1
|
Aleman A, Arteaga MC, Gasca-Pineda J, Bello-Bedoy R. Divergent lineages in a young species: The case of datilillo (Yucca valida), a broadly distributed plant from the Baja California Peninsula. AMERICAN JOURNAL OF BOTANY 2024; 111:e16385. [PMID: 39113241 DOI: 10.1002/ajb2.16385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 11/06/2024]
Abstract
PREMISE Globally, barriers triggered by climatic changes have caused habitat fragmentation and population allopatric divergence. Across North America, oscillations during the Quaternary have played important roles in the distribution of wildlife. Notably, diverse plant species from the Baja California Peninsula in western North America, isolated during the Pleistocene glacial-interglacial cycles, exhibit strong genetic structure and highly concordant divergent lineages across their ranges. A representative plant genus of the peninsula is Yucca, with Y. valida having the widest range. Although a dominant species, it has an extensive distribution discontinuity between 26° N and 27° N, suggesting restricted gene flow. Moreover, historical distribution models indicate the absence of an area with suitable conditions for the species during the Last Interglacial, making it an interesting model for studying genetic divergence. METHODS We assembled 4411 SNPs from 147 plants of Y. valida throughout its range to examine its phylogeography to identify the number of genetic lineages, quantify their genetic differentiation, reconstruct their demographic history and estimate the age of the species. RESULTS Three allopatric lineages were identified based on the SNPs. Our analyses support that genetic drift is the driver of genetic differentiation among these lineages. We estimated an age of less than 1 million years for the common ancestor of Y. valida and its sister species. CONCLUSIONS Habitat fragmentation caused by climatic changes, low dispersal, and an extensive geographical range gap acted as cumulative mechanisms leading to allopatric divergence in Y. valida.
Collapse
Affiliation(s)
- Alberto Aleman
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Maria Clara Arteaga
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Jaime Gasca-Pineda
- Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Rafael Bello-Bedoy
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, Mexico
| |
Collapse
|
2
|
Judson JM, Hoekstra LA, Janzen FJ. Demographic history and genomic signatures of selection in a widespread vertebrate ectotherm. Mol Ecol 2024; 33:e17269. [PMID: 38234254 PMCID: PMC10922411 DOI: 10.1111/mec.17269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Environmental conditions vary greatly across large geographic ranges, and yet certain species inhabit entire continents. In such species, genomic sequencing can inform our understanding of colonization history and the impact of selection on the genome as populations experience diverse local environments. As ectothermic vertebrates are among the most vulnerable to environmental change, it is critical to understand the contributions of local adaptation to population survival. Widespread ectotherms offer an opportunity to explore how species can successfully inhabit such differing environments and how future climatic shifts will impact species' survival. In this study, we investigated the widespread painted turtle (Chrysemys picta) to assess population genomic structure, demographic history, and genomic signatures of selection in the western extent of the range. We found support for a substantial role of serial founder effects in shaping population genomic structure: demographic analysis and runs of homozygosity were consistent with bottlenecks of increasing severity from eastern to western populations during and following the Last Glacial Maximum, and edge populations were more strongly diverged and had less genetic diversity than those from the centre of the range. We also detected outlier loci, but allelic patterns in many loci could be explained by either genetic surfing or selection. While range expansion complicates the identification of loci under selection, we provide candidates for future study of local adaptation in a long-lived, widespread ectotherm that faces an uncertain future as the global climate continues to rapidly change.
Collapse
Affiliation(s)
- Jessica M. Judson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| | - Luke A. Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| |
Collapse
|
3
|
Meurling S, Siljestam M, Cortazar-Chinarro M, Åhlen D, Rödin-Mörch P, Ågren E, Höglund J, Laurila A. Body size mediates latitudinal population differences in the response to chytrid fungus infection in two amphibians. Oecologia 2024; 204:71-81. [PMID: 38097779 PMCID: PMC10830819 DOI: 10.1007/s00442-023-05489-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/14/2023] [Indexed: 02/02/2024]
Abstract
Factors behind intraspecific variation in sensitivity to pathogens remain poorly understood. We investigated how geographical origin in two North European amphibians affects tolerance to infection by the chytrid fungus Batrachochytrium dendrobatidis (Bd), a generalist pathogen which has caused amphibian population declines worldwide. We exposed newly metamorphosed individuals of moor frog Rana arvalis and common toad Bufo bufo from two latitudinal regions to two different BdGPL strains. We measured survival and growth as infections may cause sub-lethal effects in fitness components even in the absence of mortality. Infection loads were higher in B. bufo than in R. arvalis, and smaller individuals had generally higher infection loads. B. bufo had high mortality in response to Bd infection, whereas there was little mortality in R. arvalis. Bd-mediated mortality was size-dependent and high-latitude individuals were smaller leading to high mortality in the northern B. bufo. Bd exposure led to sub-lethal effects in terms of reduced growth suggesting that individuals surviving the infection may have reduced fitness mediated by smaller body size. In both host species, the Swedish Bd strain caused stronger sublethal effects than the British strain. We suggest that high-latitude populations can be more vulnerable to chytrids than those from lower latitudes and discuss the possible mechanisms how body size and host geographical origin contribute to the present results.
Collapse
Affiliation(s)
- Sara Meurling
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mattias Siljestam
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Maria Cortazar-Chinarro
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - David Åhlen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Uppsala, Sweden
| | - Patrik Rödin-Mörch
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Erik Ågren
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Cortazar-Chinarro M, Richter-Boix A, Rödin-Mörch P, Halvarsson P, Logue JB, Laurila A, Höglund J. Association between the skin microbiome and MHC class II diversity in an amphibian. Mol Ecol 2024; 33:e17198. [PMID: 37933583 DOI: 10.1111/mec.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.
Collapse
Affiliation(s)
- M Cortazar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth Ocean and Atmospheric Sciences, Faculty of Science 2020-2207, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Richter-Boix
- Department of Political and Social Science, Pompeu Fabra University, Barcelona, Spain
| | - P Rödin-Mörch
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - P Halvarsson
- Parasitology/Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J B Logue
- Aquatic Ecology/Department of Biology, Lund University, Lund, Sweden
- SLU University Library, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - J Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Sunde J, Yıldırım Y, Tibblin P, Bekkevold D, Skov C, Nordahl O, Larsson P, Forsman A. Drivers of neutral and adaptive differentiation in pike (Esox lucius) populations from contrasting environments. Mol Ecol 2021; 31:1093-1110. [PMID: 34874594 DOI: 10.1111/mec.16315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/28/2023]
Abstract
Understanding how eco-evolutionary processes and environmental factors drive population differentiation and adaptation are key challenges in evolutionary biology of relevance for biodiversity protection. Differentiation requires at least partial reproductive separation, which may result from different modes of isolation such as geographic isolation (allopatry) or isolation by distance (IBD), resistance (IBR), and environment (IBE). Despite that multiple modes might jointly influence differentiation, studies that compare the relative contributions are scarce. Using RADseq, we analyse neutral and adaptive genetic diversity and structure in 11 pike (Esox lucius) populations from contrasting environments along a latitudinal gradient (54.9-63.6°N), to investigate the relative effects of IBD, IBE and IBR, and to assess whether the effects differ between neutral and adaptive variation, or across structural levels. Patterns of neutral and adaptive variation differed, probably reflecting that they have been differently affected by stochastic and deterministic processes. The importance of the different modes of isolation differed between neutral and adaptive diversity, yet were consistent across structural levels. Neutral variation was influenced by interactions among all three modes of isolation, with IBR (seascape features) playing a central role, wheares adaptive variation was mainly influenced by IBE (environmental conditions). Taken together, this and previous studies suggest that it is common that multiple modes of isolation interactively shape patterns of genetic variation, and that their relative contributions differ among systems. To enable identification of general patterns and understand how various factors influence the relative contributions, it is important that several modes are simultaneously investigated in additional populations, species and environmental settings.
Collapse
Affiliation(s)
- Johanna Sunde
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Oscar Nordahl
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Ma Y, Liu D, Wariss HM, Zhang R, Tao L, Milne RI, Sun W. Demographic history and identification of threats revealed by population genomic analysis provide insights into conservation for an endangered maple. Mol Ecol 2021; 31:767-779. [PMID: 34826164 DOI: 10.1111/mec.16289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/01/2022]
Abstract
Recent advancements in whole genome sequencing techniques capable of covering nearly all the nucleotide variations of a genome would make it possible to set up a conservation framework for threatened plants at the genomic level. Here we applied a whole genome resequencing approach to obtain genome-wide data from 105 individuals sampled from the 10 currently known extant populations of Acer yangbiense, an endangered species with fragmented habitats and restricted distribution in Yunnan, China. To inform meaningful conservation action, we investigated what factors might have contributed to the formation of its extremely small population sizes and what threats it currently suffers at a genomic level. Our results revealed that A. yangbiense has low genetic diversity and comprises different numbers of genetic groups based on neutral (seven) and selected loci (13), with frequent gene flow between populations. Repeated bottleneck events, particularly the most recent one occurring within ~10,000 years before present, which decreased its effective population size (Ne ) < 200, and severe habitat fragmentation resulting from anthropogenic activities as well as a biased gender ratio of mature individuals in its natural habitat, might have together contributed to the currently fragmented and endangered status of A. yangbiense. The species has suffered from inbreeding and deleterious mutation load, both of which varied among populations but had similar patterns; that is, populations with higher FROH (frequency of runs of homozygosity) always carried a larger number of deleterious mutations in the homozygous state than in populations with lower FROH. In addition, based on our genetic differentiation results, and the distribution patterns of homozygous deleterious mutations in individuals, we recommend certain conservation actions regarding the genetic rescue of A. yangbiense. Overall, our study provides meaningful insights into the conservation genetics and a framework for the further conservation for the endangered A. yangbiense.
Collapse
Affiliation(s)
- Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hafiz Muhammad Wariss
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
| | - Rengang Zhang
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, China
| | - Lidan Tao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Kunming Botanical Garden, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
| |
Collapse
|
7
|
Low neutral and immunogenetic diversity in northern fringe populations of the green toad Bufotes viridis: implications for conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractGenetic variation is often lower at high latitudes, which may compromise the adaptability and hence survival of organisms. Here we show that genetic variability is negatively correlated with northern latitude in European green toads (Bufotes viridis). The result holds true for both putatively neutral microsatellite variation and supposedly adaptive MHC Class IIB variation. In particular, our findings have bearing on the conservation status of this species in Sweden, on the northern limit of its distribution where local populations are small and fragmented. These genetically impoverished populations are closely related to other populations found around the Baltic Sea basin. The low neutral and adaptive variation in these fringe populations compared to population at central ranges confirms a pattern shared across all other amphibians so far studied. In Sweden, the situation of green toads is of concern as the remaining populations may not have the evolutionary potential to cope with present and future environmental challenges.
Collapse
|
8
|
Teixeira TM, Nazareno AG. One Step Away From Extinction: A Population Genomic Analysis of A Narrow Endemic, Tropical Plant Species. FRONTIERS IN PLANT SCIENCE 2021; 12:730258. [PMID: 34630476 PMCID: PMC8496504 DOI: 10.3389/fpls.2021.730258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Intraspecific genetic variation plays a fundamental role in maintaining the evolutionary potential of wild populations. Hence, the assessment of genetic diversity patterns becomes essential to guide biodiversity conservation policies, particularly for threatened species. To inform management strategies for conservation of Mimosa catharinensis - a narrow endemic, critically endangered plant species - we identified 1,497 unlinked SNP markers derived from a reduced representation sequencing method (i.e., double digest restriction site associated DNA sequencing, or ddRADseq). This set of molecular markers was employed to assess intrapopulation genetic parameters and the demographic history of one extremely small population of M. catharinensis (N=33) located in the Brazilian Atlantic Forest. Contrary to what is expected for narrow endemic and threatened species with small population sizes, we observed a moderate level of genetic diversity for M. catharinensis [uH E(0%missing data)=0.205, 95% CI (0.160, 0.250); uH E(30%missing data)=0.233, 95% CI (0.174, 0.292)]. Interestingly, M. catharinensis, which is a lianescent shrub with no indication of seed production for at least two decades, presented high levels of outcrossing [t (0%missing data)=0.883, SE±0.0483; t (30%missing data)=0.909, SE±0.011] and an apparent absence of inbreeding [F (0%missing data)=-0.145, 95% CI (-0.189, -0.101); F (30%missing data)=-0.105, 95% CI (-0.199, -0.011)]. However, the reconstruction of demographic history of M. catharinensis indicated that the population should be suffered a recent bottleneck. Our population genomic study tackles a central issue in evolution and conservation biology and we expect that it will be useful to help safeguard the remaining genetic diversity reported for this unique genetic resource.
Collapse
Affiliation(s)
- Thais M. Teixeira
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alison G. Nazareno
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Byer NW, Holding ML, Crowell MM, Pierson TW, Dilts TE, Larrucea ES, Shoemaker KT, Matocq MD. Adaptive divergence despite low effective population size in a peripherally isolated population of the pygmy rabbit, Brachylagus idahoensis. Mol Ecol 2021; 30:4173-4188. [PMID: 34166550 DOI: 10.1111/mec.16040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
Local adaptation can occur when spatially separated populations are subjected to contrasting environmental conditions. Historically, understanding the genetic basis of adaptation has been difficult, but increased availability of genome-wide markers facilitates studies of local adaptation in non-model organisms of conservation concern. The pygmy rabbit (Brachylagus idahoensis) is an imperiled lagomorph that relies on sagebrush for forage and cover. This reliance has led to widespread population declines following reductions in the distribution of sagebrush, leading to geographic separation between populations. In this study, we used >20,000 single nucleotide polymorphisms, genotype-environment association methods, and demographic modeling to examine neutral genetic variation and local adaptation in the pygmy rabbit in Nevada and California. We identified 308 loci as outliers, many of which had functional annotations related to metabolism of plant secondary compounds. Likewise, patterns of spatial variation in outlier loci were correlated with landscape and climatic variables including proximity to streams, sagebrush cover, and precipitation. We found that populations in the Mono Basin of California probably diverged from other Great Basin populations during late Pleistocene climate oscillations, and that this region is adaptively differentiated from other regions in the southern Great Basin despite limited gene flow and low effective population size. Our results demonstrate that peripherally isolated populations can maintain adaptive divergence.
Collapse
Affiliation(s)
- Nathan W Byer
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Matthew L Holding
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Miranda M Crowell
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Todd W Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Thomas E Dilts
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | | | - Kevin T Shoemaker
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| |
Collapse
|
10
|
Cayuela H, Dorant Y, Forester BR, Jeffries DL, Mccaffery RM, Eby LA, Hossack BR, Gippet JMW, Pilliod DS, Chris Funk W. Genomic signatures of thermal adaptation are associated with clinal shifts of life history in a broadly distributed frog. J Anim Ecol 2021; 91:1222-1238. [PMID: 34048026 PMCID: PMC9292533 DOI: 10.1111/1365-2656.13545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Temperature is a critical driver of ectotherm life‐history strategies, whereby a warmer environment is associated with increased growth, reduced longevity and accelerated senescence. Increasing evidence indicates that thermal adaptation may underlie such life‐history shifts in wild populations. Single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) can help uncover the molecular mechanisms of temperature‐driven variation in growth, longevity and senescence. However, our understanding of these mechanisms is still limited, which reduces our ability to predict the response of non‐model ectotherms to global temperature change. In this study, we examined the potential role of thermal adaptation in clinal shifts of life‐history traits (i.e. life span, senescence rate and recruitment) in the Columbia spotted frog Rana luteiventris along a broad temperature gradient in the western United States. We took advantage of extensive capture–recapture datasets of 20,033 marked individuals from eight populations surveyed annually for 14–18 years to examine how mean annual temperature and precipitation influenced demographic parameters (i.e. adult survival, life span, senescence rate, recruitment and population growth). After showing that temperature was the main climatic predictor influencing demography, we used RAD‐seq data (50,829 SNPs and 6,599 putative CNVs) generated for 352 individuals from 31 breeding sites to identify the genomic signatures of thermal adaptation. Our results showed that temperature was negatively associated with annual adult survival and reproductive life span and positively associated with senescence rate. By contrast, recruitment increased with temperature, promoting the long‐term viability of most populations. These temperature‐dependent demographic changes were associated with strong genomic signatures of thermal adaptation. We identified 148 SNP candidates associated with temperature including three SNPs located within protein‐coding genes regulating resistance to cold and hypoxia, immunity and reproduction in ranids. We also identified 39 CNV candidates (including within 38 transposable elements) for which normalized read depth was associated with temperature. Our study indicates that both SNPs and structural variants are associated with temperature and could eventually be found to play a functional role in clinal shifts in senescence rate and life‐history strategies in R. luteiventris. These results highlight the potential role of different sources of molecular variation in the response of ectotherms to environmental temperature variation in the context of global warming.
Collapse
Affiliation(s)
- Hugo Cayuela
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Brenna R Forester
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Dan L Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Rebecca M Mccaffery
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Port Angeles, WA, USA
| | - Lisa A Eby
- Wildlife Biology Program, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Blake R Hossack
- US Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT, USA
| | - Jérôme M W Gippet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - David S Pilliod
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Thörn F, Rödin-Mörch P, Cortazar-Chinarro M, Richter-Boix A, Laurila A, Höglund J. The effects of drift and selection on latitudinal genetic variation in Scandinavian common toads (Bufo bufo) following postglacial recolonisation. Heredity (Edinb) 2021; 126:656-667. [PMID: 33564181 PMCID: PMC8115047 DOI: 10.1038/s41437-020-00400-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
Clinal variation is paramount for understanding the factors shaping genetic diversity in space and time. During the last glacial maximum, northern Europe was covered by glacial ice that rendered the region uninhabitable for most taxa. Different evolutionary processes during and after the recolonisation of this area from different glacial refugia have affected the genetic landscape of the present day European flora and fauna. In this study, we focus on the common toad (Bufo bufo) in Sweden and present evidence suggesting that these processes have resulted in two separate lineages of common toad, which colonised Sweden from two directions. Using ddRAD sequencing data for demographic modelling, structure analyses, and analysis of molecular variance (AMOVA), we provide evidence of a contact zone located between Uppland and Västerbotten in central Sweden. Genetic diversity was significantly higher in southern Sweden compared to the north, in accordance with a pattern of decreased genetic diversity with increasing distance from glacial refugia. Candidate genes under putative selection are identified through outlier detection and gene-environment association methods. We provide evidence of divergent selection related to stress response and developmental processes in these candidate genes. The colonisation of Sweden by two separate lineages may have implications for how future conservation efforts should be directed by identifying management units and putative local adaptations.
Collapse
Affiliation(s)
- Filip Thörn
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Department for Bioinformatics and Genetics, Swedish Natural History Museum, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Patrik Rödin-Mörch
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | | - Alex Richter-Boix
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Gahm K, Arietta AZA, Skelly DK. Temperature‐mediated trade‐off between development and performance in larval wood frogs (
Rana sylvatica
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:146-157. [DOI: 10.1002/jez.2434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Kaija Gahm
- Department of Ecology & Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - David K. Skelly
- School of the Environment Yale University New Haven Connecticut USA
| |
Collapse
|
13
|
Chien WM, Chang CT, Chiang YC, Hwang SY. Ecological Factors Generally Not Altitude Related Played Main Roles in Driving Potential Adaptive Evolution at Elevational Range Margin Populations of Taiwan Incense Cedar ( Calocedrus formosana). Front Genet 2020; 11:580630. [PMID: 33262787 PMCID: PMC7686793 DOI: 10.3389/fgene.2020.580630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/21/2020] [Indexed: 12/05/2022] Open
Abstract
Population diversification can be shaped by a combination of environmental factors as well as geographic isolation interacting with gene flow. We surveyed genetic variation of 243 samples from 12 populations of Calocedrus formosana using amplified fragment length polymorphism (AFLP) and scored a total of 437 AFLP fragments using 11 selective amplification primer pairs. The AFLP variation was used to assess the role of gene flow on the pattern of genetic diversity and to test environments in driving population adaptive evolution. This study found the relatively lower level of genetic diversity and the higher level of population differentiation in C. formosana compared with those estimated in previous studies of conifers including Cunninghamia konishii, Keteleeria davidiana var. formosana, and Taiwania cryptomerioides occurring in Taiwan. BAYESCAN detected 26 FST outlier loci that were found to be associated strongly with various environmental variables using multiple univariate logistic regression, latent factor mixed model, and Bayesian logistic regression. We found several environmentally dependent adaptive loci with high frequencies in low- or high-elevation populations, suggesting their involvement in local adaptation. Ecological factors, including relative humidity and sunshine hours, that are generally not altitude related could have been the most important selective drivers for population divergent evolution in C. formosana. The present study provides fundamental information in relation to adaptive evolution and can be useful for assisted migration program of C. formosana in the future conservation of this species.
Collapse
Affiliation(s)
- Wei-Ming Chien
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Te Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Ying Hwang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
14
|
Small-scale population divergence is driven by local larval environment in a temperate amphibian. Heredity (Edinb) 2020; 126:279-292. [PMID: 32958927 DOI: 10.1038/s41437-020-00371-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Genomic variation within and among populations is shaped by the interplay between natural selection and the effects of genetic drift and gene flow. Adaptive divergence can be found in small-scale natural systems even when population sizes are small, and the potential for gene flow is high, suggesting that local environments exert selection pressures strong enough to counteract the opposing effects of drift and gene flow. Here, we investigated genomic differentiation in nine moor frog (Rana arvalis) populations in a small-scale network of local wetlands using 16,707 ddRAD-seq SNPs, relating levels of differentiation with local environments, as well as with properties of the surrounding landscape. We characterized population structure and differentiation, and partitioned the effects of geographic distance, local larval environment, and landscape features on total genomic variation. We also conducted gene-environment association studies using univariate and multivariate approaches. We found small-scale population structure corresponding to 6-8 clusters. Local larval environment was the most influential component explaining 2.3% of the total genetic variation followed by landscape features (1.8%) and geographic distance (0.8%), indicative of isolation-by-environment, -by-landscape, and -by-distance, respectively. We identified 1000 potential candidate SNPs putatively under divergent selection mediated by the local larval environment. The candidate SNPs were involved in, among other biological functions, immune system function and development. Our results suggest that small-scale environmental differences can exert selection pressures strong enough to counteract homogenizing effects of gene flow and drift in this small-scale system, leading to observable population differentiation.
Collapse
|
15
|
Martin BT, Douglas MR, Chafin TK, Placyk JS, Birkhead RD, Phillips CA, Douglas ME. Contrasting signatures of introgression in North American box turtle (
Terrapene
spp.) contact zones. Mol Ecol 2020; 29:4186-4202. [DOI: 10.1111/mec.15622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Bradley T. Martin
- Department of Biological Sciences University of Arkansas Fayetteville AR USA
| | - Marlis R. Douglas
- Department of Biological Sciences University of Arkansas Fayetteville AR USA
| | - Tyler K. Chafin
- Department of Biological Sciences University of Arkansas Fayetteville AR USA
| | - John S. Placyk
- Department of Biology University of Texas Tyler TX USA
- Science Division Trinity Valley Community College Athens TX USA
| | | | - Christopher A. Phillips
- Illinois Natural History Survey Prairie Research Institute University of Illinois Champaign IL USA
| | - Michael E. Douglas
- Department of Biological Sciences University of Arkansas Fayetteville AR USA
| |
Collapse
|
16
|
Cortázar-Chinarro M, Meyer-Lucht Y, Van der Valk T, Richter-Boix A, Laurila A, Höglund J. Antimicrobial peptide and sequence variation along a latitudinal gradient in two anurans. BMC Genet 2020; 21:38. [PMID: 32228443 PMCID: PMC7106915 DOI: 10.1186/s12863-020-00839-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While there is evidence of both purifying and balancing selection in immune defense genes, large-scale genetic diversity in antimicrobial peptides (AMPs), an important part of the innate immune system released from dermal glands in the skin, has remained uninvestigated. Here we describe genetic diversity at three AMP loci (Temporin, Brevinin and Palustrin) in two ranid frogs (Rana arvalis and R. temporaria) along a 2000 km latitudinal gradient. We amplified and sequenced part of the Acidic Propiece domain and the hypervariable Mature Peptide domain (~ 150-200 bp) in the three genes using Illumina Miseq and expected to find decreased AMP genetic variation towards the northern distribution limit of the species similarly to studies on MHC genetic patterns. RESULTS We found multiple loci for each AMP and relatively high gene diversity, but no clear pattern of geographic genetic structure along the latitudinal gradient. We found evidence of trans-specific polymorphism in the two species, indicating a common evolutionary origin of the alleles. Temporin and Brevinin did not form monophyletic clades suggesting that they belong to the same gene family. By implementing codon evolution models we found evidence of strong positive selection acting on the Mature Peptide. We also found evidence of diversifying selection as indicated by divergent allele frequencies among populations and high Theta k values. CONCLUSION Our results suggest that AMPs are an important source of adaptive diversity, minimizing the chance of microorganisms developing resistance to individual peptides.
Collapse
Affiliation(s)
- Maria Cortázar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
| | - Yvonne Meyer-Lucht
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.,Centre for Paleogenetics Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | - Tom Van der Valk
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Alex Richter-Boix
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| |
Collapse
|