1
|
Wei M, Feng T, Lin Y, He S, Yan H, Qiao R, Chen Q. Elevation-associated pathways mediate aquatic biodiversity at multi-trophic levels along a plateau inland river. WATER RESEARCH 2024; 258:121779. [PMID: 38772321 DOI: 10.1016/j.watres.2024.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Aquatic biodiversity plays a significant role in maintaining the ecological balance and the overall health of riverine ecosystems. Elevation is an important factor influencing biodiversity patterns. However, it is still unclear through which pathway elevation influences riverine biodiversity at different trophic levels. In this study, the elevation-associated pathways affecting aquatic biodiversity at different trophic levels were explored using structural equation modeling (SEM) and taking the Bayin River, China as the case. The results showed that the elevational patterns were different among aquatic organisms at different trophic levels. For macroinvertebrates and bacteria, the pattern was hump-shaped; while for phytoplankton and zooplankton, it was U-shaped. Building upon these observed elevational patterns, our investigation delved into the direct and indirect pathways through which elevation influences aquatic biodiversity. We found that elevation exerts an impact on aquatic biodiversity via indirect pathways. For all aquatic organisms investigated, the major pathway through which elevation influences biodiversity is mediated by water temperature and water quality. For aquatic organisms at higher trophic levels, like macroinvertebrates and zooplankton, the crucial pathway is also mediated by the landscape. The results of this study contributed to understanding the effects of elevation on aquatic organisms at different trophic levels and provided an important basis for the assessment of riverine biodiversity at large scales.
Collapse
Affiliation(s)
- Mengru Wei
- Yangtze Institute for Conservation and Development, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Tao Feng
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Yuqing Lin
- Yangtze Institute for Conservation and Development, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Shufeng He
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Hanlu Yan
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Ruxia Qiao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Qiuwen Chen
- Yangtze Institute for Conservation and Development, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
2
|
Wang H, Liu F, Wang M, Bettarel Y, Eissler Y, Chen F, Kan J. Planktonic eukaryotes in the Chesapeake Bay: contrasting responses of abundant and rare taxa to estuarine gradients. Microbiol Spectr 2024; 12:e0404823. [PMID: 38606959 PMCID: PMC11064499 DOI: 10.1128/spectrum.04048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Phytoplankton are important drivers of aquatic ecosystem function and environmental health. Their community compositions and distributions are directly impacted by environmental processes and human activities, including in the largest estuary in North America, the Chesapeake Bay. It is crucial to uncover how planktonic eukaryotes play fundamental roles as primary producers and trophic links and sustain estuarine ecosystems. In this study, we investigated the detailed community structure and spatiotemporal variations of planktonic eukaryotes in the Chesapeake Bay across space and time for three consecutive years. A clear seasonal and spatial shift of total, abundant, and rare planktonic eukaryotes was evident, and the pattern recurred interannually. Multiple harmful algal species have been identified in the Bay with varied distribution patterns, such as Karlodinium, Heterosigma akashiwo, Protoperidinium sp., etc. Compared to abundant taxa, rare subcommunities were more sensitive to environmental disturbance in terms of richness, diversity, and distribution. The combined effects of temporal variation (13.3%), nutrient availability (10.0%), and spatial gradients (8.8%) structured the distribution of eukaryotic microbial communities in the Bay. Similar spatiotemporal patterns between planktonic prokaryotes and eukaryotes suggest common mechanisms of adjustment, replacement, and species interaction for planktonic microbiomes under strong estuarine gradients. To our best knowledge, this work represents the first systematic study on planktonic eukaryotes in the Bay. A comprehensive view of the distribution of planktonic microbiomes and their interactions with environmental processes is critical in understanding the underlying microbial mechanisms involved in maintaining the stability, function, and environmental health of estuarine ecosystems. IMPORTANCE Deep sequencing analysis of planktonic eukaryotes in the Chesapeake Bay reveals high community diversity with many newly recognized phytoplankton taxa. The Chesapeake Bay planktonic eukaryotes show distinct seasonal and spatial variability, with recurring annual patterns of total, abundant, and rare groups. Rare taxa mainly contribute to eukaryotic diversity compared to abundant groups, and they are more sensitive to spatiotemporal variations and environmental filtering. Temporal variations, nutrient availability, and spatial gradients significantly affect the distribution of eukaryotic microbial communities. Similar spatiotemporal patterns in prokaryotes and eukaryotes suggest common mechanisms of adjustment, substitution, and species interactions in planktonic microbiomes under strong estuarine gradients. Interannually recurring patterns demonstrate that diverse eukaryotic taxa have well adapted to the estuarine environment with a long residence time. Further investigations of how human activities impact estuarine planktonic eukaryotes are critical in understanding their essential ecosystem roles and in maintaining environmental safety and public health.
Collapse
Affiliation(s)
- Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| | - Feilong Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| | - Yvan Bettarel
- ECOSYM (Ecologie des systèmes marins côtiers)- UMR 5119, Universite de Montpellier, Montpellier, France
| | - Yoanna Eissler
- Laboratorio de Virología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, Arizona, USA
| |
Collapse
|
3
|
Li S, Nilsson E, Seidel L, Ketzer M, Forsman A, Dopson M, Hylander S. Baltic Sea coastal sediment-bound eukaryotes have increased year-round activities under predicted climate change related warming. Front Microbiol 2024; 15:1369102. [PMID: 38596378 PMCID: PMC11002985 DOI: 10.3389/fmicb.2024.1369102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Climate change related warming is a serious environmental problem attributed to anthropogenic activities, causing ocean water temperatures to rise in the coastal marine ecosystem since the last century. This particularly affects benthic microbial communities, which are crucial for biogeochemical cycles. While bacterial communities have received considerable scientific attention, the benthic eukaryotic community response to climate change remains relatively overlooked. In this study, sediments were sampled from a heated (average 5°C increase over the whole year for over 50 years) and a control (contemporary conditions) Baltic Sea bay during four different seasons across a year. RNA transcript counts were then used to investigate eukaryotic community changes under long-term warming. The composition of active species in the heated and control bay sediment eukaryotic communities differed, which was mainly attributed to salinity and temperature. The family level RNA transcript alpha diversity in the heated bay was higher during May but lower in November, compared with the control bay, suggesting altered seasonal activity patterns and dynamics. In addition, structures of the active eukaryotic communities varied between the two bays during the same season. Hence, this study revealed that long-term warming can change seasonality in eukaryotic diversity patterns. Relative abundances and transcript expression comparisons between bays suggested that some taxa that now have lower mRNA transcripts numbers could be favored by future warming. Furthermore, long-term warming can lead to a more active metabolism in these communities throughout the year, such as higher transcript numbers associated with diatom energy production and protein synthesis in the heated bay during winter. In all, these data can help predict how future global warming will affect the ecology and metabolism of eukaryotic community in coastal sediments.
Collapse
Affiliation(s)
- Songjun Li
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Marcelo Ketzer
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Hedberg P, Olsson M, Höglander H, Brüchert V, Winder M. Climate change effects on plankton recruitment from coastal sediments. JOURNAL OF PLANKTON RESEARCH 2024; 46:117-125. [PMID: 38572122 PMCID: PMC10987100 DOI: 10.1093/plankt/fbad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/18/2023] [Indexed: 04/05/2024]
Abstract
In highly seasonal systems, the emergence of planktonic resting stages from the sediment is a key driver for bloom timing and plankton community composition. The termination of the resting phase is often linked to environmental cues, but the extent to which recruitment of resting stages is affected by climate change remains largely unknown for coastal environments. Here we investigate phyto- and zooplankton recruitment from oxic sediments in the Baltic Sea in a controlled experiment under proposed temperature and light increase during the spring and summer. We find that emergence of resting stage differs between seasons and the abiotic environment. Phytoplankton recruitment from resting stages were high in spring with significantly higher emergence rates at increased temperature and light levels for dinoflagellate and cyanobacteria than for diatoms, which had highest emergence under cold and dark conditions. In comparison, hatching of copepod nauplii was not affected by increased temperature and light levels. These results show that activation of plankton resting stages are affected to different degrees by increasing temperature and light levels, indicating that climate change affects plankton dynamics through processes related to resting stage termination with potential consequences for bloom timing, community composition and trophic mismatch.
Collapse
Affiliation(s)
- Per Hedberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- University of Helsinki, Tvärminne Zoological Station, 10900 Hanko, Finland
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Helena Höglander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Volker Brüchert
- Department of Geological Sciences, Stockholm University, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Broman E, Olsson M, Maciute A, Donald D, Humborg C, Norkko A, Jilbert T, Bonaglia S, Nascimento FJA. Biotic interactions between benthic infauna and aerobic methanotrophs mediate methane fluxes from coastal sediments. THE ISME JOURNAL 2024; 18:wrae013. [PMID: 38366020 PMCID: PMC10942774 DOI: 10.1093/ismejo/wrae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Coastal ecosystems dominate oceanic methane (CH4) emissions. However, there is limited knowledge about how biotic interactions between infauna and aerobic methanotrophs (i.e. CH4 oxidizing bacteria) drive the spatial-temporal dynamics of these emissions. Here, we investigated the role of meio- and macrofauna in mediating CH4 sediment-water fluxes and aerobic methanotrophic activity that can oxidize significant portions of CH4. We show that macrofauna increases CH4 fluxes by enhancing vertical solute transport through bioturbation, but this effect is somewhat offset by high meiofauna abundance. The increase in CH4 flux reduces CH4 pore-water availability, resulting in lower abundance and activity of aerobic methanotrophs, an effect that counterbalances the potential stimulation of these bacteria by higher oxygen flux to the sediment via bioturbation. These findings indicate that a larger than previously thought portion of CH4 emissions from coastal ecosystems is due to faunal activity and multiple complex interactions with methanotrophs.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
| | - Adele Maciute
- Department of Marine Sciences, University of Gothenburg, Gothenburg 41390, Sweden
| | - Daniel Donald
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
| | - Christoph Humborg
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
| | - Alf Norkko
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
| | - Tom Jilbert
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
- Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg 41390, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
6
|
Małachowicz M, Krasnov A, Wenne R. Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations. Cells 2023; 12:2760. [PMID: 38067188 PMCID: PMC10706248 DOI: 10.3390/cells12232760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Adaptation to environmental variation caused by global climate change is a significant aspect of fisheries management and ecology. A reduction in ocean salinity is visible in near-shore areas, especially in the Baltic Sea, where it is affecting the Atlantic cod population. Cod is one of the most significant teleost species, with high ecological and economical value worldwide. The population of cod in the Baltic Sea has been traditionally divided into two subpopulations (western and eastern) existing in higher- and lower-salinity waters, respectively. In recent decades, both Baltic cod subpopulations have declined massively. One of the reasons for the poor condition of cod in the Baltic Sea is environmental factors, including salinity. Thus, in this study, an oligonucleotide microarray was applied to explore differences between Baltic cod subpopulations in response to salinity fluctuations. For this purpose, an exposure experiment was conducted consisting of salinity elevation and reduction, and gene expression was measured in gill tissue. We found 400 differentially expressed genes (DEGs) involved in the immune response, metabolism, programmed cell death, cytoskeleton, and extracellular matrix that showed a subpopulation-dependent pattern. These findings indicate that osmoregulation in Baltic cod is a complex process, and that western and eastern Baltic cod subpopulations respond differently to salinity changes.
Collapse
Affiliation(s)
- Magdalena Małachowicz
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| | - Aleksei Krasnov
- Department of Fish Health, Nofima—Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, NO-1431 Ås, Norway;
| | - Roman Wenne
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| |
Collapse
|
7
|
Song M, Wang J, Wang Y, Hu R, Wang L, Guo Z, Jiang Z, Liang Z. Response mechanism of meiofaunal communities to multi-type of artificial reef habitats from the perspective of high-throughput sequencing technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160927. [PMID: 36543272 DOI: 10.1016/j.scitotenv.2022.160927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Multiple types of artificial reefs have been widely deployed in the coast of northern Yellow Sea, which can enhance fishery resources, restore coastal habitats and improve the marine environment. Meiofauna plays important ecological roles in marine ecosystem, but the response mechanism of meiofaunal community to different types of artificial reef is still poorly understood. In this study, we characterized the meiofaunal communities of concrete artificial reef habitat (CAR), rocky artificial reef habitat (RAR), ship artificial reef habitat (SAR) and adjacent natural habitat (NH) using 18S rRNA gene high-throughput sequencing technology, and explored the relationship of community-environment. The results showed that the diversity and community structure of meiofauna differed significantly on both spatial and temporal scales. Spatial differences were mainly contributed to the flow field effects and biological effects generated by artificial habitats, while temporal differences were driven by temperature (T) and dissolved oxygen (DO). The dominant taxa of meiofauna included arthropods, annelids, platyhelminths and nematodes. Platyhelminths were mainly positively influenced by artificial habitats but annelids were the opposite. Co-occurrence network analysis revealed that NH was more sensitive to environmental change than artificial habitat, while the performance of CAR and SAR were more stable. These results indicated that meiofauna can respond accordingly to different types of artificial habitats, and could be superimposed over the normal seasonal effects. The current study could provide fundamental data for understanding the response mechanism of meiofaunal community to different types of artificial habitats and a reference for assessments of the impact of artificial reefs on the marine environment.
Collapse
Affiliation(s)
- Minpeng Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Jiahao Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Yuxin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Renge Hu
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China.
| |
Collapse
|
8
|
Garrison JA, Motwani NH, Broman E, Nascimento FJA. Molecular diet analysis enables detection of diatom and cyanobacteria DNA in the gut of Macoma balthica. PLoS One 2022; 17:e0278070. [PMID: 36417463 PMCID: PMC9683582 DOI: 10.1371/journal.pone.0278070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Detritivores are essential to nutrient cycling, but are often neglected in trophic networks, due to difficulties with determining their diet. DNA analysis of gut contents shows promise of trophic link discrimination, but many unknown factors limit its usefulness. For example, DNA can be rapidly broken down, especially by digestion processes, and DNA provides only a snapshot of the gut contents at a specific time. Few studies have been performed on the length of time that prey DNA can be detected in consumer guts, and none so far using benthic detritivores. Eutrophication, along with climate change, is altering the phytoplankton communities in aquatic ecosystems, on which benthic detritivores in aphotic soft sediments depend. Nutrient-poor cyanobacteria blooms are increasing in frequency, duration, and magnitude in many water bodies, while nutrient-rich diatom spring blooms are shrinking in duration and magnitude, creating potential changes in diet of benthic detritivores. We performed an experiment to identify the taxonomy and quantify the abundance of phytoplankton DNA fragments on bivalve gut contents, and how long these fragments can be detected after consumption in the Baltic Sea clam Macoma balthica. Two common species of phytoplankton (the cyanobacteria Nodularia spumigena or the diatom Skeletonema marinoi) were fed to M. balthica from two regions (from the northern and southern Stockholm archipelago). After removing the food source, M. balthica gut contents were sampled every 24 hours for seven days to determine the number of 23S rRNA phytoplankton DNA copies and when the phytoplankton DNA could no longer be detected by quantitative PCR. We found no differences in diatom 18S rRNA gene fragments of the clams by region, but the southern clams showed significantly more cyanobacteria 16S rRNA gene fragments in their guts than the northern clams. Interestingly, the cyanobacteria and diatom DNA fragments were still detectable by qPCR in the guts of M. balthica one week after removal from its food source. However, DNA metabarcoding of the 23S rRNA phytoplankton gene found in the clam guts showed that added food (i.e. N. spumigena and S. marinoi) did not make up a majority of the detected diet. Our results suggest that these detritivorous clams therefore do not react as quickly as previously thought to fresh organic matter inputs, with other phytoplankton than large diatoms and cyanobacteria constituting the majority of their diet. This experiment demonstrates the viability of using molecular methods to determine feeding of detritivores, but further studies investigating how prey DNA signals can change over time in benthic detritivores will be needed before this method can be widely applicable to both models of ecological functions and conservation policy.
Collapse
Affiliation(s)
- Julie A. Garrison
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Nisha H. Motwani
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Broman E, Izabel-Shen D, Rodríguez-Gijón A, Bonaglia S, Garcia SL, Nascimento FJA. Microbial functional genes are driven by gradients in sediment stoichiometry, oxygen, and salinity across the Baltic benthic ecosystem. MICROBIOME 2022; 10:126. [PMID: 35965333 PMCID: PMC9377124 DOI: 10.1186/s40168-022-01321-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea. RESULTS The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments. CONCLUSIONS This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Harbuzov Z, Farberova V, Tom M, Pallavicini A, Stanković D, Lotan T, Lubinevsky H. Amplicon sequence variant-based meiofaunal community composition revealed by DADA2 tool is compatible with species composition. Mar Genomics 2022; 65:100980. [PMID: 35963148 DOI: 10.1016/j.margen.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
The present study is aimed at implementing the morphological identification-free amplicon sequence variant (ASV) concept for describing meiofaunal species composition, while strongly indicating reasonable compatibility with the underlying species. A primer pair was constructed and demonstrated to PCR amplify a 470-490 bp 18S barcode from a variety of meiofaunal taxa, high throughput sequenced using the Illumina 300 × 2 bps platform. Sixteen 18S multi-species HTS assemblies were created from meiofaunal samples and merged to one assembly of ~2,150,000 reads. Five quality scores (q = 35, 30, 25, 20, 15) were implemented to filter five 18S barcode assemblies, which served as inputs for the DADA2 software, ending with five reference ASV libraries. Each of these libraries was clustered, applying 3% dissimilarity threshold, revealed an average number of 1.38 ± 0.078 ASVs / cluster. Hence, demonstrating high level of ASV uniqueness. The libraries which were based on q ≤ 25 reached a near-asymptote number of ASVs which together with the low average number of ASVs / cluster, strongly indicated fair representation of the actual number of the underlying species. Hence, the q = 25 library was selected to be used as metabarcoding reference library. It contained 461 ASVs and 342-3% clusters with average number of 1.34 ± 1.036 ASV / cluster and their BLASTN annotation elucidated a variety of expected meiofaunal taxa. The sixteen assemblies of sample-specific paired reads were mapped to this reference library and sample ASV profiles, namely the list of ASVs and their proportional copy numbers were created and clustered.
Collapse
Affiliation(s)
- Zoya Harbuzov
- National Institute of Oceanography, Department of Biology and Biotechnology, Israel Oceanographic & Limnological Research, P.O.B 9753, Haifa 3109701, Israel; Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Mount Carmel, Haifa 3498838, Israel.
| | - Valeria Farberova
- National Institute of Oceanography, Department of Biology and Biotechnology, Israel Oceanographic & Limnological Research, P.O.B 9753, Haifa 3109701, Israel; Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Mount Carmel, Haifa 3498838, Israel
| | - Moshe Tom
- National Institute of Oceanography, Department of Biology and Biotechnology, Israel Oceanographic & Limnological Research, P.O.B 9753, Haifa 3109701, Israel
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - David Stanković
- National institute of Biology, Department of Organisms and Ecosystems Research, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Tamar Lotan
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Mount Carmel, Haifa 3498838, Israel
| | - Hadas Lubinevsky
- National Institute of Oceanography, Department of Biology and Biotechnology, Israel Oceanographic & Limnological Research, P.O.B 9753, Haifa 3109701, Israel
| |
Collapse
|
11
|
Garrison JA, Nordström MC, Albertsson J, Nascimento FJA. Temporal and spatial changes in benthic invertebrate trophic networks along a taxonomic richness gradient. Ecol Evol 2022; 12:e8975. [PMID: 35784047 PMCID: PMC9168554 DOI: 10.1002/ece3.8975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Species interactions underlie most ecosystem functions and are important for understanding ecosystem changes. Representing one type of species interaction, trophic networks were constructed from biodiversity monitoring data and known trophic links to assess how ecosystems have changed over time. The Baltic Sea is subject to many anthropogenic pressures, and low species diversity makes it an ideal candidate for determining how pressures change food webs. In this study, we used benthic monitoring data for 20 years (1980-1989 and 2010-2019) from the Swedish coast of the Baltic Sea and Skagerrak to investigate changes in benthic invertebrate trophic interactions. We constructed food webs and calculated fundamental food web metrics evaluating network horizontal and vertical diversity, as well as stability that were compared over space and time. Our results show that the west coast of Sweden (Skagerrak) suffered a reduction in benthic invertebrate biodiversity by 32% between the 1980s and 2010s, and that the number of links, generality of predators, and vulnerability of prey have been significantly reduced. The other basins (Bothnian Sea, Baltic Proper, and Bornholm Basin) do not show any significant changes in species richness or consistent significant trends in any food web metrics investigated, demonstrating resilience at a lower species diversity. The decreased complexity of the Skagerrak food webs indicates vulnerability to further perturbations and pressures should be limited as much as possible to ensure continued ecosystem functions.
Collapse
Affiliation(s)
- Julie A. Garrison
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | | | - Jan Albertsson
- Umeå Marine Sciences CentreUmeå UniversityHörneforsSweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Baltic Sea CentreStockholm UniversityStockholmSweden
| |
Collapse
|
12
|
Monitoring of benthic eukaryotic communities in two tropical coastal lagoons through eDNA metabarcoding: a spatial and temporal approximation. Sci Rep 2022; 12:10089. [PMID: 35710829 PMCID: PMC9203746 DOI: 10.1038/s41598-022-13653-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Tropical coastal lagoons are important ecosystems that support high levels of biodiversity and provide several goods and services. Monitoring of benthic biodiversity and detection of harmful or invasive species is crucial, particularly in relation to seasonal and spatial variation of environmental conditions. In this study, eDNA metabarcoding was used in two tropical coastal lagoons, Chacahua (CH) and Corralero (C) (Southern Mexican Pacific), to describe the benthic biodiversity and its spatial–temporal dynamics. The distribution of benthic diversity within the lagoons showed a very particular pattern evidencing a transition from freshwater to seawater. Although the two lagoon systems are similar in terms of the species composition of metazoans and microeukaryotes, our findings indicate that they are different in taxa richness and structure, resulting in regional partitioning of the diversity with salinity as the driving factor of community composition in CH. Harmful, invasive, non-indigenous species, bioindicators and species of commercial importance were detected, demonstrating the reach of this technique for biodiversity monitoring along with the continued efforts of building species reference libraries.
Collapse
|
13
|
Effects of Recreational Boating on Microbial and Meiofauna Diversity in Coastal Shallow Ecosystems of the Baltic Sea. mSphere 2021; 6:e0012721. [PMID: 34468165 PMCID: PMC8550262 DOI: 10.1128/msphere.00127-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recreational boating can impact benthic ecosystems in coastal waters. Reduced height and cover of aquatic vegetation in shallow Baltic Sea inlets with high boat traffic have raised concerns about cascading effects on benthic communities in these ecosystems. Here, we characterized the diversity and composition of sediment-associated microbial and meiofaunal communities across five bays subjected to low and high degrees of boating activity and examined the community-environment relationships and association with bay morphometry. We found that recreational boating activity altered meiofauna alpha diversity and the composition of both micro- and meiobenthic communities, and there were strong correlations between community structure and morphometric variables like topographic openness, wave exposure, water surface area, and total phosphorous concentrations. Inlets with high boat traffic showed an increase of bacterial taxa like Hydrogenophilaceae and Burkholderiaceae. Several meiofauna taxa previously reported to respond positively to high levels of suspended organic matter were found in higher relative abundances in the bays with high boat traffic. Overall, our results show that morphometric characteristics of inlets are the strongest drivers of benthic diversity in shallow coastal environments. However, while the effects were small, we found significant effects of recreational boating on benthic community structure that should be considered when evaluating the new mooring projects. IMPORTANCE With the increase of recreational boating activity and development of boating infrastructure in shallow, wave-protected areas, there is growing concern for their impact on coastal ecosystems. In order to properly assess the effects and consider the potential for recovery, it is important to investigate microbial and meiofaunal communities that underpin the functioning of these ecosystems. Here, we present the first study that uses DNA metabarcoding to assess how benthic biodiversity in shallow coastal areas is impacted by recreational boating. Our study shows a relatively small, but significant, effect of recreational boating both on meiofauna alpha diversity and meiofauna and bacterial community composition. However, both meiofauna and bacterial community composition in shallow benthic habitats is mediated to a higher degree by abiotic variables, such as topographic openness, area or size of the inlets, and wave exposure. Despite the fact that the effects were small, such impacts on benthic biodiversity should be considered in the management of coastal shallow habitats.
Collapse
|
14
|
Holman LE, de Bruyn M, Creer S, Carvalho G, Robidart J, Rius M. Animals, protists and bacteria share marine biogeographic patterns. Nat Ecol Evol 2021; 5:738-746. [PMID: 33859375 DOI: 10.1038/s41559-021-01439-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Over millennia, ecological and evolutionary mechanisms have shaped macroecological patterns across the tree of life. Research describing these patterns at both regional and global scales has traditionally focused on the study of metazoan species. Consequently, there is a limited understanding of cross-phylum biogeographic structuring and an escalating need to understand the macroecology of both microscopic and macroscopic organisms. Here we used environmental DNA (eDNA) metabarcoding to explore the biodiversity of marine metazoans, protists and bacteria along an extensive and highly heterogeneous coastline. Our results showed remarkably consistent biogeographic structure across the kingdoms of life despite billions of years of evolution. Analyses investigating the drivers of these patterns for each taxonomic kingdom found that environmental conditions (such as temperature) and, to a lesser extent, anthropogenic stressors (such as fishing pressure and pollution) explained some of the observed variation. Additionally, metazoans displayed biogeographic patterns that suggested regional biotic homogenization. Against the backdrop of global pervasive anthropogenic environmental change, our work highlights the importance of considering multiple domains of life to understand the maintenance and drivers of biodiversity patterns across broad taxonomic, ecological and geographical scales.
Collapse
Affiliation(s)
- Luke E Holman
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.
| | - Mark de Bruyn
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Julie Robidart
- Ocean Technology and Engineering Group, National Oceanography Centre Southampton, Southampton, UK
| | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.,Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
15
|
Broman E, Bonaglia S, Norkko A, Creer S, Nascimento FJA. High throughput shotgun sequencing of eRNA reveals taxonomic and derived functional shifts across a benthic productivity gradient. Mol Ecol 2020; 30:3023-3039. [PMID: 32706485 DOI: 10.1111/mec.15561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/29/2020] [Accepted: 07/18/2020] [Indexed: 01/04/2023]
Abstract
Benthic macrofauna is regularly used in monitoring programmes, however the vast majority of benthic eukaryotic biodiversity lies mostly in microscopic organisms, such as meiofauna (invertebrates < 1 mm) and protists, that rapidly responds to environmental change. These communities have traditionally been hard to sample and handle in the laboratory, but DNA sequencing has made such work less time consuming. While DNA sequencing captures both alive and dead organisms, environmental RNA (eRNA) better targets living organisms or organisms of recent origin in the environment. Here, we assessed the biodiversity of three known bioindicator microeukaryote groups (nematodes, foraminifera, and ciliates) in sediment samples collected at seven coastal sites along an organic carbon (OC) gradient. We aimed to investigate if eRNA shotgun sequencing can be used to simultaneously detect differences in (i) biodiversity of multiple microeukaryotic communities; and (ii) functional feeding traits of nematodes. Results showed that biodiversity was lower for nematodes and foraminifera in high OC (6.2%-6.9%), when compared to low OC sediments (1.2%-2.8%). Dissimilarity in community composition increased for all three groups between Low OC and High OC, as well as the classified feeding type of nematode genera (with more nonselective deposit feeders in high OC sediment). High relative abundant genera included nematode Sabatieria and foraminifera Elphidium in high OC, and Cryptocaryon-like ciliates in low OC sediments. Considering that future sequencing technologies are likely to decrease in cost, the use of eRNA shotgun sequencing to assess biodiversity of benthic microeukaryotes could be a powerful tool in recurring monitoring programmes.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Alf Norkko
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Bonaglia S, Hedberg J, Marzocchi U, Iburg S, Glud RN, Nascimento FJA. Meiofauna improve oxygenation and accelerate sulfide removal in the seasonally hypoxic seabed. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104968. [PMID: 32662428 PMCID: PMC7369627 DOI: 10.1016/j.marenvres.2020.104968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 05/03/2023]
Abstract
Oxygen depleted areas are widespread in the marine realm. Unlike macrofauna, meiofauna are abundant in hypoxic sediments. We studied to what extent meiofauna affect oxygen availability, sulfide removal and microbial communities. Meiofauna were extracted alive and added to intact sediments simulating abundance gradients previously reported in the area. A total of 324 porewater microprofiles were recorded over a 3-week incubation period and microbial community structure and cable bacteria densities were determined at the end of the experiment. At high abundances meiofauna activity deepened oxygen penetration by 85%, 59%, and 62% after 5, 14, and 22 days, respectively, compared to control sediment with scarce meiofauna. After 6 days, meiofauna increased the volume of oxidized, sulfide-free sediment by 68% and reduced sulfide fluxes from 8.8 to 0.4 mmol m-2 d-1. After 15 days, the difference with the control attenuated due to the presence of a cable bacteria population, which facilitated sulfides oxidation in all treatments. 16S rRNA gene analysis revealed that meiofauna affected microbial community structure (beta diversity). Thus, meiofauna bioturbation plays an important role in deepening oxygen penetration, counteracting euxinia and in structuring microbial diversity of hypoxic sediments. Co-existence with cable bacteria demonstrates neutralism interaction between these two ecosystem engineers.
Collapse
Affiliation(s)
- Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; Nordcee, Department of Biology, University of Southern Denmark, Denmark.
| | - Johanna Hedberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Ugo Marzocchi
- Department of Biosciences, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Sven Iburg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Ronnie N Glud
- Nordcee, Department of Biology, University of Southern Denmark, Denmark; Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | |
Collapse
|
17
|
Broman E, Bonaglia S, Holovachov O, Marzocchi U, Hall POJ, Nascimento FJA. Uncovering diversity and metabolic spectrum of animals in dead zone sediments. Commun Biol 2020; 3:106. [PMID: 32144383 PMCID: PMC7060179 DOI: 10.1038/s42003-020-0822-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ocean deoxygenation driven by global warming and eutrophication is a primary concern for marine life. Resistant animals may be present in dead zone sediments, however there is lack of information on their diversity and metabolism. Here we combined geochemistry, microscopy, and RNA-seq for estimating taxonomy and functionality of micrometazoans along an oxygen gradient in the largest dead zone in the world. Nematodes are metabolically active at oxygen concentrations below 1.8 µmol L-1, and their diversity and community structure are different between low oxygen areas. This is likely due to toxic hydrogen sulfide and its potential to be oxidized by oxygen or nitrate. Zooplankton resting stages dominate the metazoan community, and these populations possibly use cytochrome c oxidase as an oxygen sensor to exit dormancy. Our study sheds light on mechanisms of animal adaptation to extreme environments. These biological resources can be essential for recolonization of dead zones when oxygen conditions improve.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Baltic Sea Centre, Stockholm University, Stockholm, 106 91, Sweden.
| | - Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Nordcee, Department of Biology, University of Southern Denmark, Odense, 5230, Denmark.
| | - Oleksandr Holovachov
- Department of Zoology, Swedish Museum of Natural History, Stockholm, 10405, Sweden
| | - Ugo Marzocchi
- Center for Electromicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Per O J Hall
- Department of Marine Sciences, University of Gothenburg, Box 461, Gothenburg, 40530, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
18
|
Nascimento FJA, Dahl M, Deyanova D, Lyimo LD, Bik HM, Schuelke T, Pereira TJ, Björk M, Creer S, Gullström M. Above-below surface interactions mediate effects of seagrass disturbance on meiobenthic diversity, nematode and polychaete trophic structure. Commun Biol 2019; 2:362. [PMID: 31602411 PMCID: PMC6778119 DOI: 10.1038/s42003-019-0610-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/12/2019] [Indexed: 11/08/2022] Open
Abstract
Ecological interactions between aquatic plants and sediment communities can shape the structure and function of natural systems. Currently, we do not fully understand how seagrass habitat degradation impacts the biodiversity of belowground sediment communities. Here, we evaluated indirect effects of disturbance of seagrass meadows on meiobenthic community composition, with a five-month in situ experiment in a tropical seagrass meadow. Disturbance was created by reducing light availability (two levels of shading), and by mimicking grazing events (two levels) to assess impacts on meiobenthic diversity using high-throughput sequencing of 18S rRNA amplicons. Both shading and simulated grazing had an effect on meiobenthic community structure, mediated by seagrass-associated biotic drivers and sediment abiotic variables. Additionally, shading substantially altered the trophic structure of the nematode community. Our findings show that degradation of seagrass meadows can alter benthic community structure in coastal areas with potential impacts to ecosystem functions mediated by meiobenthos in marine sediments.
Collapse
Affiliation(s)
| | - Martin Dahl
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Diana Deyanova
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Liberatus D. Lyimo
- School of Biological Sciences, University of Dodoma, Box 338, Dodoma, Tanzania
| | - Holly M. Bik
- Department of Nematology, University of California—Riverside, 900 University Avenue, Riverside, CA 92521 USA
| | - Taruna Schuelke
- Department of Nematology, University of California—Riverside, 900 University Avenue, Riverside, CA 92521 USA
| | - Tiago José Pereira
- Department of Nematology, University of California—Riverside, 900 University Avenue, Riverside, CA 92521 USA
| | - Mats Björk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, LL57 2UW UK
| | - Martin Gullström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
19
|
Broman E, Raymond C, Sommer C, Gunnarsson JS, Creer S, Nascimento FJA. Salinity drives meiofaunal community structure dynamics across the Baltic ecosystem. Mol Ecol 2019; 28:3813-3829. [PMID: 31332853 PMCID: PMC6852176 DOI: 10.1111/mec.15179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Coastal benthic biodiversity is under increased pressure from climate change, eutrophication, hypoxia, and changes in salinity due to increase in river runoff. The Baltic Sea is a large brackish system characterized by steep environmental gradients that experiences all of the mentioned stressors. As such it provides an ideal model system for studying the impact of on-going and future climate change on biodiversity and function of benthic ecosystems. Meiofauna (animals < 1 mm) are abundant in sediment and are still largely unexplored even though they are known to regulate organic matter degradation and nutrient cycling. In this study, benthic meiofaunal community structure was analysed along a salinity gradient in the Baltic Sea proper using high-throughput sequencing. Our results demonstrate that areas with higher salinity have a higher biodiversity, and salinity is probably the main driver influencing meiofauna diversity and community composition. Furthermore, in the more diverse and saline environments a larger amount of nematode genera classified as predators prevailed, and meiofauna-macrofauna associations were more prominent. These findings show that in the Baltic Sea, a decrease in salinity resulting from accelerated climate change will probably lead to decreased benthic biodiversity, and cause profound changes in benthic communities, with potential consequences for ecosystem stability, functions and services.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Baltic Sea CentreStockholm UniversityStockholmSweden
| | - Caroline Raymond
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Christian Sommer
- School of Natural Sciences, Technology and Environmental StudiesSödertörn UniversityHuddingeSweden
| | - Jonas S. Gunnarsson
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Natural SciencesBangor UniversityBangorUK
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Baltic Sea CentreStockholm UniversityStockholmSweden
| |
Collapse
|