1
|
Erickson PA, Bangerter A, Gunter A, Polizos NT, Bergland AO. Limited population structure but signals of recent selection in introduced African Fig Fly (Zaprionus indianus) in North America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614190. [PMID: 39386550 PMCID: PMC11463544 DOI: 10.1101/2024.09.20.614190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Invasive species have devastating consequences for human health, food security, and the environment. Many invasive species adapt to new ecological niches following invasion, but little is known about the early steps of adaptation. Here we examine population genomics of a recently introduced drosophilid in North America, the African Fig Fly, Zaprionus indianus. This species is likely intolerant of subfreezing temperatures and recolonizes temperate environments yearly. We generated a new chromosome-level genome assembly for Z. indianus. Using resequencing of over 200 North American individuals collected over four years in temperate Virginia, plus a single collection from subtropical Florida, we tested for signatures of recolonization, population structure, and adaptation within invasive populations. We show founding populations are sometimes small and contain close genetic relatives, yet temporal population structure and differentiation of populations is mostly absent across recurrent recolonization events. Although we find limited signals of genome-wide spatial or temporal population structure, we identify haplotypes on the X chromosome that are repeatedly differentiated between Virginia and Florida populations. These haplotypes show signatures of natural selection and are not found in African populations. We also find evidence for several large structural polymorphisms segregating within North America populations and show X chromosome evolution in invasive populations is strikingly different from the autosomes. These results show that despite limited population structure, populations may rapidly evolve genetic differences early in an invasion. Further uncovering how these genomic regions influence invasive potential and success in new environments will advance our understanding of how organisms evolve in changing environments.
Collapse
|
2
|
Powers SD, Grayson KL, Martinez E, Agosta SJ. Ontogenetic variation in metabolic rate-temperature relationships during larval development. J Exp Biol 2024; 227:jeb247912. [PMID: 38940758 DOI: 10.1242/jeb.247912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Predictive models of ectotherm responses to environmental change often rely on thermal performance data from the literature. For insects, the majority of these data focus on two traits, development rate and thermal tolerance limits. Data are also often limited to the adult stage. Consequently, predictions based on these data generally ignore other measures of thermal performance and do not account for the role of ontogenetic variation in thermal physiology across the complex insect life cycle. Theoretical syntheses for predicting metabolic rate also make similar assumptions despite the strong influence of body size as well as temperature on metabolic rate. The aim of this study was to understand the influence of ontogenetic variation on ectotherm physiology and its potential impact on predictive modeling. To do this, we examined metabolic rate-temperature (MR-T) relationships across the larval stage in a laboratory strain of the spongy moth (Lymantria dispar dispar). Routine metabolic rates (RMRs) of larvae were assayed at eight temperatures across the first five instars of the larval stage. After accounting for differences in body mass, larval instars showed significant variation in MR-T. Both the temperature sensitivity and allometry of RMR increased and peaked during the third instar, then declined in the fourth and fifth instar. Generally, these results show that insect thermal physiology does not remain static during larval ontogeny and suggest that ontogenetic variation should be an important consideration when modeling thermal performance.
Collapse
Affiliation(s)
- Sean D Powers
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA 2328, USA
| | | | - Eloy Martinez
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Salvatore J Agosta
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Hafker P, Thompson LM, Walter JA, Parry D, Grayson KL. Geographic variation in larval cold tolerance and exposure across the invasion front of a widely established forest insect. INSECT SCIENCE 2024. [PMID: 38516807 DOI: 10.1111/1744-7917.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Under global climate change, high and low temperature extremes can drive shifts in species distributions. Across the range of a species, thermal tolerance is based on acclimatization, plasticity, and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L. (Lepidoptera: Erebidae), using populations sourced from a range of climates within the current introduced range in the Eastern United States. We tested for population differences in chill coma recovery (CCR) by measuring recovery time following a period of exposure to a nonlethal cold temperature in 2 cold exposure experiments. A 3rd experiment quantified growth responses after CCR to evaluate sublethal effects. Our results indicate that cold tolerance is linked to regional climate, with individuals from populations sourced from colder climates recovering faster from chill coma. While this geographic gradient is seen in many species, detecting this pattern is notable for an introduced species founded from a single point-source introduction. We demonstrate that the cold temperatures used in our experiments occur in nature during cold spells after spring egg hatch, but impacts to growth and survival appear low. We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure. Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species, and contributes to tools for predicting further expansion.
Collapse
Affiliation(s)
- Petra Hafker
- Department of Biology, University of Richmond, Richmond, VA, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Lily M Thompson
- Department of Biology, University of Richmond, Richmond, VA, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - Jonathan A Walter
- Department of Biology, University of Richmond, Richmond, VA, USA
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Dylan Parry
- Department of Environmental Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY, USA
| | | |
Collapse
|
4
|
Xu Z, Bai J, Zhang Y, Li L, Min M, Cao J, Cao J, Xu Y, Li F, Ma L. Chromosome-level genome assembly of the Asian spongy moths Lymantria dispar asiatica. Sci Data 2023; 10:898. [PMID: 38092795 PMCID: PMC10719281 DOI: 10.1038/s41597-023-02823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
The Asian spongy moth, Lymantria dispar asiatica, is one of the most devastating forestry defoliators. The absence of a high-quality genome limited the understanding of its adaptive evolution. Here, we conducted the first chromosome-level genome assembly of L. dispar asiatica using PacBio HIFI long reads, Hi-C sequencing reads and transcriptomic data. The total assembly size is 997.59 Mb, containing 32 chromosomes with a GC content of 38.91% and a scaffold N50 length of 35.42 Mb. The BUSCO assessment indicated a completeness estimate of 99.4% for this assembly. A total of 19,532 protein-coding genes was predicted. Our study provides a valuable genomics resource for studying the mechanisms of adaptive evolution and facilitate an efficient control of L. dispar asiatica.
Collapse
Affiliation(s)
- Zhe Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Zhang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Mengru Min
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Jingyu Cao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Jingxin Cao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China.
| |
Collapse
|
5
|
Picq S, Wu Y, Martemyanov VV, Pouliot E, Pfister SE, Hamelin R, Cusson M. Range‐wide population genomics of the spongy moth,
Lymantria dispar
(Erebidae): Implications for biosurveillance, subspecies classification and phylogeography of a destructive moth. Evol Appl 2023; 16:638-656. [PMID: 36969137 PMCID: PMC10033852 DOI: 10.1111/eva.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
The spongy moth, Lymantria dispar, is an irruptive forest pest native to Eurasia where its range extends from coast to coast and overspills into northern Africa. Accidentally introduced from Europe in Massachusetts in 1868-1869, it is now established in North America where it is considered a highly destructive invasive pest. A fine-scale characterization of its population genetic structure would facilitate identification of source populations for specimens intercepted during ship inspections in North America and would enable mapping of introduction pathways to help prevent future incursions into novel environments. In addition, detailed knowledge of L. dispar's global population structure would provide new insight into the adequacy of its current subspecies classification system and its phylogeographic history. To address these issues, we generated >2000 genotyping-by-sequencing-derived SNPs from 1445 contemporary specimens sampled at 65 locations in 25 countries/3 continents. Using multiple analytical approaches, we identified eight subpopulations that could be further partitioned into 28 groups, achieving unprecedented resolution for this species' population structure. Although reconciliation between these groupings and the three currently recognized subspecies proved to be challenging, our genetic data confirmed circumscription of the japonica subspecies to Japan. However, the genetic cline observed across continental Eurasia, from L. dispar asiatica in East Asia to L. d. dispar in Western Europe, points to the absence of a sharp geographical boundary (e.g., the Ural Mountains) between these two subspecies, as suggested earlier. Importantly, moths from North America and the Caucasus/Middle East displayed high enough genetic distances from other populations to warrant their consideration as separate subspecies of L. dispar. Finally, in contrast with earlier mtDNA-based investigations that identified the Caucasus as L. dispar's place of origin, our analyses suggest continental East Asia as its evolutionary cradle, from where it spread to Central Asia and Europe, and to Japan through Korea.
Collapse
Affiliation(s)
- Sandrine Picq
- Laurentian Forestry Centre Natural Resources Canada Quebec Quebec City Canada
| | - Yunke Wu
- United States Department of Agriculture, APHIS, PPQ, Science and Technology Forest Pest Methods Laboratory Massachusetts Buzzards Bay USA
- Department of Ecology and Evolutionary Biology Cornell University New York Ithaca USA
| | - Vyacheslav V. Martemyanov
- Institute of Systematics and Ecology of Animals SB RAS Novosibirsk Russia
- Biological Institute National Research Tomsk State University Tomsk Russia
| | - Esther Pouliot
- Laurentian Forestry Centre Natural Resources Canada Quebec Quebec City Canada
| | - Scott E. Pfister
- United States Department of Agriculture, APHIS, PPQ, Science and Technology Forest Pest Methods Laboratory Massachusetts Buzzards Bay USA
| | - Richard Hamelin
- Department of Forest and Conservation Sciences The University of British Columbia British Columbia Vancouver Canada
| | - Michel Cusson
- Laurentian Forestry Centre Natural Resources Canada Quebec Quebec City Canada
- Département de biochimie, de microbiologie et de bio‐informatique Université Laval Quebec Quebec City Canada
| |
Collapse
|
6
|
Walter JA, Thompson LM, Powers SD, Parry D, Agosta SJ, Grayson KL. Growth and development of an invasive forest insect under current and future projected temperature regimes. Ecol Evol 2022; 12:e9017. [PMID: 35784073 PMCID: PMC9204848 DOI: 10.1002/ece3.9017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Temperature and its impact on fitness are fundamental for understanding range shifts and population dynamics under climate change. Geographic climate heterogeneity, behavioral and physiological plasticity, and thermal adaptation to local climates make predicting the responses of species to climate change complex. Using larvae from seven geographically distinct wild populations in the eastern United States of the non-native forest pest Lymantria dispar dispar (L.), we conducted a simulated reciprocal transplant experiment in environmental chambers using six custom temperature regimes representing contemporary conditions near the southern and northern extremes of the US invasion front and projections under two climate change scenarios for the year 2050. Larval growth and development rates increased with climate warming compared with current thermal regimes and tended to be greater for individuals originally sourced from southern rather than northern populations. Although increases in growth and development rates with warming varied somewhat by region of the source population, there was not strong evidence of local adaptation, southern populations tended to outperform those from northern populations in all thermal regimes. Our study demonstrates the utility of simulating thermal regimes under climate change in environmental chambers and emphasizes how the impacts from future increases in temperature can vary based on geographic differences in climate-related performance among populations.
Collapse
Affiliation(s)
- Jonathan A. Walter
- Department of BiologyUniversity of RichmondRichmondVirginiaUSA
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Lily M. Thompson
- Department of BiologyUniversity of RichmondRichmondVirginiaUSA
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSouth CarolinaUSA
| | - Sean D. Powers
- Integrative Life Sciences Doctoral ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Dylan Parry
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Salvatore J. Agosta
- Center for Environmental StudiesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | |
Collapse
|
7
|
de Miguel M, Rodríguez-Quilón I, Heuertz M, Hurel A, Grivet D, Jaramillo-Correa JP, Vendramin GG, Plomion C, Majada J, Alía R, Eckert AJ, González-Martínez SC. Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait., Pinaceae). Mol Ecol 2022; 31:2089-2105. [PMID: 35075727 DOI: 10.1111/mec.16367] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
A decade of genetic association studies in multiple organisms suggests that most complex traits are polygenic, i.e., they have a genetic architecture determined by numerous loci each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and time is crucial to understand the genetic basis of phenotypic variation. We applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait., maritime pine) and to analyze this variation across environments and years. We evaluated five categories of fitness-related traits (survival, height, phenology, functional, and biotic-stress response traits) in a clonal common-garden network, planted in contrasted environments (over 12,500 trees). Most of the analyzed traits showed evidence of local adaptation based on Qst -Fst comparisons. We further observed a remarkably stable degree of polygenicity, averaging 6% (range of 0-27%), across traits, environments and years. We detected evidence of negative selection, which could explain, at least partially, the high degree of polygenicity. Because polygenic adaptation can occur rapidly, our results suggest that current predictions on the capacity of natural forest tree populations to adapt to new environments should be revised, especially in the current context of climate change.
Collapse
Affiliation(s)
- Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.,EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Isabel Rodríguez-Quilón
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | | | - Agathe Hurel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Juan-Pablo Jaramillo-Correa
- Department of Evolutionary Ecology, Institute of Ecology, Universidad Nacional Autónoma de México, AP 70-275, México City, CDMX 04510, Mexico
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, Division of Florence, National Research Council, 50019, Sesto Fiorentino (FI), Italy
| | | | - Juan Majada
- Sección Forestal, SERIDA, Finca Experimental ''La Mata'', 33820, Grado, Principado de Asturias, Spain
| | - Ricardo Alía
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | | |
Collapse
|
8
|
Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket M, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate warming? eLife 2021; 10:69630. [PMID: 34402424 PMCID: PMC8370766 DOI: 10.7554/elife.69630] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, United States
| | | | - Jamie M Caldwell
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, University of Hawaii at Manoa, Honolulu, United States
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, United States
| | - Mallory J Harris
- Department of Biology, Stanford University, Stanford, United States
| | - Devin G Kirk
- Department of Biology, Stanford University, Stanford, United States.,Department of Zoology, University of Toronto, Toronto, Canada
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, United States
| | - Marta Shocket
- Department of Biology, Stanford University, Stanford, United States.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, United States
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, United States.,Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford University, Stanford, United States.,Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
9
|
Erickson PA, Weller CA, Song DY, Bangerter AS, Schmidt P, Bergland AO. Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLoS Genet 2020; 16:e1009110. [PMID: 33216740 PMCID: PMC7717581 DOI: 10.1371/journal.pgen.1009110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.
Collapse
Affiliation(s)
- Priscilla A. Erickson
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cory A. Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Y. Song
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alyssa S. Bangerter
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
10
|
Wu Y, Bogdanowicz SM, Andres JA, Vieira KA, Wang B, Cossé A, Pfister SE. Tracking invasions of a destructive defoliator, the gypsy moth (Erebidae: Lymantria dispar): Population structure, origin of intercepted specimens, and Asian introgression into North America. Evol Appl 2020; 13:2056-2070. [PMID: 32908604 PMCID: PMC7463338 DOI: 10.1111/eva.12962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
Genetic data can help elucidate the dynamics of biological invasions, which are fueled by the constant expansion of international trade. The introduction of European gypsy moth (Lymantria dispar dispar) into North America is a classic example of human-aided invasion that has caused tremendous damage to North American temperate forests. Recently, the even more destructive Asian gypsy moth (mainly L. d. asiatica and L. d. japonica) has been intercepted in North America, mostly transported by cargo ships. To track invasion pathways, we developed a diagnostic panel of 60 DNA loci (55 nuclear and 5 mitochondrial) to characterize worldwide genetic differentiation within L. dispar and its sister species L. umbrosa. Hierarchical analyses supported strong differentiation and recovered five geographic groups that correspond to (1) North America, (2) Europe plus North Africa and Middle East, (3) the Urals, Central Asia, and Russian Siberia, (4) continental East Asia, and (5) the Japanese islands. Interestingly, L. umbrosa was grouped with L. d. japonica, and the introduced North American population exhibits remarkable distinctiveness from contemporary European counterparts. Each geographic group, except for North America, shows additional lower-level structures when analyzed individually, which provided the basis for inference of the origin of invasive specimens. Two assignment approaches consistently identified a coastal area of continental East Asia as the major source for Asian invasion during 2014-2015, with Japan being another source. By analyzing simulation and laboratory crosses, we further provided evidence for the occurrence of natural Asian-North American hybrids in the Pacific Northwest, raising concerns for introgression of Asian alleles that may accelerate range expansion of gypsy moth in North America. Our study demonstrates how genetic data contribute to bio-surveillance of invasive species with results that can inform regulatory management and reduce the frequency of trade-associated invasions.
Collapse
Affiliation(s)
- Yunke Wu
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| | | | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Kendra A. Vieira
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| | - Baode Wang
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| | - Allard Cossé
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| | - Scott E. Pfister
- United States Department of AgricultureAPHIS, PPQ, S&T, Otis LaboratoryBuzzards BayMAUSA
| |
Collapse
|
11
|
Wang P, Chen B, Zheng J, Cheng W, Zhang H, Wang J, Su Y, Xu P, Mao Y. Fine-Scale Population Genetic Structure and Parapatric Cryptic Species of Kuruma Shrimp ( Marsupenaeus japonicus), Along the Northwestern Pacific Coast of China. Front Genet 2020; 11:118. [PMID: 32161618 PMCID: PMC7052491 DOI: 10.3389/fgene.2020.00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/31/2020] [Indexed: 11/13/2022] Open
Abstract
The kuruma shrimp (Marsupenaeus japonicus) includes two cryptic species, which are distributed mostly allopatrically but co-occur in the northern South China Sea (from Huilai to Beihai). To obtain a better understanding of the fine-scale genetic structure and parapatric diversification of these two varieties in the northwestern Pacific region, we used a genotyping-by-sequencing (GBS) and comparative transcriptomics approach to establish their phylogenetic relationships. Using the GBS technique, we genotyped 28891 SNPs in 160 individuals in the Northwest Pacific. The results supported two highly diverged evolutionary lineages of kuruma shrimp (var. I and II). The ND and XM populations showed complex genetic patterns, which might be affected by the complex environment of the Taiwan Strait. In addition, the migration rates and inbreeding coefficients of XM and BH were much lower than those of the other populations, which might be related to the land-sea changes and complex ocean currents in the Taiwan Strait and Qiongzhou Strait. Based on the synonymous substitution rates (ds) of 2,491 candidate orthologs, we estimated that the divergence time between the two varieties was 0.26~0.69 Mya. Choice and no-choice interbreeding experiments provided support for the biological species concept, by showing the existence of reproductive isolation or incompatibility. In view of these differences between the two Marsupenaeus species, we believe that it is essential and urgent to establish a genetic database for each and reevaluate their ecological suitable conditions in order to improve species-specific culturing techniques. Moreover, this research can serve as a case study for future research on speciation and hybridization.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wenzhi Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Heqian Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Dillon ME, Lozier JD. Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. CURRENT OPINION IN INSECT SCIENCE 2019; 36:131-139. [PMID: 31698151 DOI: 10.1016/j.cois.2019.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Advances in tools to gather environmental, phenotypic, and molecular data have accelerated our ability to detect abiotic drivers of variation across the genome-to-phenome spectrum in model and non-model insects. However, differences in the spatial and temporal resolution of these data sets may create gaps in our understanding of linkages between environment, genotype, and phenotype that yield missed or misleading results about adaptive variation. In this review we highlight sources of variability that might impact studies of phenotypic and 'omic environmental adaptation, challenges to collecting data at relevant scales, and possible solutions that link intensive fine-scale reductionist studies of mechanisms to large-scale biogeographic patterns.
Collapse
Affiliation(s)
- Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, The University of Wyoming, Laramie, Wyoming 82071, USA.
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
13
|
Tonzo V, Papadopoulou A, Ortego J. Genomic data reveal deep genetic structure but no support for current taxonomic designation in a grasshopper species complex. Mol Ecol 2019; 28:3869-3886. [DOI: 10.1111/mec.15189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Vanina Tonzo
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Anna Papadopoulou
- Department of Biological Sciences University of Cyprus Nicosia Cyprus
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|