes, Argentina
| | - Wesley M Hochachka
- Center for Avian Population Studies, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Cecilia Estalles
- Museo Argentino de Ciencias Naturales Bernardino Rivadavia (MACN, CONICET), Buenos Aires, Argentina
| | - Darío A Lijtmaer
- Museo Argentino de Ciencias Naturales Bernardino Rivadavia (MACN, CONICET), Buenos Aires, Argentina
| | - Pablo L Tubaro
- Museo Argentino de Ciencias Naturales Bernardino Rivadavia (MACN, CONICET), Buenos Aires, Argentina
| | | | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Leonardo Campagna
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA. .,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA
| |
Collapse
|
24
|
Avendaño JE, Cadena CD. Territorial males do not discriminate between local and novel plumage phenotypes in a tropical songbird species complex: implications for the role of social selection in trait evolution. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02976-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Aguillon SM, Walsh J, Lovette IJ. Extensive hybridization reveals multiple coloration genes underlying a complex plumage phenotype. Proc Biol Sci 2021; 288:20201805. [PMID: 33468000 DOI: 10.1098/rspb.2020.1805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coloration is an important target of both natural and sexual selection. Discovering the genetic basis of colour differences can help us to understand how this visually striking phenotype evolves. Hybridizing taxa with both clear colour differences and shallow genomic divergences are unusually tractable for associating coloration phenotypes with their causal genotypes. Here, we leverage the extensive admixture between two common North American woodpeckers-yellow-shafted and red-shafted flickers-to identify the genomic bases of six distinct plumage patches involving both melanin and carotenoid pigments. Comparisons between flickers across approximately 7.25 million genome-wide SNPs show that these two forms differ at only a small proportion of the genome (mean FST = 0.008). Within the few highly differentiated genomic regions, we identify 368 SNPs significantly associated with four of the six plumage patches. These SNPs are linked to multiple genes known to be involved in melanin and carotenoid pigmentation. For example, a gene (CYP2J19) known to cause yellow to red colour transitions in other birds is strongly associated with the yellow versus red differences in the wing and tail feathers of these flickers. Additionally, our analyses suggest novel links between known melanin genes and carotenoid coloration. Our finding of patch-specific control of plumage coloration adds to the growing body of literature suggesting colour diversity in animals could be created through selection acting on novel combinations of coloration genes.
Collapse
Affiliation(s)
- Stepfanie M Aguillon
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Jennifer Walsh
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| |
Collapse
|
26
|
Cruz-Miralles Á, Avilés JM, Chastel O, Expósito-Granados M, Parejo D. Phaeomelanin matters: Redness associates with inter-individual differences in behaviour and feather corticosterone in male scops owls (Otus scops). PLoS One 2020; 15:e0241380. [PMID: 33175892 PMCID: PMC7657523 DOI: 10.1371/journal.pone.0241380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Individuals within populations often show consistent variation in behavioural and physiological traits which are frequently inter-correlated, potentially leading to phenotypic integration. Understanding the mechanisms behind such integration is a key task in evolutionary ecology, and melanin based colouration has been suggested to play a pivotal role. In birds, most of plumage colour variation is determined by two types of melanin, eumelanin and phaeomelanin, but the role of phaeomelanin in avian phenotype integration has been barely investigated. Here, we test for covariation between phaeomelanin-based colouration, behavioural traits (i.e. nest territoriality, aggressiveness, breath rate and parental behaviour) and corticosterone in feathers in the polymorphic scops owl Otus scops, a bird species in which more phaeomelanic individuals display reddish colourations. In males, we observed that reddish males took longer to return to their nests and showed higher levels of feather CORT than more greyish ones. Behaviour and feather CORT were not associated to plumage colour in females. The found associations between redness, behaviour and feather CORT in males, but not in females, might suggest the existence of a sex-specific integrated phaeomelanic phenotype in scops owls.
Collapse
Affiliation(s)
- Ángel Cruz-Miralles
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, España
- Departamento de Ecología Funcional y Evolutiva, EEZA-CSIC, La Cañada de San Urbano, Almería, España
| | - Jesús M. Avilés
- Departamento de Ecología Funcional y Evolutiva, EEZA-CSIC, La Cañada de San Urbano, Almería, España
| | - Olivier Chastel
- Centre d’Etudes Biologiques de Chizé, CNRS, Villiers en Bois, France
| | - Mónica Expósito-Granados
- Departamento de Ecología Funcional y Evolutiva, EEZA-CSIC, La Cañada de San Urbano, Almería, España
- Departamento de Economía y Empresa, Área de Economía Aplicada, Universidad de Almería, La Cañada de San Urbano, Almería, España
| | - Deseada Parejo
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, España
- Departamento de Ecología Funcional y Evolutiva, EEZA-CSIC, La Cañada de San Urbano, Almería, España
| |
Collapse
|
27
|
Ketterson ED. What Do Ecology, Evolution, and Behavior Have in Common? The Organism in the Middle. Am Nat 2020; 196:103-118. [PMID: 32673095 DOI: 10.1086/709699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biologists who publish in The American Naturalist are drawn to its unifying mission of covering research in the fields of ecology, evolution, behavior, and integrative biology. Presented here is one scientist's attempt to straddle these fields by focusing on a single organism. It is also an account of how time spent in the field stimulates a naturalist to wonder "why did that animal just do that?" and how research is guided by chance and intention interacting with the scientific literature and the people one meets along the way. With respect to the science, the examples come from bird migration, hormones and their connection to phenotypic integration, sexual and natural selection, and urban ecology. They also come from research on the impact of environmental change on the timing of reproduction and the potential for allochrony in migratory species to influence population divergence.
Collapse
|
28
|
Friis G, Milá B. Change in sexual signalling traits outruns morphological divergence across an ecological gradient in the post-glacial radiation of the songbird genus Junco. J Evol Biol 2020; 33:1276-1293. [PMID: 32603490 DOI: 10.1111/jeb.13671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
The relative roles of natural and sexual selection in promoting evolutionary lineage divergence remains controversial and difficult to assess in natural systems. Local adaptation through natural selection is known to play a central role in promoting evolutionary divergence, yet secondary sexual traits can vary widely among species in recent radiations, suggesting that sexual selection may also be important in the early stages of speciation. Here, we compare rates of divergence in ecologically relevant traits (morphology) and sexually selected signalling traits (coloration) relative to neutral structure in genome-wide molecular markers and examine patterns of variation in sexual dichromatism to explore the roles of natural and sexual selection in the diversification of the songbird genus Junco (Aves: Passerellidae). Juncos include divergent lineages in Central America and several dark-eyed junco (J. hyemalis) lineages that diversified recently as the group recolonized North America following the last glacial maximum (ca. 18,000 years ago). We found an accelerated rate of divergence in sexually selected characters relative to ecologically relevant traits. Moreover, sexual dichromatism measurements suggested a positive relationship between the degree of colour divergence and the strength of sexual selection when controlling for neutral genetic distance. We also found a positive correlation between dichromatism and latitude, which coincides with the geographic axis of decreasing lineage age in juncos but also with a steep ecological gradient. Finally, we found significant associations between genome-wide variants linked to functional genes and proxies of both sexual and natural selection. These results suggest that the joint effects of sexual and ecological selection have played a prominent role in the junco radiation.
Collapse
Affiliation(s)
- Guillermo Friis
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Borja Milá
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
29
|
Sun X, Qu G, Wang D, Wang T, Sai W, Chen Y, Yuan L, Pang Q. Expression and distribution of bone morphogenetic protein 4 and its antagonist Noggin in the skin of Kazakh sheep (Ovis aries) with a white and brown coat color. Acta Histochem 2020; 122:151539. [PMID: 32331775 DOI: 10.1016/j.acthis.2020.151539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/15/2022]
Abstract
The natural coat color is an important trait of vertebrate animals. For example, the coat color can help avoid harm to human beings caused by chemical dyeing, and it has economic significance for domestic animals. The bone morphogenetic protein 4 (BMP4) and its antagonist Noggin can regulate pigmentation and the generation of coat color in mice; thus, they may also regulate the coat color of Kazakh sheep. To gain mechanistic insight into this possibility, we determined the relative expression levels of BMP4 and Noggin in the skin of white and brown Kazakh sheep by quantitative real-time polymerase chain reaction (qPCR) and western blotting analysis. The localization of BMP4 and Noggin were detected by immunohistochemistry (IHC). The results of qPCR and western blot analysis demonstrated that the relative expression levels of BMP4 and Noggin in the skin of brown Kazakh sheep were significantly higher than those in white Kazakh sheep. Our IHC results showed that the BMP4 protein was expressed in the epidermis and root sheath of the Kazakh sheep skin. The Noggin protein was expressed in the epidermis, root sheath, hair shaft, and dermal papilla of the Kazakh sheep skin. These results provide a theoretical basis for additional studies regarding the association and mechanism of BMP4 and Noggin in coat-color formation in Kazakh sheep. These results may provide new methods for developing treatment strategies for pigmentation disorders and diseases.
Collapse
Affiliation(s)
- Xiaowei Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Guowen Qu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Dongliang Wang
- Department of Bioengineering, Shuozhou Vocational and Technical College, Shuozhou 036002, Shanxi Province, China
| | - Tianyuan Wang
- Liulin County Agriculture and Rural Bureau, Liulin 033300, Shanxi Province, China
| | - Wujiafu Sai
- College of Animal Science and Technology, Xinjiang Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yunlei Chen
- College of Animal Science and Technology, Xinjiang Shihezi University, Shihezi 832003, Xinjiang, China
| | - Liming Yuan
- College of Animal Science and Technology, Xinjiang Shihezi University, Shihezi 832003, Xinjiang, China
| | - Quanhai Pang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China.
| |
Collapse
|
30
|
Bourgeois YXC, Bertrand JAM, Delahaie B, Holota H, Thébaud C, Milá B. Differential divergence in autosomes and sex chromosomes is associated with intra-island diversification at a very small spatial scale in a songbird lineage. Mol Ecol 2020; 29:1137-1153. [PMID: 32107807 DOI: 10.1111/mec.15396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome-wide markers to investigate the diversification of the Reunion grey white-eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping-by-sequencing and pooled RAD-seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z-linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.
Collapse
Affiliation(s)
- Yann X C Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK.,Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France
| | - Joris A M Bertrand
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France.,Laboratoire Génome & Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, Perpignan, France
| | - Boris Delahaie
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France.,Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Hélène Holota
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France
| | - Christophe Thébaud
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
31
|
Merwin JT, Seeholzer GF, Smith BT. Macroevolutionary bursts and constraints generate a rainbow in a clade of tropical birds. BMC Evol Biol 2020; 20:32. [PMID: 32093609 PMCID: PMC7041239 DOI: 10.1186/s12862-020-1577-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bird plumage exhibits a diversity of colors that serve functional roles ranging from signaling to camouflage and thermoregulation. However, birds must maintain a balance between evolving colorful signals to attract mates, minimizing conspicuousness to predators, and optimizing adaptation to climate conditions. Examining plumage color macroevolution provides a framework for understanding this dynamic interplay over phylogenetic scales. Plumage evolution due to a single overarching process, such as selection, may generate the same macroevolutionary pattern of color variation across all body regions. In contrast, independent processes may partition plumage and produce region-specific patterns. To test these alternative scenarios, we collected color data from museum specimens of an ornate clade of birds, the Australasian lorikeets, using visible-light and UV-light photography, and comparative methods. We predicted that the diversification of homologous feather regions, i.e., patches, known to be involved in sexual signaling (e.g., face) would be less constrained than patches on the back and wings, where new color states may come at the cost of crypsis. Because environmental adaptation may drive evolution towards or away from color states, we tested whether climate more strongly covaried with plumage regions under greater or weaker macroevolutionary constraint. RESULTS We found that alternative macroevolutionary models and varying rates best describe color evolution, a pattern consistent with our prediction that different plumage regions evolved in response to independent processes. Modeling plumage regions independently, in functional groups, and all together showed that patches with similar macroevolutionary models clustered together into distinct regions (e.g., head, wing, belly), which suggests that plumage does not evolve as a single trait in this group. Wing patches, which were conserved on a macroevolutionary scale, covaried with climate more strongly than plumage regions (e.g., head), which diversified in a burst. CONCLUSIONS Overall, our results support the hypothesis that the extraordinary color diversity in the lorikeets was generated by a mosaic of evolutionary processes acting on plumage region subsets. Partitioning of plumage regions in different parts of the body provides a mechanism that allows birds to evolve bright colors for signaling and remain hidden from predators or adapt to local climatic conditions.
Collapse
Affiliation(s)
- Jon T Merwin
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.
| | - Glenn F Seeholzer
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
32
|
Losilla M, Luecke DM, Gallant JR. The transcriptional correlates of divergent electric organ discharges in Paramormyrops electric fish. BMC Evol Biol 2020; 20:6. [PMID: 31918666 PMCID: PMC6953315 DOI: 10.1186/s12862-019-1572-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/24/2019] [Indexed: 01/10/2023] Open
Abstract
Background Understanding the genomic basis of phenotypic diversity can be greatly facilitated by examining adaptive radiations with hypervariable traits. In this study, we focus on a rapidly diverged species group of mormyrid electric fish in the genus Paramormyrops, which are characterized by extensive phenotypic variation in electric organ discharges (EODs). The main components of EOD diversity are waveform duration, complexity and polarity. Using an RNA-sequencing based approach, we sought to identify gene expression correlates for each of these EOD waveform features by comparing 11 specimens of Paramormyrops that exhibit variation in these features. Results Patterns of gene expression among Paramormyrops are highly correlated, and 3274 genes (16%) were differentially expressed. Using our most restrictive criteria, we detected 145–183 differentially expressed genes correlated with each EOD feature, with little overlap between them. The predicted functions of several of these genes are related to extracellular matrix, cation homeostasis, lipid metabolism, and cytoskeletal and sarcomeric proteins. These genes are of significant interest given the known morphological differences between electric organs that underlie differences in the EOD waveform features studied. Conclusions In this study, we identified plausible candidate genes that may contribute to phenotypic differences in EOD waveforms among a rapidly diverged group of mormyrid electric fish. These genes may be important targets of selection in the evolution of species-specific differences in mate-recognition signals.
Collapse
Affiliation(s)
- Mauricio Losilla
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA.,Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - David Michael Luecke
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA.,Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Jason R Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|