1
|
Cunningham P, Shankar M, vonHoldt B, Brzeski KE, Kienle SS. Coyotes can do 'puppy dog eyes' too: comparing interspecific variation in Canis facial expression muscles. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241046. [PMID: 39359465 PMCID: PMC11444785 DOI: 10.1098/rsos.241046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Facial expressions are critical for non-verbal communication. The Canis genus epitomizes the interplay between behaviour and morphology in the evolution of non-verbal communication. Recent work suggests that the levator anguli oculi medialis (LAOM) muscle is unique to dogs (Canis familiaris) within the Canis genus and evolved due to domestication. The LAOM raises the inner eyebrows, resulting in the 'puppy dog eyes' expression. Here, we test whether the LAOM is a derived trait in dogs by (i) examining the facial expression muscles of a closely related and ancestral wild Canis species, the coyote (C. latrans) and (ii) comparing our results with other Canis and canid taxa. We discover that coyotes have a well-developed LAOM like dogs, which differs from the modified/absent LAOM in grey wolves. Our findings challenge the hypothesis that the LAOM developed due to domestication. We suggest that the LAOM is a basal trait that was lost in grey wolves. Additionally, we find inter- and intraspecific variations in the size of the muscles of the outer ear, forehead, lips and rostrum, indicating potential adaptations related to sensory perception, communication and individual-level functional variations within canids. Together, this research expands our knowledge of facial expressions, their evolution and their role in communication.
Collapse
Affiliation(s)
| | - Mahita Shankar
- Department of Biology, Baylor University, Waco, TX76707, USA
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Kristin E. Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI49931, USA
| | - Sarah S. Kienle
- Department of Biology, Baylor University, Waco, TX76707, USA
| |
Collapse
|
2
|
Hennelly LM, Sarwar G, Fatima H, Werhahn G, Abbas FI, Khan AM, Mahmood T, Kachel S, Kubanychbekov Z, Waseem MT, Zahra Naqvi R, Hamid A, Abbas Y, Aisha H, Waseem M, Farooq M, Sacks BN. Genomic analysis of wolves from Pakistan clarifies boundaries among three divergent wolf lineages. J Hered 2024; 115:339-348. [PMID: 37897187 DOI: 10.1093/jhered/esad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
Among the three main divergent lineages of gray wolf (Canis lupus), the Holarctic lineage is the most widespread and best studied, particularly in North America and Europe. Less is known about Tibetan (also called Himalayan) and Indian wolf lineages in southern Asia, especially in areas surrounding Pakistan where all three lineages are thought to meet. Given the endangered status of the Indian wolf in neighboring India and unclear southwestern boundary of the Tibetan wolf range, we conducted mitochondrial and genome-wide sequencing of wolves from Pakistan and Kyrgyzstan. Sequences of the mitochondrial D-loop region of 81 wolves from Pakistan indicated contact zones between Holarctic and Indian lineages across the northern and western mountains of Pakistan. Reduced-representation genome sequencing of eight wolves indicated an east-to-west cline of Indian to Holarctic ancestry, consistent with a contact zone between these two lineages in Pakistan. The western boundary of the Tibetan lineage corresponded to the Ladakh region of India's Himalayas with a narrow zone of admixture spanning this boundary from the Karakoram Mountains of northern Pakistan into Ladakh, India. Our results highlight the conservation significance of Pakistan's wolf populations, especially the remaining populations in Sindh and Southern Punjab that represent the highly endangered Indian lineage.
Collapse
Affiliation(s)
- Lauren M Hennelly
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - Ghulam Sarwar
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Hira Fatima
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Geraldine Werhahn
- IUCN SCC Canid Specialist Group, Oxford, United Kingdom
- Wildlife Conservation Research Unit, Zoology, University of Oxford, Tubney, United Kingdom
| | | | - Abdul M Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Tariq Mahmood
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | | | | | - Muhammad T Waseem
- Zoological Science Division, Pakistan Museum of Natural History, Islamabad, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul Hamid
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Yasir Abbas
- Central Karakoram National Park, Skardu, Pakistan
| | - Hamera Aisha
- World Wildlife Fund, Pakistan, Islamabad, Pakistan
| | | | - Muhammad Farooq
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Musiani M, Randi E. Conservation genomics of wolves: The global impact of RK Wayne's research. J Hered 2024; 115:458-469. [PMID: 38381553 DOI: 10.1093/jhered/esae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
RK Wayne has arguably been the most influential geneticist of canids, famously promoting the conservation of wolves in his homeland, the United States. His influence has been felt in other countries and regions outside the contiguous United States, where he inspired others, also including former graduate students and research fellows of his, to use modern molecular techniques to examine the evolutionary biology of canids to inform the conservation and management of wolves. In this review, we focus on the implications of Wayne's work on wolves outside the United States. He envisioned a clear future for wolf conservation research, involving the study of wolves' ecological and genetic diversity, and the description of ecotypes requiring conservation. He also documented widespread hybridization among canids and introgression of DNA from domestic dogs to wolves, a process that started dozens of thousands of years ago. His work therefore calls for innovative studies, such as examining the potential fitness benefits of introgression. Inspired by his results, for example, on the purging of deleterious alleles in small populations, wolf researchers should use novel molecular tools to challenge other conservation genetics paradigms. Overall, RK Wayne's work constitutes a call for answers, which as scientists or citizens concerned with conservation matters, we are obliged to address, as we contribute to monitoring and maintaining biodiversity during our period of dramatic transformations of the biosphere.
Collapse
Affiliation(s)
- Marco Musiani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Ettore Randi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg Øst, Denmark
| |
Collapse
|
4
|
Bougiouri K, Aninta SG, Charlton S, Harris A, Carmagnini A, Piličiauskienė G, Feuerborn TR, Scarsbrook L, Tabadda K, Blaževičius P, Parker HG, Gopalakrishnan S, Larson G, Ostrander EA, Irving-Pease EK, Frantz LA, Racimo F. Imputation of ancient canid genomes reveals inbreeding history over the past 10,000 years. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585179. [PMID: 38903121 PMCID: PMC11188068 DOI: 10.1101/2024.03.15.585179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The multi-millenia long history between dogs and humans has placed them at the forefront of archeological and genomic research. Despite ongoing efforts including the analysis of ancient dog and wolf genomes, many questions remain regarding their geographic and temporal origins, and the microevolutionary processes that led to the diversity of breeds today. Although ancient genomes provide valuable information, their use is hindered by low depth of coverage and post-mortem damage, which inhibits confident genotype calling. In the present study, we assess how genotype imputation of ancient dog and wolf genomes, utilising a large reference panel, can improve the resolution provided by ancient datasets. Imputation accuracy was evaluated by down-sampling high coverage dog and wolf genomes to 0.05-2x coverage and comparing concordance between imputed and high coverage genotypes. We measured the impact of imputation on principal component analyses and runs of homozygosity. Our findings show high (R2>0.9) imputation accuracy for dogs with coverage as low as 0.5x and for wolves as low as 1.0x. We then imputed a dataset of 90 ancient dog and wolf genomes, to assess changes in inbreeding during the last 10,000 years of dog evolution. Ancient dog and wolf populations generally exhibited lower inbreeding levels than present-day individuals. Interestingly, regions with low ROH density maintained across ancient and present-day samples were significantly associated with genes related to olfaction and immune response. Our study indicates that imputing ancient canine genomes is a viable strategy that allows for the use of analytical methods previously limited to high-quality genetic data.
Collapse
Affiliation(s)
- Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophy Charlton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Carmagnini
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Giedrė Piličiauskienė
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
| | - Tatiana R. Feuerborn
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lachie Scarsbrook
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabadda
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Povilas Blaževičius
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
- National Museum of Lithuania, Vilnius, Lithuania
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Greger Larson
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan K. Irving-Pease
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent A.F. Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Kessler C, Shafer ABA. Genomic Analyses Capture the Human-Induced Demographic Collapse and Recovery in a Wide-Ranging Cervid. Mol Biol Evol 2024; 41:msae038. [PMID: 38378172 PMCID: PMC10917209 DOI: 10.1093/molbev/msae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
The glacial cycles of the Quaternary heavily impacted species through successions of population contractions and expansions. Similarly, populations have been intensely shaped by human pressures such as unregulated hunting and land use changes. White-tailed and mule deer survived in different refugia through the Last Glacial Maximum, and their populations were severely reduced after the European colonization. Here, we analyzed 73 resequenced deer genomes from across their North American range to understand the consequences of climatic and anthropogenic pressures on deer demographic and adaptive history. We found strong signals of climate-induced vicariance and demographic decline; notably, multiple sequentially Markovian coalescent recovers a severe decline in mainland white-tailed deer effective population size (Ne) at the end of the Last Glacial Maximum. We found robust evidence for colonial overharvest in the form of a recent and dramatic drop in Ne in all analyzed populations. Historical census size and restocking data show a clear parallel to historical Ne estimates, and temporal Ne/Nc ratio shows patterns of conservation concern for mule deer. Signatures of selection highlight genes related to temperature, including a cold receptor previously highlighted in woolly mammoth. We also detected immune genes that we surmise reflect the changing land use patterns in North America. Our study provides a detailed picture of anthropogenic and climatic-induced decline in deer diversity and clues to understanding the conservation concerns of mule deer and the successful demographic recovery of white-tailed deer.
Collapse
Affiliation(s)
- Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
6
|
Panitsina VA, Bodrov SY, Boulygina ES, Slobodova NV, Kosintsev PA, Abramson NI. In Search of the Elusive North: Evolutionary History of the Arctic Fox ( Vulpes lagopus) in the Palearctic from the Late Pleistocene to the Recent Inferred from Mitogenomic Data. BIOLOGY 2023; 12:1517. [PMID: 38132343 PMCID: PMC10740874 DOI: 10.3390/biology12121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Despite the high level of interest, the population history of arctic foxes during the Late Pleistocene and Holocene remains poorly understood. Here we aimed to fill gaps in the demographic and colonization history of the arctic fox by analyzing new ancient DNA data from fossil specimens aged from 50 to 1 thousand years from the Northern and Polar Urals, historic DNA from museum specimens from the Novaya Zemlya Archipelago and the Taymyr Peninsula and supplementing these data by previously published sequences of recent and extinct arctic foxes from other regions. This dataset was used for reconstruction of a time-calibrated phylogeny and a temporal haplotype network covering four time intervals: Late Pleistocene (ranging from 30 to 13 thousand years bp), Holocene (ranging from 4 to 1 thousand years bp), historical (approximately 150 years), and modern. Our results revealed that Late Pleistocene specimens showed no genetic similarity to either modern or historical specimens, thus supporting the earlier hypothesis on local extinction rather than habitat tracking.
Collapse
Affiliation(s)
- Valentina A. Panitsina
- Zoological Institute, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.A.P.); (S.Y.B.)
| | - Semyon Yu. Bodrov
- Zoological Institute, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.A.P.); (S.Y.B.)
| | | | | | - Pavel A. Kosintsev
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, 620144 Yekaterinburg, Russia
| | - Natalia I. Abramson
- Zoological Institute, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.A.P.); (S.Y.B.)
| |
Collapse
|
7
|
Dalén L, Heintzman PD, Kapp JD, Shapiro B. Deep-time paleogenomics and the limits of DNA survival. Science 2023; 382:48-53. [PMID: 37797036 PMCID: PMC10586222 DOI: 10.1126/science.adh7943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Although most ancient DNA studies have focused on the last 50,000 years, paleogenomic approaches can now reach into the early Pleistocene, an epoch of repeated environmental changes that shaped present-day biodiversity. Emerging deep-time genomic transects, including from DNA preserved in sediments, will enable inference of adaptive evolution, discovery of unrecognized species, and exploration of how glaciations, volcanism, and paleomagnetic reversals shaped demography and community composition. In this Review, we explore the state-of-the-art in paleogenomics and discuss key challenges, including technical limitations, evolutionary divergence and associated biases, and the need for more precise dating of remains and sediments. We conclude that with improvements in laboratory and computational methods, the emerging field of deep-time paleogenomics will expand the range of questions addressable using ancient DNA.
Collapse
Affiliation(s)
- Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE- 10405 Stockholm, Sweden
| | - Peter D. Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| | - Joshua D. Kapp
- Department of Biomolecular Engineering, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| |
Collapse
|
8
|
Ciucani MM, Ramos-Madrigal J, Hernández-Alonso G, Carmagnini A, Aninta SG, Sun X, Scharff-Olsen CH, Lanigan LT, Fracasso I, Clausen CG, Aspi J, Kojola I, Baltrūnaitė L, Balčiauskas L, Moore J, Åkesson M, Saarma U, Hindrikson M, Hulva P, Bolfíková BČ, Nowak C, Godinho R, Smith S, Paule L, Nowak S, Mysłajek RW, Lo Brutto S, Ciucci P, Boitani L, Vernesi C, Stenøien HK, Smith O, Frantz L, Rossi L, Angelici FM, Cilli E, Sinding MHS, Gilbert MTP, Gopalakrishnan S. The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs. iScience 2023; 26:107307. [PMID: 37559898 PMCID: PMC10407145 DOI: 10.1016/j.isci.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.
Collapse
Affiliation(s)
- Marta Maria Ciucani
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Germán Hernández-Alonso
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sabhrina Gita Aninta
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Xin Sun
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Thomas Lanigan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cecilie G. Clausen
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Finland
| | - Ilpo Kojola
- Natural Resources Institute Finland, Rovaniemi, Finland
| | | | | | - Jane Moore
- Società Amatori Cirneco dell’Etna, Modica (RG), Italy
| | - Mikael Åkesson
- Swedish University of Agricultural Sciences, Grimsö Wildlife Research Station, Department of Ecology, Riddarhyttan, Sweden
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pavel Hulva
- Charles University, Department of Zoology, Faculty of Science, Prague 2, Czech Republic
| | | | - Carsten Nowak
- Center for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Raquel Godinho
- CIBIO/InBIO, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Ladislav Paule
- Faculty of Forestry, Technical University, Zvolen, Slovakia
| | - Sabina Nowak
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Robert W. Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Sabrina Lo Brutto
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
- Museum of Zoology "P. Doderlein", SIMUA, University of Palermo, Palermo, Italy
| | - Paolo Ciucci
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Luigi Boitani
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Hans K. Stenøien
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oliver Smith
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Francesco Maria Angelici
- FIZV, Via Marco Aurelio 2, Roma, Italy
- National Center for Wildlife, Al Imam Faisal Ibn Turki Ibn Abdullah, Ulaishah, Saudi Arabia
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage (DBC), University of Bologna, Bologna, Italy
| | - Mikkel-Holger S. Sinding
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Doan K, Schnitzler A, Preston F, Griggo C, Lang G, Belhaoues F, Blaise E, Crégut-Bonnoure E, Frère S, Foucras S, Gardeisen A, Laurent A, Müller W, Picavet R, Puissant S, Yvinec JH, Pilot M. Evolutionary history of the extinct wolf population from France in the context of global phylogeographic changes throughout the Holocene. Mol Ecol 2023; 32:4627-4647. [PMID: 37337956 DOI: 10.1111/mec.17054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Phylogeographic patterns in large mammals result from natural environmental factors and anthropogenic effects, which in some cases include domestication. The grey wolf was once widely distributed across the Holarctic, but experienced phylogeographic shifts and demographic declines during the Holocene. In the 19th-20th centuries, the species became extirpated from large parts of Europe due to direct extermination and habitat loss. We reconstructed the evolutionary history of the extinct Western European wolves based on the mitogenomic composition of 78 samples from France (Neolithic-20th century) in the context of other populations of wolves and dogs worldwide. We found a close genetic similarity of French wolves from ancient, medieval and recent populations, which suggests the long-term continuity of maternal lineages. MtDNA haplotypes of the French wolves showed large diversity and fell into two main haplogroups of modern Holarctic wolves. Our worldwide phylogeographic analysis indicated that haplogroup W1, which includes wolves from Eurasia and North America, originated in Northern Siberia. Haplogroup W2, which includes only European wolves, originated in Europe ~35 kya and its frequency was reduced during the Holocene due to an expansion of haplogroup W1 from the east. Moreover, we found that dog haplogroup D, currently restricted to Europe and the Middle East, was nested within the wolf haplogroup W2. This suggests European origin of haplogroup D, probably as a result of an ancient introgression from European wolves. Our results highlight the dynamic evolutionary history of European wolves during the Holocene, with a partial lineage replacement and introgressive hybridization with local dog populations.
Collapse
Affiliation(s)
- Karolina Doan
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Annik Schnitzler
- UMR 7194 HNHP CNRS/MNHN/UPVD, Equipe NOMADE, Muséum national d'histoire naturelle, Paris, France
| | | | - Christophe Griggo
- Université Grenoble Alpes, Laboratoire EDYTEM, URM 5204 Bâtiment "Pôle Montagne", 5 bd de la mer Caspienne, France
| | - Gérard Lang
- Espace Chasse et Nature Chemin de Strasbourg, France
| | - Fabien Belhaoues
- ASM - Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul-Valéry, CNRS, MCC, Montpellier, France
- Labex ARCHIMEDE programme IA-ANR-11-LABX-0032-01, Montpellier, France
| | - Emilie Blaise
- ASM - Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul-Valéry, CNRS, MCC, Montpellier, France
- Labex ARCHIMEDE programme IA-ANR-11-LABX-0032-01, Montpellier, France
| | - Evelyne Crégut-Bonnoure
- Muséum Requien, Avignon; Laboratoire TRACES-UMR 5608, Université Toulouse-Jean Jaurès, Toulouse, France
| | - Stéphane Frère
- Inrap, UMR 7209 AASPE, Muséum National d'Histoire Naturelle, La Courneuve, France
| | | | - Armelle Gardeisen
- ASM - Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul-Valéry, CNRS, MCC, Montpellier, France
- Labex ARCHIMEDE programme IA-ANR-11-LABX-0032-01, Montpellier, France
| | | | - Werner Müller
- Laboratoire d'archéozoologie, Université de Neuchâtel, Avenue de Bellevaux 51, Neuchâtel, Switzerland
| | | | - Stéphane Puissant
- Muséum d'Histoire naturelle - Jardin de l'Arquebuse CS 73310 F-21033 Dijon Cedex, France
| | - Jean-Hervé Yvinec
- INRAP, UMR 7209 AASPE, Laboratoire d'archéozoologie de Compiègne, CRAVO, Compiègne, France
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
- School of Life Sciences, University of Lincoln, Lincoln, UK
- Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
10
|
Vilaça ST, Donaldson ME, Benazzo A, Wheeldon TJ, Vizzari MT, Bertorelle G, Patterson BR, Kyle CJ. Tracing Eastern Wolf Origins From Whole-Genome Data in Context of Extensive Hybridization. Mol Biol Evol 2023; 40:msad055. [PMID: 37046402 PMCID: PMC10098045 DOI: 10.1093/molbev/msad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Southeastern Canada is inhabited by an amalgam of hybridizing wolf-like canids, raising fundamental questions regarding their taxonomy, origins, and timing of hybridization events. Eastern wolves (Canis lycaon), specifically, have been the subject of significant controversy, being viewed as either a distinct taxonomic entity of conservation concern or a recent hybrid of coyotes (C. latrans) and grey wolves (C. lupus). Mitochondrial DNA analyses show some evidence of eastern wolves being North American evolved canids. In contrast, nuclear genome studies indicate eastern wolves are best described as a hybrid entity, but with unclear timing of hybridization events. To test hypotheses related to these competing findings we sequenced whole genomes of 25 individuals, representative of extant Canadian wolf-like canid types of known origin and levels of contemporary hybridization. Here we present data describing eastern wolves as a distinct taxonomic entity that evolved separately from grey wolves for the past ∼67,000 years with an admixture event with coyotes ∼37,000 years ago. We show that Great Lakes wolves originated as a product of admixture between grey wolves and eastern wolves after the last glaciation (∼8,000 years ago) while eastern coyotes originated as a product of admixture between "western" coyotes and eastern wolves during the last century. Eastern wolf nuclear genomes appear shaped by historical and contemporary gene flow with grey wolves and coyotes, yet evolutionary uniqueness remains among eastern wolves currently inhabiting a restricted range in southeastern Canada.
Collapse
Affiliation(s)
- Sibelle T Vilaça
- Environmental and Life Sciences Graduate Program, Trent University, Ontario, Canada
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Michael E Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Ontario, Canada
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Tyler J Wheeldon
- Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, Ontario, Canada
| | - Maria Teresa Vizzari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Brent R Patterson
- Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, Ontario, Canada
| | - Christopher J Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Ontario, Canada
- Forensic Science Department, Trent University, Ontario, Canada
| |
Collapse
|
11
|
Sosale MS, Songsasen N, İbiş O, Edwards CW, Figueiró HV, Koepfli KP. The complete mitochondrial genome and phylogenetic characterization of two putative subspecies of golden jackal (Canis aureus cruesemanni and Canis aureus moreotica). Gene 2023; 866:147303. [PMID: 36854348 DOI: 10.1016/j.gene.2023.147303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
The golden jackal (Canis aureus) is a canid species found across southern Eurasia. Several subspecies of this animal have been genetically studied in regions such as Europe, the Middle East, and India. However, one subspecies that lacks current research is the Indochinese jackal (Canis aureus cruesemanni), which is primarily found in Southeast Asia. Using a genome skimming approach, we assembled the first complete mitochondrial genome for an Indochinese jackal from Thailand. To expand the number of available Canis aureus mitogenomes, we also assembled and sequenced the first complete mitochondrial genome of a golden jackal from Turkey, representing the C. a. moreotica subspecies. The mitogenomes contained 37 annotated genes and are 16,729 bps (C. a. cruesemanni) and 16,669 bps (C. a. moreotica) in length. Phylogenetic analysis with 26 additional canid mitogenomes and analyses of a cytochrome b gene-only data set together support the Indochinese jackal as a distinct and early-branching lineage among golden jackals, thereby supporting its recognition as a possible subspecies. These analyses also demonstrate that the golden jackal from Turkey is likely not a distinct lineage due to close genetic relationships with golden jackals from India and Israel.
Collapse
Affiliation(s)
- Medhini S Sosale
- Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA; Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA.
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - Osman İbiş
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey; Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey; Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Turkey
| | - Cody W Edwards
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA; Department of Biology, George Mason University, Fairfax, VA, USA
| | - Henrique V Figueiró
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA; Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA.
| |
Collapse
|
12
|
Snead AA, Alda F. Time-Series Sequences for Evolutionary Inferences. Integr Comp Biol 2022; 62:1771-1783. [PMID: 36104153 DOI: 10.1093/icb/icac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Anthony A Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Fernando Alda
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
13
|
Loss of Mitochondrial Genetic Diversity despite Population Growth: The Legacy of Past Wolf Population Declines. Genes (Basel) 2022; 14:genes14010075. [PMID: 36672816 PMCID: PMC9858670 DOI: 10.3390/genes14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Gray wolves (Canis lupus) in the Iberian Peninsula declined substantially in both range and population size in the last few centuries due to human persecution and habitat fragmentation. However, unlike many other western European populations, gray wolves never went extinct in Iberia. Since the minimum number was recorded around 1970, their numbers have significantly increased and then stabilized in recent decades. We analyzed mitochondrial genomes from 54 historical specimens of Iberian wolves from across their historical range using ancient DNA methods. We compared historical and current mitochondrial diversity in Iberian wolves at the 5' end of the control region (n = 17 and 27) and the whole mitochondrial genome excluding the control region (n = 19 and 29). Despite an increase in population size since the 1970s, genetic diversity declined. We identified 10 whole mitochondrial DNA haplotypes in 19 historical specimens, whereas only six of them were observed in 29 modern Iberian wolves. Moreover, a haplotype that was restricted to the southern part of the distribution has gone extinct. Our results illustrate a lag between demographic and genetic diversity changes, and show that after severe population declines, genetic diversity can continue to be lost in stable or even expanding populations. This suggests that such populations may be of conservation concern even after their demographic trajectory has been reversed.
Collapse
|
14
|
Smeds L, Ellegren H. From high masked to high realized genetic load in inbred Scandinavian wolves. Mol Ecol 2022; 32:1567-1580. [PMID: 36458895 DOI: 10.1111/mec.16802] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
When new mutations arise at functional sites they are more likely to impair than improve fitness. If not removed by purifying selection, such deleterious mutations will generate a genetic load that can have negative fitness effects in small populations and increase the risk of extinction. This is relevant for the highly inbred Scandinavian wolf (Canis lupus) population, founded by only three wolves in the 1980s and suffering from inbreeding depression. We used functional annotation and evolutionary conservation scores to study deleterious variation in a total of 209 genomes from both the Scandinavian and neighbouring wolf populations in northern Europe. The masked load (deleterious mutations in heterozygote state) was highest in Russia and Finland with deleterious alleles segregating at lower frequency than neutral variation. Genetic drift in the Scandinavian population led to the loss of ancestral alleles, fixation of deleterious variants and a significant increase in the per-individual realized load (deleterious mutations in homozygote state; an increase by 45% in protein-coding genes) over five generations of inbreeding. Arrival of immigrants gave a temporary genetic rescue effect with ancestral alleles re-entering the population and thereby shifting deleterious alleles from homozygous into heterozygote genotypes. However, in the absence of permanent connectivity to Finnish and Russian populations, inbreeding has then again led to the exposure of deleterious mutations. These observations provide genome-wide insight into the magnitude of genetic load and genetic rescue at the molecular level, and in relation to population history. They emphasize the importance of securing gene flow in the management of endangered populations.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Gaughran SJ, vonHoldt B. Pleistocene parades of carnivores into North America. Mol Ecol 2022; 31:6387-6389. [PMID: 36373266 DOI: 10.1111/mec.16783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The distribution and movement of species, broadly known as biogeography, is one of the fundamental subfields of ecology and evolutionary biology. However, significant mysteries remain about the processes that gave rise to the modern distribution of biodiversity across the globe. Over the last several decades, the genetic study of ancient and subfossil specimens has started to shed light on past migrations of some species, with a particular focus on humans and megafauna. In this issue of Molecular Ecology, Salis et al. (2021) use ancient mitogenomes and a new phylogeographic method to add an important new piece of evidence to the mystery of megafaunal migrations into North America during the Pleistocene. They found a striking synchronicity of brown bear (Ursus arctos) and lion (Panthera spp.) migrations across the Bering Land Bridge at several time points during the late Pleistocene, which highlights the lasting impact of sea level change on the prehistoric and modern dispersal of terrestrial carnivores across continents.
Collapse
Affiliation(s)
- Stephen J Gaughran
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Bridgett vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
16
|
Salis AT, Bray SCE, Lee MSY, Heiniger H, Barnett R, Burns JA, Doronichev V, Fedje D, Golovanova L, Harington CR, Hockett B, Kosintsev P, Lai X, Mackie Q, Vasiliev S, Weinstock J, Yamaguchi N, Meachen JA, Cooper A, Mitchell KJ. Lions and brown bears colonized North America in multiple synchronous waves of dispersal across the Bering Land Bridge. Mol Ecol 2022; 31:6407-6421. [PMID: 34748674 DOI: 10.1111/mec.16267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023]
Abstract
The Bering Land Bridge connecting North America and Eurasia was periodically exposed and inundated by oscillating sea levels during the Pleistocene glacial cycles. This land connection allowed the intermittent dispersal of animals, including humans, between Western Beringia (far northeast Asia) and Eastern Beringia (northwest North America), changing the faunal community composition of both continents. The Pleistocene glacial cycles also had profound impacts on temperature, precipitation and vegetation, impacting faunal community structure and demography. While these palaeoenvironmental impacts have been studied in many large herbivores from Beringia (e.g., bison, mammoths, horses), the Pleistocene population dynamics of the diverse guild of carnivorans present in the region are less well understood, due to their lower abundances. In this study, we analyse mitochondrial genome data from ancient brown bears (Ursus arctos; n = 103) and lions (Panthera spp.; n = 39), two megafaunal carnivorans that dispersed into North America during the Pleistocene. Our results reveal striking synchronicity in the population dynamics of Beringian lions and brown bears, with multiple waves of dispersal across the Bering Land Bridge coinciding with glacial periods of low sea levels, as well as synchronous local extinctions in Eastern Beringia during Marine Isotope Stage 3. The evolutionary histories of these two taxa underline the crucial biogeographical role of the Bering Land Bridge in the distribution, turnover and maintenance of megafaunal populations in North America.
Collapse
Affiliation(s)
- Alexander T Salis
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Sarah C E Bray
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Registry of Senior Australians (ROSA), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Michael S Y Lee
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.,South Australian Museum, Adelaide, South Australia, Australia
| | - Holly Heiniger
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ross Barnett
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - James A Burns
- Curator Emeritus, Royal Alberta Museum, Edmonton, Alberta, Canada
| | | | - Daryl Fedje
- Department of Anthropology, University of Victoria, Victoria, B.C, Canada
| | | | - C Richard Harington
- Curator Emeritus and Research Associate, Research Division (Paleobiology), Canadian Museum of Nature, Ottawa, Canada
| | - Bryan Hockett
- US Department of Interior, Bureau of Land Management, Nevada State Office, Reno, Nevada, USA
| | - Pavel Kosintsev
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Department of History, Ural Federal University, Yekaterinburg, Russia
| | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Quentin Mackie
- Department of Anthropology, University of Victoria, Victoria, B.C, Canada
| | - Sergei Vasiliev
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Russia
| | - Jacobo Weinstock
- Faculty of Humanities (Archaeology), University of Southampton, UK
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Julie A Meachen
- Anatomy Department, Des Moines University, Des Moines, Iowa, USA
| | - Alan Cooper
- South Australian Museum, Adelaide, South Australia, Australia
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Department of Zoology, Otago Palaeogenetics Laboratory, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Lord E, Marangoni A, Baca M, Popović D, Goropashnaya AV, Stewart JR, Knul MV, Noiret P, Germonpré M, Jimenez EL, Abramson NI, Vartanyan S, Prost S, Smirnov NG, Kuzmina EA, Olsen RA, Fedorov VB, Dalén L. Population dynamics and demographic history of Eurasian collared lemmings. BMC Ecol Evol 2022; 22:126. [PMID: 36329382 PMCID: PMC9632076 DOI: 10.1186/s12862-022-02081-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Ancient DNA studies suggest that Late Pleistocene climatic changes had a significant effect on population dynamics in Arctic species. The Eurasian collared lemming (Dicrostonyx torquatus) is a keystone species in the Arctic ecosystem. Earlier studies have indicated that past climatic fluctuations were important drivers of past population dynamics in this species. RESULTS Here, we analysed 59 ancient and 54 modern mitogenomes from across Eurasia, along with one modern nuclear genome. Our results suggest population growth and genetic diversification during the early Late Pleistocene, implying that collared lemmings may have experienced a genetic bottleneck during the warm Eemian interglacial. Furthermore, we find multiple temporally structured mitogenome clades during the Late Pleistocene, consistent with earlier results suggesting a dynamic late glacial population history. Finally, we identify a population in northeastern Siberia that maintained genetic diversity and a constant population size at the end of the Pleistocene, suggesting suitable conditions for collared lemmings in this region during the increasing temperatures associated with the onset of the Holocene. CONCLUSIONS This study highlights an influence of past warming, in particular the Eemian interglacial, on the evolutionary history of the collared lemming, along with spatiotemporal population structuring throughout the Late Pleistocene.
Collapse
Affiliation(s)
- Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| | - Aurelio Marangoni
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden
| | - Mateusz Baca
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Anna V Goropashnaya
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - John R Stewart
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, Dorset, UK
| | - Monika V Knul
- Department of Archaeology, Anthropology and Geography, University of Winchester, Winchester, SO22 4NR, UK
| | - Pierre Noiret
- Service de Préhistoire, Université de Liège, Place du 20 Août 7, 4000, Liège, Belgium
| | - Mietje Germonpré
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium
| | - Elodie-Laure Jimenez
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium
- School of Geosciences, University of Aberdeen, Aberdeen, Scotland
| | - Natalia I Abramson
- Department of Molecular Systematics, Zoological Institute RAS, St Petersburg, Russia
| | - Sergey Vartanyan
- Far East Branch, N.A. Shilo North-East Interdisciplinary Scientific Research Institute Russian Academy of Sciences (NEISRI FEB RAS), 685000, Magadan, Russia
| | - Stefan Prost
- Central Research Laboratories, Natural History Museum Vienna, 1010, Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090, Vienna, Austria
- Konrad Lorenz Institute of Ethology, 1160, Vienna, Austria
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
| | - Nickolay G Smirnov
- Institute of Plant and Animal Ecology UB RAS, Russian Academy of Sciences, 202 8 Marta Street, 620144, Ekaterinburg, Russia
| | - Elena A Kuzmina
- Institute of Plant and Animal Ecology UB RAS, Russian Academy of Sciences, 202 8 Marta Street, 620144, Ekaterinburg, Russia
| | - Remi-André Olsen
- Science for Life Laboratory (SciLifeLab), Dept of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Vadim B Fedorov
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| |
Collapse
|
18
|
Kosushkin SA, Ustyantsev IG, Borodulina OR, Vassetzky NS, Kramerov DA. Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure. BIOLOGY 2022; 11:biology11101403. [PMID: 36290307 PMCID: PMC9599045 DOI: 10.3390/biology11101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The genomes of higher organisms including humans are invaded by millions of repetitive elements (transposons), which can sometimes be deleterious or beneficial for hosts. Many aspects of the mechanisms underlying the expansion of transposons in the genomes remain unclear. Short retrotransposons (SINEs) are one of the most abundant classes of genomic repeats. Their amplification relies on two major processes: transcription and reverse transcription. Here, short retrotransposons of dogs and other canids called Can SINE were analyzed. Their amplification was extraordinarily active in the wolf and, particularly, dog breeds relative to other canids. We also studied a variation of their transcription mechanism involving the polyadenylation of transcripts. An analysis of specific signals involved in this process allowed us to conclude that Can SINEs could alternate amplification with and without polyadenylation in their evolution. Understanding the mechanisms of transposon replication can shed light on the mechanisms of genome function. Abstract SINEs, non-autonomous short retrotransposons, are widespread in mammalian genomes. Their transcripts are generated by RNA polymerase III (pol III). Transcripts of certain SINEs can be polyadenylated, which requires polyadenylation and pol III termination signals in their sequences. Our sequence analysis divided Can SINEs in canids into four subfamilies, older a1 and a2 and younger b1 and b2. Can_b2 and to a lesser extent Can_b1 remained retrotranspositionally active, while the amplification of Can_a1 and Can_a2 ceased long ago. An extraordinarily high Can amplification was revealed in different dog breeds. Functional polyadenylation signals were analyzed in Can subfamilies, particularly in fractions of recently amplified, i.e., active copies. The transcription of various Can constructs transfected into HeLa cells proposed AATAAA and (TC)n as functional polyadenylation signals. Our analysis indicates that older Can subfamilies (a1, a2, and b1) with an active transcription terminator were amplified by the T+ mechanism (with polyadenylation of pol III transcripts). In the currently active Can_b2 subfamily, the amplification mechanisms with (T+) and without the polyadenylation of pol III transcripts (T−) irregularly alternate. The active transcription terminator tends to shorten, which renders it nonfunctional and favors a switch to the T− retrotransposition. The activity of a truncated terminator is occasionally restored by its elongation, which rehabilitates the T+ retrotransposition for a particular SINE copy.
Collapse
|
19
|
Elalouf J, Palacio P, Bon C, Berthonaud V, Maksud F, Stafford TW, Hitte C. The genome and diet of a 35,000-year-old Canis lupus specimen from the Paleolithic painted cave, Chauvet-Pont d'Arc, France. Ecol Evol 2022; 12:e9238. [PMID: 37265549 PMCID: PMC10231653 DOI: 10.1002/ece3.9238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
The Chauvet-Pont-d'Arc Cave (Ardèche, France) contains some of the oldest Paleolithic paintings recorded to date, as well as thousands of bones of the extinct cave bear, and some remains and footprints of other animals. As part of the interdisciplinary research project devoted to this reference cave site, we analyzed a coprolite collected within the deep cave. AMS radiocarbon dating of bone fragments from the coprolite yielded an age of 30,450 ± 550 RC yr. BP (AAR-19656; 36,150-34,000 cal BP), similar to ages assigned to Paleolithic artwork and cave bear remains from the same cave sector. Using high-throughput shotgun DNA sequencing, we demonstrated a high abundance of canid DNA and lesser amounts of DNA from the extinct cave bear. We interpret the sample as feces from a canid that had consumed cave bear tissue. The high amount of canid DNA allowed us to reconstruct a complete canid mitochondrial genome sequence (average coverage: 83×) belonging to a deeply divergent clade of extinct mitochondrial wolf lineages that are most closely related to coeval (~35 ka) Belgian wolves. Analysis of the nuclear genome yielded a similar coverage for the X chromosome (2.4×) and the autosomes (range: 2.3-3.2×), indicating that the Chauvet canid was a female. Comparing the relationship of the nuclear genome of this specimen with that of a variety of canids, we found it more closely related to gray wolves' genomes than to other wild canid or dog genomes, especially wolf genomes from Europe and the Middle East. We conclude that the coprolite is feces from an animal within an extinct wolf lineage. The consumption of cave bear by this wolf likely explains its intrusion into the dark cave sectors and sheds new light on the paleoecology of a major cave site.
Collapse
Affiliation(s)
- Jean‐Marc Elalouf
- Institute for Integrative Biology of the Cell (I2BC)Institut des Sciences du vivant Frédéric Joliot, CNRS UMR 9198, CEA SaclayGif‐sur‐Yvette cedexFrance
- Eco‐anthropologie, Muséum National d'Histoire Naturelle, CNRS UMR 7206Université de ParisParisFrance
| | - Pauline Palacio
- Institute for Integrative Biology of the Cell (I2BC)Institut des Sciences du vivant Frédéric Joliot, CNRS UMR 9198, CEA SaclayGif‐sur‐Yvette cedexFrance
| | - Céline Bon
- Institute for Integrative Biology of the Cell (I2BC)Institut des Sciences du vivant Frédéric Joliot, CNRS UMR 9198, CEA SaclayGif‐sur‐Yvette cedexFrance
- Eco‐anthropologie, Muséum National d'Histoire Naturelle, CNRS UMR 7206Université de ParisParisFrance
| | - Véronique Berthonaud
- Institute for Integrative Biology of the Cell (I2BC)Institut des Sciences du vivant Frédéric Joliot, CNRS UMR 9198, CEA SaclayGif‐sur‐Yvette cedexFrance
| | | | | | | |
Collapse
|
20
|
Pacheco C, Stronen AV, Jędrzejewska B, Plis K, Okhlopkov IM, Mamaev NV, Drovetski SV, Godinho R. Demography and evolutionary history of grey wolf populations around the Bering Strait. Mol Ecol 2022; 31:4851-4865. [PMID: 35822863 PMCID: PMC9545117 DOI: 10.1111/mec.16613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Glacial and interglacial periods throughout the Pleistocene have been substantial drivers of change in species distributions. Earlier analyses suggested that modern grey wolves (Canis lupus) trace their origin to a single Late Pleistocene Beringian population that expanded east and westwards, starting c. 25,000 years ago (ya). Here, we examined the demographic and phylogeographic histories of extant populations around the Bering Strait with wolves from two inland regions of the Russian Far East (RFE) and one coastal and two inland regions of North‐western North America (NNA), genotyped for 91,327 single nucleotide polymorphisms. Our results indicated that RFE and NNA wolves had a common ancestry until c. 34,400 ya, suggesting that these populations started to diverge before the previously proposed expansion out of Beringia. Coastal and inland NNA populations diverged c. 16,000 ya, concordant with the minimum proposed date for the ecological viability of the migration route along the Pacific Northwest coast. Demographic reconstructions for inland RFE and NNA populations reveal spatial and temporal synchrony, with large historical effective population sizes that declined throughout the Pleistocene, possibly reflecting the influence of broadscale climatic changes across continents. In contrast, coastal NNA wolves displayed a consistently lower effective population size than the inland populations. Differences between the demographic history of inland and coastal wolves may have been driven by multiple ecological factors, including historical gene flow patterns, natural landscape fragmentation, and more recent anthropogenic disturbance.
Collapse
Affiliation(s)
- Carolina Pacheco
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Astrid Vik Stronen
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology and Life Sciences, Insubria University, Varese, Italy.,Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Kamila Plis
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Innokentiy M Okhlopkov
- Institute of Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, Yakutsk, Russia
| | - Nikolay V Mamaev
- Institute of Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, Yakutsk, Russia
| | - Sergei V Drovetski
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
21
|
Poyarkov AD, Korablev MP, Bragina E, Hernandez-Blanco JA. Overview of Current Research on Wolves in Russia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper provides an overview of wolf research in Russia at the beginning of the 21st century. Wolf research covered various directions, including population density estimation, management methods and minimization of human-wildlife conflicts, general and behavioral ecology, behavior, wolf population genetics and morphology, paleontology, dog domestication, helminthology and the wolves’ role in the rabies transmission. Some studies are performed with state-of-art methodology using molecular genetics, mathematical modeling, camera traps, and GPS telemetry.
Collapse
|
22
|
Bergström A, Stanton DWG, Taron UH, Frantz L, Sinding MHS, Ersmark E, Pfrengle S, Cassatt-Johnstone M, Lebrasseur O, Girdland-Flink L, Fernandes DM, Ollivier M, Speidel L, Gopalakrishnan S, Westbury MV, Ramos-Madrigal J, Feuerborn TR, Reiter E, Gretzinger J, Münzel SC, Swali P, Conard NJ, Carøe C, Haile J, Linderholm A, Androsov S, Barnes I, Baumann C, Benecke N, Bocherens H, Brace S, Carden RF, Drucker DG, Fedorov S, Gasparik M, Germonpré M, Grigoriev S, Groves P, Hertwig ST, Ivanova VV, Janssens L, Jennings RP, Kasparov AK, Kirillova IV, Kurmaniyazov I, Kuzmin YV, Kosintsev PA, Lázničková-Galetová M, Leduc C, Nikolskiy P, Nussbaumer M, O'Drisceoil C, Orlando L, Outram A, Pavlova EY, Perri AR, Pilot M, Pitulko VV, Plotnikov VV, Protopopov AV, Rehazek A, Sablin M, Seguin-Orlando A, Storå J, Verjux C, Zaibert VF, Zazula G, Crombé P, Hansen AJ, Willerslev E, Leonard JA, Götherström A, Pinhasi R, Schuenemann VJ, Hofreiter M, Gilbert MTP, Shapiro B, Larson G, Krause J, Dalén L, Skoglund P. Grey wolf genomic history reveals a dual ancestry of dogs. Nature 2022; 607:313-320. [PMID: 35768506 PMCID: PMC9279150 DOI: 10.1038/s41586-022-04824-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/28/2022] [Indexed: 01/01/2023]
Abstract
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1–8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located. DNA from ancient wolves spanning 100,000 years sheds light on wolves’ evolutionary history and the genomic origin of dogs.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - David W G Stanton
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden.,School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ulrike H Taron
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Laurent Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Mikkel-Holger S Sinding
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Erik Ersmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Saskia Pfrengle
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Molly Cassatt-Johnstone
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ophélie Lebrasseur
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Linus Girdland-Flink
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Morgane Ollivier
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)-UMR 6553, Rennes, France
| | - Leo Speidel
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.,Genetics Institute, University College London, London, UK
| | | | - Michael V Westbury
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Tatiana R Feuerborn
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Joscha Gretzinger
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Max Planck Institute for the Science of Human History, Jena, Germany
| | - Susanne C Münzel
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Pooja Swali
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas J Conard
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Christian Carøe
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - James Haile
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Anna Linderholm
- Centre for Palaeogenetics, Stockholm, Sweden.,The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.,Texas A&M University, College Station, TX, USA.,Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | | | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Chris Baumann
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
| | | | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Ruth F Carden
- School of Archaeology, University College Dublin, Dublin, Ireland
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Sergey Fedorov
- North-Eastern Federal University, Yakutsk, Russian Federation
| | | | | | | | - Pam Groves
- University of Alaska, Fairbanks, AK, USA
| | - Stefan T Hertwig
- Naturhistorisches Museum Bern, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | | | - Richard P Jennings
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Irina V Kirillova
- Ice Age Museum, Shidlovskiy National Alliance 'Ice Age', Moscow, Russian Federation
| | - Islam Kurmaniyazov
- Department of Archaeology, Ethnology and Museology, Al-Farabi Kazakh State University, Almaty, Kazakhstan
| | - Yaroslav V Kuzmin
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | | | | | - Pavel Nikolskiy
- Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Cóilín O'Drisceoil
- National Monuments Service, Department of Housing, Local Government and Heritage, Dublin, Ireland
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Alan Outram
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Elena Y Pavlova
- Arctic & Antarctic Research Institute, St Petersburg, Russian Federation
| | - Angela R Perri
- PaleoWest, Henderson, NV, USA.,Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Małgorzata Pilot
- Museum & Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | | | | | | | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Jan Storå
- Stockholm University, Stockholm, Sweden
| | | | - Victor F Zaibert
- Institute of Archaeology and Steppe Civilizations, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Grant Zazula
- Yukon Palaeontology Program, Whitehorse, Yukon Territories, Canada.,Collections and Research, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | | | - Anders J Hansen
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden.,Stockholm University, Stockholm, Sweden
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Verena J Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - M Thomas P Gilbert
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, NTNU, Trondheim, Norway
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
23
|
Paleogenomics reveals independent and hybrid origins of two morphologically distinct wolf lineages endemic to Japan. Curr Biol 2022; 32:2494-2504.e5. [DOI: 10.1016/j.cub.2022.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
24
|
Werhahn G, Senn H, Macdonald DW, Sillero-Zubiri C. The Diversity in the Genus Canis Challenges Conservation Biology: A Review of Available Data on Asian Wolves. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.782528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Taxa belonging to the Genus Canis can challenge taxonomists because species boundaries and distribution ranges are often gradual. Species delineation within Canis is currently not based on consistent criteria, and is hampered by geographical bias and lack of taxonomic research. But a consistent taxonomy is critical, given its importance for assigning legal protection, conservation priorities, and financial resources. We carried out a qualitative review of the major wolf lineages so far identified from Asia from historical to contemporary time and considered relevant morphological, ecological, and genetic evidence. We present full mitochondrial phylogenies and genetic distances between these lineages. This review aims to summarize the available data on contemporary Asian wolf lineages within the context of the larger phylogenetic Canis group and to work toward a taxonomy that is consistent within the Canidae. We found support for the presence and taxon eligibility of Holarctic gray, Himalayan/Tibetan, Indian, and Arabian wolves in Asia and recommend their recognition at the taxonomic levels consistent within the group.
Collapse
|
25
|
Abstract
Joint phylogenetic analysis of ancient DNA (aDNA) with modern phylogenies is hampered by low sequence coverage and post-mortem deamination, often resulting in overconservative or incorrect assignment. We provide a new efficient likelihood-based workflow, pathPhynder, that takes advantage of all the polymorphic sites in the target sequence. This effectively evaluates the number of ancestral and derived alleles present on each branch and reports the most likely placement of an ancient sample in the phylogeny and a haplogroup assignment, together with alternatives and supporting evidence. To illustrate the application of pathPhynder, we show improved Y chromosome assignments for published aDNA sequences, using a newly compiled Y variation data set (120,908 markers from 2,014 samples) that significantly enhances Y haplogroup assignment for low coverage samples. We apply the method to all published male aDNA samples from Africa, giving new insights into ancient migrations and the relationships between ancient and modern populations. The same software can be used to place samples with large amounts of missing data into other large non-recombining phylogenies such as the mitochondrial tree.
Collapse
Affiliation(s)
- Rui Martiniano
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Bianca De Sanctis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Pille Hallast
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
26
|
Wang MS, Thakur M, Jhala Y, Wang S, Srinivas Y, Dai SS, Liu ZX, Chen HM, Green RE, Koepfli KP, Shapiro B. OUP accepted manuscript. Genome Biol Evol 2022; 14:6524629. [PMID: 35137061 PMCID: PMC8841465 DOI: 10.1093/gbe/evac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Corresponding authors: E-mails: ; ; ;
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yellapu Srinivas
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zheng-Xi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hong-Man Chen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
- Corresponding authors: E-mails: ; ; ;
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| |
Collapse
|
27
|
Krofel M, Hatlauf J, Bogdanowicz W, Campbell LAD, Godinho R, Jhala YV, Kitchener AC, Koepfli K, Moehlman P, Senn H, Sillero‐Zubiri C, Viranta S, Werhahn G, Alvares F. Towards resolving taxonomic uncertainties in wolf, dog and jackal lineages of Africa, Eurasia and Australasia. J Zool (1987) 2021. [DOI: 10.1111/jzo.12946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. Krofel
- Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
| | - J. Hatlauf
- University of Natural Resources and Life Sciences Vienna, Department of Integrative Biology and Biodiversity Research Institute of Wildlife Biology and Game Management Vienna Austria
| | - W. Bogdanowicz
- Museum and Institute of Zoology Polish Academy of Sciences Warszawa Poland
| | - L. A. D. Campbell
- Department of Zoology Recanati‐Kaplan Centre; Tubney University of Oxford Wildlife Conservation Research Unit Oxfordshire UK
| | - R. Godinho
- InBIO Laboratório Associado, Campus de Vairão CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning, CIBIO Vairão Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Y. V. Jhala
- Animal Ecology & Conservation Biology Wildlife Institute of India Dehradun India
| | - A. C. Kitchener
- Department of Natural Sciences National Museums Scotland Edinburgh UK
| | - K.‐P. Koepfli
- Smithsonian‐Mason School of Conservation George Mason University Front Royal VA USA
- Smithsonian Conservation Biology Institute Center for Species Survival National Zoological Park Front Royal VA USA
- Computer Technologies Laboratory ITMO University St. Petersburg Russia
| | - P. Moehlman
- IUCN/SSC Equid Specialist Group Tanzania Wildlife Research Institute (TAWIRI) EcoHealth Alliance and The Earth Institute Columbia University Arusha Tanzania
| | - H. Senn
- WildGenes Laboratory Conservation and Science Programmes Royal Zoological Society of Scotland, RZSS Edinburgh UK
| | - C. Sillero‐Zubiri
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
- IUCN SSC Canid Specialist Group Oxford UK
- Born Free Foundation Horsham UK
| | - S. Viranta
- Faculty of Medicine University of Helsinki Helsinki Finland
| | - G. Werhahn
- IUCN SSC Canid Specialist Group Oxford UK
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
| | - F. Alvares
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| |
Collapse
|
28
|
von Thaden A, Cocchiararo B, Mueller SA, Reiners TE, Reinert K, Tuchscherer I, Janke A, Nowak C. Informing conservation strategies with museum genomics: Long-term effects of past anthropogenic persecution on the elusive European wildcat. Ecol Evol 2021; 11:17932-17951. [PMID: 35003648 PMCID: PMC8717334 DOI: 10.1002/ece3.8385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Like many carnivore species, European wildcats (Felis silvestris) have suffered severe anthropogenic population declines in the past, resulting in a strong population bottleneck at the beginning of the 20th century. In Germany, the species has managed to survive its near extinction in small isolated areas and is currently recolonizing former habitats owing to legal protection and concerted conservation efforts. Here, we SNP-genotyped and mtDNA-sequenced 56 historical and 650 contemporary samples to assess the impact of massive persecution on genetic diversity, population structure, and hybridization dynamics of wildcats. Spatiotemporal analyses suggest that the presumed postglacial differentiation between two genetically distinct metapopulations in Germany is in fact the result of the anthropogenic bottleneck followed by re-expansion from few secluded refugia. We found that, despite the bottleneck, populations experienced no severe genetic erosion, nor suffered from elevated inbreeding or showed signs of increased hybridization with domestic cats. Our findings have significant implications for current wildcat conservation strategies, as the data analyses show that the two presently recognized wildcat population clusters should be treated as a single conservation unit. Although current populations appear under no imminent threat from genetic factors, fostering connectivity through the implementation of forest corridors will facilitate the preservation of genetic diversity and promote long-term viability. The present study documents how museum collections can be used as essential resource for assessing long-term anthropogenic effects on natural populations, for example, regarding population structure and the delineation of appropriate conservation units, potentially informing todays' species conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Berardino Cocchiararo
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| | - Sarah Ashley Mueller
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Tobias Erik Reiners
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | - Katharina Reinert
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Department of Physical GeographyJohann Wolfgang Goethe‐UniversityFrankfurt am MainGermany
| | - Iris Tuchscherer
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Axel Janke
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Senckenberg Biodiversity and Climate Research CentreSenckenberg Gesellschaft für NaturforschungFrankfurt am MainGermany
| | - Carsten Nowak
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| |
Collapse
|
29
|
McDevitt AD, Coscia I, Browett SS, Ruiz-González A, Statham MJ, Ruczyńska I, Roberts L, Stojak J, Frantz AC, Norén K, Ågren EO, Learmount J, Basto M, Fernandes C, Stuart P, Tosh DG, Sindicic M, Andreanszky T, Isomursu M, Panek M, Korolev A, Okhlopkov IM, Saveljev AP, Pokorny B, Flajšman K, Harrison SWR, Lobkov V, Ćirović D, Mullins J, Pertoldi C, Randi E, Sacks BN, Kowalczyk R, Wójcik JM. Next-generation phylogeography resolves post-glacial colonization patterns in a widespread carnivore, the red fox (Vulpes vulpes), in Europe. Mol Ecol 2021; 31:993-1006. [PMID: 34775636 DOI: 10.1111/mec.16276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
Carnivores tend to exhibit a lack of (or less pronounced) genetic structure at continental scales in both a geographic and temporal sense and this can confound the identification of post-glacial colonization patterns in this group. In this study we used genome-wide data (using genotyping by sequencing [GBS]) to reconstruct the phylogeographic history of a widespread carnivore, the red fox (Vulpes vulpes), by investigating broad-scale patterns of genomic variation, differentiation and admixture amongst contemporary populations in Europe. Using 15,003 single nucleotide polymorphisms (SNPs) from 524 individuals allowed us to identify the importance of refugial regions for the red fox in terms of endemism (e.g., Iberia). In addition, we tested multiple post-glacial recolonization scenarios of previously glaciated regions during the Last Glacial Maximum using an Approximate Bayesian Computation (ABC) approach that were unresolved from previous studies. This allowed us to identify the role of admixture from multiple source population post-Younger Dryas in the case of Scandinavia and ancient land-bridges in the colonization of the British Isles. A natural colonization of Ireland was deemed more likely than an ancient human-mediated introduction as has previously been proposed and potentially points to a larger mammalian community on the island in the early post-glacial period. Using genome-wide data has allowed us to tease apart broad-scale patterns of structure and diversity in a widespread carnivore in Europe that was not evident from using more limited marker sets and provides a foundation for next-generation phylogeographic studies in other non-model species.
Collapse
Affiliation(s)
- Allan D McDevitt
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Ilaria Coscia
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Samuel S Browett
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Aritz Ruiz-González
- Department of Zoology and Animal Cell Biology, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mark J Statham
- Department of Population Health and Reproduction, School of Veterinary Medicine, Mammalian Ecology and Conservation Unit, Center for Veterinary Genetics, University of California, Davis, California, USA
| | - Iwona Ruczyńska
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Liam Roberts
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Joanna Stojak
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Erik O Ågren
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden
| | - Jane Learmount
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, UK
| | - Mafalda Basto
- Department of Animal Biology, Faculty of Sciences, CE3C - Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Carlos Fernandes
- Department of Animal Biology, Faculty of Sciences, CE3C - Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Peter Stuart
- Biological and Pharmaceutical Sciences Department, Institute of Technology Tralee, Kerry, Ireland
| | - David G Tosh
- National Museums of Northern Ireland, Hollywood, UK
| | - Magda Sindicic
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Marja Isomursu
- Finnish Food Authority, Veterinary Bacteriology and Pathology Research Unit, Oulu, Finland
| | | | - Andrey Korolev
- Institute of Biology of Komi Science, Remote Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Innokentiy M Okhlopkov
- Institute of Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, Yakutsk, Russia
| | - Alexander P Saveljev
- Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia
| | | | | | - Stephen W R Harrison
- School of Animal Rural & Environmental Sciences, Nottingham Trent University, Southwell, UK
| | - Vladimir Lobkov
- Faculty of Biology, Odessa I.I. Mechnykov National University, Odessa, Ukraine
| | - Duško Ćirović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jacinta Mullins
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ettore Randi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.,Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Benjamin N Sacks
- Department of Population Health and Reproduction, School of Veterinary Medicine, Mammalian Ecology and Conservation Unit, Center for Veterinary Genetics, University of California, Davis, California, USA
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Jan M Wójcik
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| |
Collapse
|
30
|
Pilot M. Disentangling the admixed trails of grey wolf evolution. Mol Ecol 2021; 30:6509-6512. [PMID: 34719071 DOI: 10.1111/mec.16261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
The predominant phylogenetic patterns within a genome do not always reflect correctly the history of evolutionary divergence and speciation, and the true phylogenetic signal tends to be concentrated within low-recombination regions of the genome. In this issue of Molecular Ecology, Hennelly et al. show that this is also the case for intraspecific relationships that are characterized by considerable gene flow between lineages. The study reconstructs the phylogenetic relationships of Indian and Tibetan wolves with other grey wolf (Canis lupus) populations worldwide, and demonstrates that these two populations represent phylogenetically distinct lineages. This inference was supported by using low-recombination regions of autosomal chromosomes and the X chromosome, which proved to be essential for correct inference of the lineage splitting order. Their study illustrates the power of analytical approaches that implement knowledge of genome evolution patterns to reconstruct complex intraspecific evolutionary relationships. The study also provides a compelling example of the application of modern phylogenomic approaches in the identification of evolutionarily significant units for the purpose of species conservation.
Collapse
Affiliation(s)
- Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| |
Collapse
|
31
|
Bacon AM, Bourgon N, Welker F, Cappellini E, Fiorillo D, Tombret O, Thi Mai Huong N, Anh Tuan N, Sayavonkhamdy T, Souksavatdy V, Sichanthongtip P, Antoine PO, Duringer P, Ponche JL, Westaway K, Joannes-Boyau R, Boesch Q, Suzzoni E, Frangeul S, Patole-Edoumba E, Zachwieja A, Shackelford L, Demeter F, Hublin JJ, Dufour É. A multi-proxy approach to exploring Homo sapiens' arrival, environments and adaptations in Southeast Asia. Sci Rep 2021; 11:21080. [PMID: 34702921 PMCID: PMC8548499 DOI: 10.1038/s41598-021-99931-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/05/2021] [Indexed: 01/29/2023] Open
Abstract
The capability of Pleistocene hominins to successfully adapt to different types of tropical forested environments has long been debated. In order to investigate environmental changes in Southeast Asia during a critical period for the turnover of hominin species, we analysed palaeoenvironmental proxies from five late Middle to Late Pleistocene faunas. Human teeth discoveries have been reported at Duoi U'Oi, Vietnam (70-60 ka) and Nam Lot, Laos (86-72 ka). However, the use of palaeoproteomics allowed us to discard the latter, and, to date, no human remains older than ~ 70 ka are documented in the area. Our findings indicate that tropical rainforests were highly sensitive to climatic changes over that period, with significant fluctuations of the canopy forests. Locally, large-bodied faunas were resilient to these fluctuations until the cooling period of the Marine Isotope Stage 4 (MIS 4; 74-59 ka) that transformed the overall biotope. Then, under strong selective pressures, populations with new phenotypic characteristics emerged while some other species disappeared. We argue that this climate-driven shift offered new foraging opportunities for hominins in a novel rainforest environment and was most likely a key factor in the settlement and dispersal of our species during MIS 4 in SE Asia.
Collapse
Affiliation(s)
- Anne-Marie Bacon
- grid.508487.60000 0004 7885 7602UMR 8045 BABEL, CNRS, Université de Paris, Faculté de Chirurgie dentaire, 1 rue Maurice Arnoux, 92120 Montrouge, France
| | - Nicolas Bourgon
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.5802.f0000 0001 1941 7111Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
| | - Frido Welker
- grid.5254.60000 0001 0674 042XSection for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- grid.5254.60000 0001 0674 042XSection for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Denis Fiorillo
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Olivier Tombret
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Nguyen Thi Mai Huong
- Anthropological and Palaeoenvironmental Department, Institute of Archaeology, Hoan Kiem District, Ha Noi, Vietnam
| | - Nguyen Anh Tuan
- Anthropological and Palaeoenvironmental Department, Institute of Archaeology, Hoan Kiem District, Ha Noi, Vietnam
| | - Thongsa Sayavonkhamdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Laos
| | - Viengkeo Souksavatdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Laos
| | | | - Pierre-Olivier Antoine
- grid.121334.60000 0001 2097 0141Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Duringer
- grid.11843.3f0000 0001 2157 9291Ecole et Observatoire des Sciences de la Terre (EOST Géologie), Institut de Physique du Globe de Strasbourg (IPGS) (CNRS/UMR 7516), Institut de Géologie, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- grid.463965.b0000 0004 0452 6077UMR 7362 Laboratoire Image Ville et Environnement, Institut de Géologie, Strasbourg, France
| | - Kira Westaway
- grid.1004.50000 0001 2158 5405Department of Earth and Environmental Sciences, Traps’ MQ Luminescence Dating Facility, Macquarie University, Sydney, Australia
| | - Renaud Joannes-Boyau
- grid.1031.30000000121532610Geoarchaeology & Archaeometry Research Group, Southern Cross University, Lismore, Australia ,grid.458456.e0000 0000 9404 3263Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences, Beijing, China
| | - Quentin Boesch
- grid.11843.3f0000 0001 2157 9291Ecole et Observatoire des Sciences de la Terre (EOST Géologie), Institut de Physique du Globe de Strasbourg (IPGS) (CNRS/UMR 7516), Institut de Géologie, Université de Strasbourg, Strasbourg, France
| | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle-en-Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle-en-Vercors, France
| | - Elise Patole-Edoumba
- grid.410350.30000 0001 2174 9334Muséum d’Histoire Naturelle, La Rochelle, France
| | - Alexandra Zachwieja
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN USA
| | - Laura Shackelford
- grid.35403.310000 0004 1936 9991Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Fabrice Demeter
- grid.452548.a0000 0000 9817 5300Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, Copenhagen, Denmark ,UMR 7206 Eco-Anthropologie, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Jean-Jacques Hublin
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.410533.00000 0001 2179 2236Collège de France, Chaire de Paléoanthropologie, Paris, France
| | - Élise Dufour
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
32
|
Mech LD, Janssens LAA. An assessment of current wolf
Canis lupus
domestication hypotheses based on wolf ecology and behaviour. Mamm Rev 2021. [DOI: 10.1111/mam.12273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- L. David Mech
- Northern Prairie Wildlife Research Center U. S. Geological Survey Jamestown North Dakota58401USA
| | - Luc A. A. Janssens
- Department of Archaeology Leiden University Einsteinweg 2 2333 CCLeidenThe Netherlands
- Department of Archaeology Ghent University Sint‐Pietersnieuwstraat 35 9000GhentBelgium
| |
Collapse
|
33
|
Pilot M, Moura AE, Okhlopkov IM, Mamaev NV, Manaseryan NH, Hayrapetyan V, Kopaliani N, Tsingarska E, Alagaili AN, Mohammed OB, Ostrander EA, Bogdanowicz W. Human-modified canids in human-modified landscapes: The evolutionary consequences of hybridization for grey wolves and free-ranging domestic dogs. Evol Appl 2021; 14:2433-2456. [PMID: 34745336 PMCID: PMC8549620 DOI: 10.1111/eva.13257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Introgressive hybridization between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression patterns in admixed populations of Eurasian wolves and free-ranging domestic dogs (FRDs), identifying chromosomal regions with significantly overrepresented hybrid ancestry and assessing whether genes located within these regions show signatures of selection. Although the dog admixture proportion in West Eurasian wolves (2.7%) was greater than the wolf admixture proportion in FRDs (0.75%), the number and average length of chromosomal blocks showing significant overrepresentation of hybrid ancestry were smaller in wolves than FRDs. In wolves, 6% of genes located within these blocks showed signatures of positive selection compared to 23% in FRDs. We found that introgression from wolves may provide a considerable adaptive advantage to FRDs, counterbalancing some of the negative effects of domestication, which can include reduced genetic diversity and excessive tameness. In wolves, introgression from FRDs is mostly driven by drift, with a small number of positively selected genes associated with brain function and behaviour. The predominance of drift may be the consequence of small effective size of wolf populations, which reduces efficiency of selection for weakly advantageous or against weakly disadvantageous introgressed variants. Small wolf population sizes result largely from human-induced habitat loss and hunting, thus linking introgression rates to anthropogenic processes. Our results imply that maintenance of large population sizes should be an important element of wolf management strategies aimed at reducing introgression rates of dog-derived variants.
Collapse
Affiliation(s)
- Małgorzata Pilot
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Andre E. Moura
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Innokentiy M. Okhlopkov
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Nikolay V. Mamaev
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Ninna H. Manaseryan
- Scientific Center of Zoology and HydroecologyNational Academy of SciencesYerevanArmenia
| | | | | | | | - Abdulaziz N. Alagaili
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Osama B. Mohammed
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | | |
Collapse
|
34
|
Meachen J, Wooller MJ, Barst BD, Funck J, Crann C, Heath J, Cassatt-Johnstone M, Shapiro B, Hall E, Hewitson S, Zazula G. A mummified Pleistocene gray wolf pup. Curr Biol 2021; 30:R1467-R1468. [PMID: 33352124 DOI: 10.1016/j.cub.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In July 2016, a mummified carcass of an ancient wolf (Canis lupus) pup (specimen YG 648.1) was discovered in thawing permafrost in the Klondike goldfields, near Dawson City, Yukon, Canada (Figure 1A). The wolf pup mummy was recovered along a small tributary of Last Chance Creek during hydraulic thawing that exposed the permafrost sediment in which it was preserved. This mummified wolf pup is important to the local Tr'ondëk Hwëch'in people, who named it Zhùr, meaning 'wolf' in the Hän language of their community. Here, we report detailed morphometric, isotopic, and genetic analyses of Zhùr that reveal details of her appearance, evolutionary relationships to other wolves and short life-history and ecology. Zhùr is the most complete wolf mummy known. She lived approximately 57,000 years ago and died in her den during a collapse of the sediments. During her short life, she ate aquatic resources, and is related to ancient Beringian and Russian gray wolves and her clade is basal to all living gray wolves. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Julie Meachen
- Des Moines University, Department of Anatomy, Des Moines, IA, USA.
| | - Matthew J Wooller
- Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Benjamin D Barst
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Juliette Funck
- Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Carley Crann
- A.E. Lalonde AMS Laboratory, University of Ottawa, Ottawa , ON K1N 6N5, Canada
| | - Jess Heath
- Alpine Veterinary Medical Center, Whitehorse, YT, Canada
| | - Molly Cassatt-Johnstone
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | - Elizabeth Hall
- Government of Yukon, Department of Tourism and Culture, Yukon Palaeontology Program, PO Box 2703, Whitehorse, YT, Y1A 2C6, Canada
| | - Susan Hewitson
- Government of Yukon, Department of Tourism and Culture, Yukon Palaeontology Program, PO Box 2703, Whitehorse, YT, Y1A 2C6, Canada
| | - Grant Zazula
- Government of Yukon, Department of Tourism and Culture, Yukon Palaeontology Program, PO Box 2703, Whitehorse, YT, Y1A 2C6, Canada; Collections and Research, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, ON, K1P 6P4, Canada
| |
Collapse
|
35
|
Hennelly LM, Habib B, Modi S, Rueness EK, Gaubert P, Sacks BN. Ancient divergence of Indian and Tibetan wolves revealed by recombination-aware phylogenomics. Mol Ecol 2021; 30:6687-6700. [PMID: 34398980 DOI: 10.1111/mec.16127] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022]
Abstract
The grey wolf (Canis lupus) expanded its range across Holarctic regions during the late Pleistocene. Consequently, most grey wolves share recent (<100,000 years ago) maternal origins corresponding to a widespread Holarctic clade. However, two deeply divergent (200,000-700,000 years ago) mitochondrial clades are restricted, respectively, to the Indian subcontinent and the Tibetan Plateau, where remaining wolves are endangered. No genome-wide analysis had previously included wolves corresponding to the mitochondrial Indian clade or attempted to parse gene flow and phylogeny. We sequenced four Indian and two Tibetan wolves and included 31 additional canid genomes to resolve the phylogenomic history of grey wolves. Genomic analyses revealed Indian and Tibetan wolves to be distinct from each other and from broadly distributed wolf populations corresponding to the mitochondrial Holarctic clade. Despite gene flow, which was reflected disproportionately in high-recombination regions of the genome, analyses revealed Indian and Tibetan wolves to be basal to Holarctic grey wolves, in agreement with the mitochondrial phylogeny. In contrast to mitochondrial DNA, however, genomic findings suggest the possibility that the Indian wolf could be basal to the Tibetan wolf, a discordance potentially reflecting selection on the mitochondrial genome. Together, these findings imply that southern regions of Asia have been important centers for grey wolf evolution and that Indian and Tibetan wolves represent evolutionary significant units (ESUs). Further study is needed to assess whether these ESUs warrant recognition as distinct species. This question is especially urgent regarding the Indian wolf, which represents one of the world's most endangered wolf populations.
Collapse
Affiliation(s)
- Lauren M Hennelly
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Bilal Habib
- Department of Animal Ecology and Conservation, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Shrushti Modi
- Department of Animal Ecology and Conservation, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Eli K Rueness
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB), CNRS/UPS/IRD, Université Toulouse III Paul Sabatier - Bâtiment 4R1, Toulouse cedex 9, France
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
36
|
Gelabert P, Sawyer S, Bergström A, Margaryan A, Collin TC, Meshveliani T, Belfer-Cohen A, Lordkipanidze D, Jakeli N, Matskevich Z, Bar-Oz G, Fernandes DM, Cheronet O, Özdoğan KT, Oberreiter V, Feeney RNM, Stahlschmidt MC, Skoglund P, Pinhasi R. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr Biol 2021; 31:3564-3574.e9. [PMID: 34256019 PMCID: PMC8409484 DOI: 10.1016/j.cub.2021.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
Cave sediments have been shown to preserve ancient DNA but so far have not yielded the genome-scale information of skeletal remains. We retrieved and analyzed human and mammalian nuclear and mitochondrial environmental "shotgun" genomes from a single 25,000-year-old Upper Paleolithic sediment sample from Satsurblia cave, western Georgia:first, a human environmental genome with substantial basal Eurasian ancestry, which was an ancestral component of the majority of post-Ice Age people in the Near East, North Africa, and parts of Europe; second, a wolf environmental genome that is basal to extant Eurasian wolves and dogs and represents a previously unknown, likely extinct, Caucasian lineage; and third, a European bison environmental genome that is basal to present-day populations, suggesting that population structure has been substantially reshaped since the Last Glacial Maximum. Our results provide new insights into the Late Pleistocene genetic histories of these three species and demonstrate that direct shotgun sequencing of sediment DNA, without target enrichment methods, can yield genome-wide data informative of ancestry and phylogenetic relationships.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ashot Margaryan
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Tengiz Meshveliani
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Anna Belfer-Cohen
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lordkipanidze
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Nino Jakeli
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | | | - Guy Bar-Oz
- Zinman Institute of Archaeology, University of Haifa, Haifa, Israel
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Mareike C Stahlschmidt
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Trut LN, Kharlamova AV, Pilipenko AS, Herbeck YE. The Fox Domestication Experiment and Dog Evolution: A View Based on Modern Molecular, Genetic, and Archaeological Data. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Wilson PJ, Rutledge LY. Considering Pleistocene North American wolves and coyotes in the eastern Canis origin story. Ecol Evol 2021; 11:9137-9147. [PMID: 34257949 PMCID: PMC8258226 DOI: 10.1002/ece3.7757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023] Open
Abstract
The evolutionary origins and hybridization patterns of Canis species in North America have been hotly debated for the past 30 years. Disentangling ancestry and timing of hybridization in Great Lakes wolves, eastern Canadian wolves, red wolves, and eastern coyotes are most often partitioned into a 2-species model that assigns all ancestry to gray wolves and/or coyotes, and a 3-species model that includes a third, North American evolved eastern wolf genome. The proposed models address recent or sometimes late Holocene hybridization events but have largely ignored potential Pleistocene era progenitors and opportunities for hybridization that may have impacted the current mixed genomes in eastern Canada and the United States. Here, we re-analyze contemporary and ancient mitochondrial DNA genomes with Bayesian phylogenetic analyses to more accurately estimate divergence dates among lineages. We combine that with a review of the literature on Late Pleistocene Canis distributions to: (a) identify potential Pleistocene progenitors to southern North American gray wolves and eastern wolves; and (b) illuminate opportunities for ancient hybridization events. Specifically, we propose that Beringian gray wolves (C. lupus) and extinct large wolf-like coyotes (C. latrans orcutti) are likely progenitors to Mexican and Plains gray wolves and eastern wolves, respectively, and may represent a potentially unrecognized source of introgressed genomic variation within contemporary Canis genomes. These events speak to the potential origins of contemporary genomes and provide a new perspective on Canis ancestry, but do not negate current conservation priorities of dwindling wolf populations with unique genomic signatures and key ecologically critical roles.
Collapse
|
39
|
Sacks BN, Mitchell KJ, Quinn CB, Hennelly LM, Sinding MHS, Statham MJ, Preckler-Quisquater S, Fain SR, Kistler L, Vanderzwan SL, Meachen JA, Ostrander EA, Frantz LAF. Pleistocene origins, western ghost lineages, and the emerging phylogeographic history of the red wolf and coyote. Mol Ecol 2021; 30:4292-4304. [PMID: 34181791 DOI: 10.1111/mec.16048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
The red wolf (Canis rufus) of the eastern US was driven to near-extinction by colonial-era persecution and habitat conversion, which facilitated coyote (C. latrans) range expansion and widespread hybridization with red wolves. The observation of some grey wolf (C. lupus) ancestry within red wolves sparked controversy over whether it was historically a subspecies of grey wolf with its predominant "coyote-like" ancestry obtained from post-colonial coyote hybridization (2-species hypothesis) versus a distinct species closely related to the coyote that hybridized with grey wolf (3-species hypothesis). We analysed mitogenomes sourced from before the 20th century bottleneck and coyote invasion, along with hundreds of modern amplicons, which led us to reject the 2-species model and to investigate a broader phylogeographic 3-species model suggested by the fossil record. Our findings broadly support this model, in which red wolves ranged the width of the American continent prior to arrival of the grey wolf to the mid-continent 60-80 ka; red wolves subsequently disappeared from the mid-continent, relegated to California and the eastern forests, which ushered in emergence of the coyote in their place (50-30 ka); by the early Holocene (12-10 ka), coyotes had expanded into California, where they admixed with and phenotypically replaced western red wolves in a process analogous to the 20th century coyote invasion of the eastern forests. Findings indicate that the red wolf pre-dated not only European colonization but human, and possibly coyote, presence in North America. These findings highlight the urgency of expanding conservation efforts for the red wolf.
Collapse
Affiliation(s)
- Benjamin N Sacks
- Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA (ACAD) and ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Cate B Quinn
- Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Lauren M Hennelly
- Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Mark J Statham
- Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Steven R Fain
- National Fish & Wildlife Forensic Laboratory, Ashland, OR, USA
| | - Logan Kistler
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Stevi L Vanderzwan
- Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Julie A Meachen
- Anatomy Department, Des Moines University, Des Moines, IA, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laurent A F Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany.,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
40
|
Dog domestication and the dual dispersal of people and dogs into the Americas. Proc Natl Acad Sci U S A 2021; 118:2010083118. [PMID: 33495362 DOI: 10.1073/pnas.2010083118] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Advances in the isolation and sequencing of ancient DNA have begun to reveal the population histories of both people and dogs. Over the last 10,000 y, the genetic signatures of ancient dog remains have been linked with known human dispersals in regions such as the Arctic and the remote Pacific. It is suspected, however, that this relationship has a much deeper antiquity, and that the tandem movement of people and dogs may have begun soon after the domestication of the dog from a gray wolf ancestor in the late Pleistocene. Here, by comparing population genetic results of humans and dogs from Siberia, Beringia, and North America, we show that there is a close correlation in the movement and divergences of their respective lineages. This evidence places constraints on when and where dog domestication took place. Most significantly, it suggests that dogs were domesticated in Siberia by ∼23,000 y ago, possibly while both people and wolves were isolated during the harsh climate of the Last Glacial Maximum. Dogs then accompanied the first people into the Americas and traveled with them as humans rapidly dispersed into the continent beginning ∼15,000 y ago.
Collapse
|
41
|
Vershinina AO, Heintzman PD, Froese DG, Zazula G, Cassatt-Johnstone M, Dalén L, Der Sarkissian C, Dunn SG, Ermini L, Gamba C, Groves P, Kapp JD, Mann DH, Seguin-Orlando A, Southon J, Stiller M, Wooller MJ, Baryshnikov G, Gimranov D, Scott E, Hall E, Hewitson S, Kirillova I, Kosintsev P, Shidlovsky F, Tong HW, Tiunov MP, Vartanyan S, Orlando L, Corbett-Detig R, MacPhee RD, Shapiro B. Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Mol Ecol 2021; 30:6144-6161. [PMID: 33971056 DOI: 10.1111/mec.15977] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023]
Abstract
The Bering Land Bridge (BLB) last connected Eurasia and North America during the Late Pleistocene. Although the BLB would have enabled transfers of terrestrial biota in both directions, it also acted as an ecological filter whose permeability varied considerably over time. Here we explore the possible impacts of this ecological corridor on genetic diversity within, and connectivity among, populations of a once wide-ranging group, the caballine horses (Equus spp.). Using a panel of 187 mitochondrial and eight nuclear genomes recovered from present-day and extinct caballine horses sampled across the Holarctic, we found that Eurasian horse populations initially diverged from those in North America, their ancestral continent, around 1.0-0.8 million years ago. Subsequent to this split our mitochondrial DNA analysis identified two bidirectional long-range dispersals across the BLB ~875-625 and ~200-50 thousand years ago, during the Middle and Late Pleistocene. Whole genome analysis indicated low levels of gene flow between North American and Eurasian horse populations, which probably occurred as a result of these inferred dispersals. Nonetheless, mitochondrial and nuclear diversity of caballine horse populations retained strong phylogeographical structuring. Our results suggest that barriers to gene flow, currently unidentified but possibly related to habitat distribution across Beringia or ongoing evolutionary divergence, played an important role in shaping the early genetic history of caballine horses, including the ancestors of living horses within Equus ferus.
Collapse
Affiliation(s)
- Alisa O Vershinina
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Peter D Heintzman
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Duane G Froese
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| | - Grant Zazula
- Collections and Research, Canadian Museum of Nature, Station D, Ottawa, ON, Canada.,Government of Yukon, Department of Tourism and Culture, Palaeontology Program, Whitehorse, YT, Canada
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Clio Der Sarkissian
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR5288, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Shelby G Dunn
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Luca Ermini
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Gamba
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Groves
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, CA, USA
| | - Joshua D Kapp
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Daniel H Mann
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, CA, USA
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR5288, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - John Southon
- Keck-CCAMS Group, Earth System Science Department, University of California, Irvine, CA, USA
| | - Mathias Stiller
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.,Division Molecular Pathology, Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Matthew J Wooller
- Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Gennady Baryshnikov
- Laboratory of Theriology, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Dmitry Gimranov
- Institute of Plant & Animal Ecology of the Russian Academy of Sciences, Ural Branch, Ekaterinburg, Russia.,Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia
| | - Eric Scott
- California State University, San Bernardino, CA, USA
| | - Elizabeth Hall
- Government of Yukon, Department of Tourism and Culture, Palaeontology Program, Whitehorse, YT, Canada
| | - Susan Hewitson
- Government of Yukon, Department of Tourism and Culture, Palaeontology Program, Whitehorse, YT, Canada
| | - Irina Kirillova
- Institute of Geography, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Kosintsev
- Institute of Plant & Animal Ecology of the Russian Academy of Sciences, Ural Branch, Ekaterinburg, Russia
| | | | - Hao-Wen Tong
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Mikhail P Tiunov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A. Shilo, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR5288, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | | | | | - Beth Shapiro
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
42
|
Baumann C, Pfrengle S, Münzel SC, Molak M, Feuerborn TR, Breidenstein A, Reiter E, Albrecht G, Kind CJ, Verjux C, Leduc C, Conard NJ, Drucker DG, Giemsch L, Thalmann O, Bocherens H, Schuenemann VJ. A refined proposal for the origin of dogs: the case study of Gnirshöhle, a Magdalenian cave site. Sci Rep 2021; 11:5137. [PMID: 33664287 PMCID: PMC7933181 DOI: 10.1038/s41598-021-83719-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Dogs are known to be the oldest animals domesticated by humans. Although many studies have examined wolf domestication, the geographic and temporal origin of this process is still being debated. To address this issue, our study sheds new light on the early stages of wolf domestication during the Magdalenian period (16–14 ka cal BP) in the Hegau Jura region (Southwestern Germany and Switzerland). By combining morphology, genetics, and isotopes, our multidisciplinary approach helps to evaluate alternate processes driving the early phases of domestication. The isotope analysis uncovered a restricted, low δ15N protein diet for all analyzed Gnirshöhle specimens, while morphological examinations and phylogenetic relationships did not unequivocally assign them to one or the other canid lineage. Intriguingly, the newly generated mitochondrial canid genomes span the entire genetic diversity of modern dogs and wolves. Such high mitochondrial diversity could imply that Magdalenian people tamed and reared animals originating from different wolf lineages. We discuss our results in light of three ecological hypotheses and conclude that both domestication and the existence of a specialized wolf ecomorph are highly probable. However, due to their proximity to humans and a restricted diet, we propose domestication as the most likely scenario explaining the patterns observed herein.
Collapse
Affiliation(s)
- Chris Baumann
- Biogeology, Department of Geosciences, University of Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany. .,Institute for Archaeological Sciences, University of Tübingen, Rümelinstraße 23, 72070, Tübingen, Germany.
| | - Saskia Pfrengle
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstraße 23, 72070, Tübingen, Germany. .,Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Susanne C Münzel
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstraße 23, 72070, Tübingen, Germany
| | - Martyna Molak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Tatiana R Feuerborn
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstraße 23, 72070, Tübingen, Germany.,Section for Evolutionary Genomics, GLOBE Institute, Øster Farimagsgade 5, Bygning 7, 1353, København K, Denmark
| | - Abagail Breidenstein
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstraße 23, 72070, Tübingen, Germany
| | - Gerd Albrecht
- Department of Archaeology, Markgräflerland-Museum Society, Wilhelmstraße 7, 79379, Müllheim, Germany
| | - Claus-Joachim Kind
- State Office for Cultural Heritage Baden-Württemberg, Berliner Str. 12, 73728, Esslingen, Germany
| | - Christian Verjux
- Service Régional de l'Archéologie (UMR 7041 ArScAn-Équipe Ethnologie Préhistorique), DRAC Centre, Val de Loire, 6 Rue de la Manufacture, 45000, Orléans, France
| | - Charlotte Leduc
- INRAP, 12 Rue de Méric, 57000, Metz, France.,UMR8215-Trajectoires, CNRS, 21 Allée de l'Université, 92023, Nanterre Cedex, France
| | - Nicholas J Conard
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstraße 23, 72070, Tübingen, Germany.,Department for Early Prehistory and Quaternary Ecology, University of Tübingen, Burgsteige 11, 72070, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Paleoenvironment, Schloss Hohentübingen, University of Tübingen, 72070, Tübingen, Germany
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Sigwartstraße 10, 72076, Tübingen, Germany
| | - Liane Giemsch
- Archäologisches Museum Frankfurt, Karmelitergasse 1, 60311, Frankfurt am Main, Germany
| | - Olaf Thalmann
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572, Poznan, Poland
| | - Hervé Bocherens
- Biogeology, Department of Geosciences, University of Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Sigwartstraße 10, 72076, Tübingen, Germany
| | - Verena J Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstraße 23, 72070, Tübingen, Germany. .,Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Rümelinstraße 23, 72070, Tübingen, Germany.
| |
Collapse
|
43
|
Niemann J, Gopalakrishnan S, Yamaguchi N, Ramos-Madrigal J, Wales N, Gilbert MTP, Sinding MHS. Extended survival of Pleistocene Siberian wolves into the early 20th century on the island of Honshū. iScience 2021; 24:101904. [PMID: 33364590 PMCID: PMC7753132 DOI: 10.1016/j.isci.2020.101904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
The Japanese or Honshū wolf was one the most distinct gray wolf subspecies due to its small stature and endemicity to the islands of Honshū, Shikoku, and Kyūshū. Long revered as a guardian of farmers and travellers, it was persecuted from the 17th century following a rabies epidemic, which led to its extinction in the early 20th century. To better understand its evolutionary history, we sequenced the nuclear genome of a 19th century Honshū wolf specimen to an average depth of coverage of 3.7✕. We find Honshū wolves were closely related to a lineage of Siberian wolves that were previously believed to have gone extinct in the Late Pleistocene, thereby extending the survival of this ancient lineage until the early 20th century. We also detected significant gene flow between Japanese dogs and the Honshū wolf, corroborating previous reports on Honshū wolf dog interbreeding. Generated 3.7✕ nuclear genome of the extinct Honshu wolf The Honshū wolf belonged to the lineage of Siberian Pleistocene wolves There was gene flow between Honshū wolves and Japanese dogs
Collapse
Affiliation(s)
- Jonas Niemann
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- BioArch, Department of Archaeology, University of York, York, UK
- Corresponding author
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nathan Wales
- BioArch, Department of Archaeology, University of York, York, UK
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Mikkel-Holger S. Sinding
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Corresponding author
| |
Collapse
|
44
|
Mitchell KJ, Rawlence NJ. Examining Natural History through the Lens of Palaeogenomics. Trends Ecol Evol 2021; 36:258-267. [PMID: 33455740 DOI: 10.1016/j.tree.2020.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
The many high-resolution tools that are uniquely applicable to specimens from the Quaternary period (the past ~2.5 Ma) provide an opportunity to cross-validate data and test hypotheses based on the morphology and distribution of fossils. Among these tools is palaeogenomics - the genome-scale sequencing of genetic material from ancient specimens - that can provide direct insight into ecology and evolution, potentially improving the accuracy of inferences about past ecological communities over longer timescales. Palaeogenomics has revealed instances of over- and underestimation of extinct diversity, detected cryptic faunal migration and turnover, allowed quantification of widespread sex biases and sexual dimorphism in the fossil record, revealed past hybridisation events and hybrid individuals, and has highlighted previously unrecognised routes of zoonotic disease transfer.
Collapse
Affiliation(s)
- Kieren J Mitchell
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia; Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
45
|
Ramos-Madrigal J, Sinding MHS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA, Fedorov S, Kandyba A, Germonpré M, Bocherens H, Feuerborn TR, Pitulko VV, Pavlova EY, Nikolskiy PA, Kasparov AK, Ivanova VV, Larson G, Frantz LAF, Willerslev E, Meldgaard M, Petersen B, Sicheritz-Ponten T, Bachmann L, Wiig Ø, Hansen AJ, Gilbert MTP, Gopalakrishnan S. Genomes of Pleistocene Siberian Wolves Uncover Multiple Extinct Wolf Lineages. Curr Biol 2021; 31:198-206.e8. [PMID: 33125870 PMCID: PMC7809626 DOI: 10.1016/j.cub.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022]
Abstract
Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
Collapse
Affiliation(s)
- Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Holger S Sinding
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Natural History Museum, University of Oslo, Oslo, Norway; The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Greenland Institute of Natural Resources, Nuuk, Greenland; Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Christian Carøe
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sarah S T Mak
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Niemann
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Sergey Fedorov
- Mammoth Museum of North-Eastern Federal University, Yakutsk, Russia
| | - Alexander Kandyba
- Department of Stone Age Archeology, Institute of Archaeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Mietje Germonpré
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Hervé Bocherens
- Department of Geosciences, Biogeology, University of Tübingen, Tübingen, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment, Tübingen, Germany
| | - Tatiana R Feuerborn
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena Y Pavlova
- Arctic and Antarctic Research Institute, St. Petersburg, Russia
| | | | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Varvara V Ivanova
- VNIIOkeangeologia Research Institute (The All-Russian Research Institute of Geology and Mineral Resources of the World Ocean), St. Petersburg, Russia
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK; Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Eske Willerslev
- Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Danish Institute for Advanced Study (D-IAS), University of Southern Denmark, Odense, Denmark; Department of Zoology, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, University of Cambridge, Cambridge, UK
| | - Morten Meldgaard
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Thomas Sicheritz-Ponten
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Lutz Bachmann
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Øystein Wiig
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Anders J Hansen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
46
|
Dog colour patterns explained by modular promoters of ancient canid origin. Nat Ecol Evol 2021; 5:1415-1423. [PMID: 34385618 PMCID: PMC8484016 DOI: 10.1038/s41559-021-01524-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Distinctive colour patterns in dogs are an integral component of canine diversity. Colour pattern differences are thought to have arisen from mutation and artificial selection during and after domestication from wolves but important gaps remain in understanding how these patterns evolved and are genetically controlled. In other mammals, variation at the ASIP gene controls both the temporal and spatial distribution of yellow and black pigments. Here, we identify independent regulatory modules for ventral and hair cycle ASIP expression, and we characterize their action and evolutionary origin. Structural variants define multiple alleles for each regulatory module and are combined in different ways to explain five distinctive dog colour patterns. Phylogenetic analysis reveals that the haplotype combination for one of these patterns is shared with Arctic white wolves and that its hair cycle-specific module probably originated from an extinct canid that diverged from grey wolves more than 2 million years ago. Natural selection for a lighter coat during the Pleistocene provided the genetic framework for widespread colour variation in dogs and wolves.
Collapse
|
47
|
Rieseberg L, Warschefsky E, O’Boyle B, Taberlet P, Ortiz‐Barrientos D, Kane NC, Sibbett B. Editorial 2021. Mol Ecol 2020. [DOI: 10.1111/mec.15759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Loog L. Sometimes hidden but always there: the assumptions underlying genetic inference of demographic histories. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190719. [PMID: 33250022 DOI: 10.1098/rstb.2019.0719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Demographic processes directly affect patterns of genetic variation within contemporary populations as well as future generations, allowing for demographic inference from patterns of both present-day and past genetic variation. Advances in laboratory procedures, sequencing and genotyping technologies in the past decades have resulted in massive increases in high-quality genome-wide genetic data from present-day populations and allowed retrieval of genetic data from archaeological material, also known as ancient DNA. This has resulted in an explosion of work exploring past changes in population size, structure, continuity and movement. However, as genetic processes are highly stochastic, patterns of genetic variation only indirectly reflect demographic histories. As a result, past demographic processes need to be reconstructed using an inferential approach. This usually involves comparing observed patterns of variation with model expectations from theoretical population genetics. A large number of approaches have been developed based on different population genetic models that each come with assumptions about the data and underlying demography. In this article I review some of the key models and assumptions underlying the most commonly used approaches for past demographic inference and their consequences for our ability to link the inferred demographic processes to the archaeological and climate records. This article is part of the theme issue 'Cross-disciplinary approaches to prehistoric demography'.
Collapse
Affiliation(s)
- Liisa Loog
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
49
|
Koupadi K, Fontani F, Ciucani MM, Maini E, De Fanti S, Cattani M, Curci A, Nenzioni G, Reggiani P, Andrews AJ, Sarno S, Bini C, Pelotti S, Caniglia R, Luiselli D, Cilli E. Population Dynamics in Italian Canids between the Late Pleistocene and Bronze Age. Genes (Basel) 2020; 11:genes11121409. [PMID: 33256122 PMCID: PMC7761486 DOI: 10.3390/genes11121409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Dog domestication is still largely unresolved due to time-gaps in the sampling of regions. Ancient Italian canids are particularly understudied, currently represented by only a few specimens. In the present study, we sampled 27 canid remains from Northern Italy dated between the Late Pleistocene and Bronze Age to assess their genetic variability, and thus add context to dog domestication dynamics. They were targeted at four DNA fragments of the hypervariable region 1 of mitochondrial DNA. A total of 11 samples had good DNA preservation and were used for phylogenetic analyses. The dog samples were assigned to dog haplogroups A, C and D, and a Late Pleistocene wolf was set into wolf haplogroup 2. We present our data in the landscape of ancient and modern dog genetic variability, with a particular focus on the ancient Italian samples published thus far. Our results suggest there is high genetic variability within ancient Italian canids, where close relationships were evident between both a ~24,700 years old Italian canid, and Iberian and Bulgarian ancient dogs. These findings emphasize that disentangling dog domestication dynamics benefits from the analysis of specimens from Southern European regions.
Collapse
Affiliation(s)
- Kyriaki Koupadi
- Hellenic Ministry of Culture and Sports, Ephorate of Antiquities of the City of Athens, Makriyianni 2-4, 11742 Athens, Greece;
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
| | - Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
| | - Marta Maria Ciucani
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen, Denmark;
| | - Elena Maini
- ArcheoLaBio—Research Centre for Bioarchaeology, Department of History and Cultures, University of Bologna, Via San Vitale 30, 48121 Ravenna, Italy; (E.M.); (A.C.)
| | - Sara De Fanti
- Department of Biological Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; (S.D.F.); (S.S.)
- Interdepartmental Centre “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, Via Petroni 26, 40126 Bologna, Italy
| | - Maurizio Cattani
- Department of History and Cultures, University of Bologna, Via San Vitale 30, 48121 Ravenna, Italy;
| | - Antonio Curci
- ArcheoLaBio—Research Centre for Bioarchaeology, Department of History and Cultures, University of Bologna, Via San Vitale 30, 48121 Ravenna, Italy; (E.M.); (A.C.)
| | - Gabriele Nenzioni
- Museo della Preistoria “Luigi Donini”, Via Fratelli Canova 49, 40068 San Lazzaro di Savena, BO, Italy;
| | - Paolo Reggiani
- Paleostudy, Via Martiri delle Foibe 1, 35028 Piove di Sacco, PD, Italy;
| | - Adam J. Andrews
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
- Department of Biological Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; (S.D.F.); (S.S.)
| | - Stefania Sarno
- Department of Biological Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; (S.D.F.); (S.S.)
| | - Carla Bini
- Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy; (C.B.); (S.P.)
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy; (C.B.); (S.P.)
| | - Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Ca’ Fornacetta 9, 40064 Ozzano dell’Emilia, BO, Italy;
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
- Correspondence:
| |
Collapse
|
50
|
Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros. Curr Biol 2020; 30:3871-3879.e7. [PMID: 32795436 DOI: 10.1016/j.cub.2020.07.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023]
Abstract
Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
Collapse
|