1
|
Lee A, Daniels BN, Hemstrom W, López C, Kagaya Y, Kihara D, Davidson JM, Toonen RJ, White C, Christie MR. Genetic adaptation despite high gene flow in a range-expanding population. Mol Ecol 2024:e17511. [PMID: 39215560 DOI: 10.1111/mec.17511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Signals of natural selection can be quickly eroded in high gene flow systems, curtailing efforts to understand how and when genetic adaptation occurs in the ocean. This long-standing, unresolved topic in ecology and evolution has renewed importance because changing environmental conditions are driving range expansions that may necessitate rapid evolutionary responses. One example occurs in Kellet's whelk (Kelletia kelletii), a common subtidal gastropod with an ~40- to 60-day pelagic larval duration that expanded their biogeographic range northwards in the 1970s by over 300 km. To test for genetic adaptation, we performed a series of experimental crosses with Kellet's whelk adults collected from their historical (HxH) and recently expanded range (ExE), and conducted RNA-Seq on offspring that we reared in a common garden environment. We identified 2770 differentially expressed genes (DEGs) between 54 offspring samples with either only historical range (HxH offspring) or expanded range (ExE offspring) ancestry. Using SNPs called directly from the DEGs, we assigned samples of known origin back to their range of origin with unprecedented accuracy for a marine species (92.6% and 94.5% for HxH and ExE offspring, respectively). The SNP with the highest predictive importance occurred on triosephosphate isomerase (TPI), an essential metabolic enzyme involved in cold stress response. TPI was significantly upregulated and contained a non-synonymous mutation in the expanded range. Our findings pave the way for accurately identifying patterns of dispersal, gene flow and population connectivity in the ocean by demonstrating that experimental transcriptomics can reveal mechanisms for how marine organisms respond to changing environmental conditions.
Collapse
Affiliation(s)
- Andy Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Benjamin N Daniels
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - William Hemstrom
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Cataixa López
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| | - Yuki Kagaya
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Jean M Davidson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| | - Crow White
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Jackson C, Furnes M, Rød‐Eriksen L, Yap KN, Davey M, Fossøy F, Flagstad Ø, Eide NE, Mjøen T, Ulvund K. Subclinical thiamine deficiency results in failed reproduction in Arctic foxes. Vet Med Sci 2024; 10:e1358. [PMID: 38356320 PMCID: PMC10867461 DOI: 10.1002/vms3.1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024] Open
Abstract
Thiamine deficiency can result in life-threatening physiological and neurological complications. While a thiamine-deficient diet may result in the onset of such symptoms, the presence of thiaminase - an enzyme that breaks down thiamine - is very often the cause. In such instances, thiaminase counteracts the bioavailability and uptake of thiamine, even when food-thiamine levels are adequate. Here, we report on a case of failed reproduction in seven Arctic fox (Vulpes lagopus) breeding pairs kept at a captive breeding facility, including the presentation of severe thiamine deficiency symptoms in two male foxes. Symptoms included ataxia, obtundation, truncal sway, star-gazing and visual impairment. Blood tests were inconclusive, yet symptoms resolved following treatment with a series of thiamine hydrochloride injections, thereby verifying the diagnosis. A fish-dominated feed, which for the first time had been frozen for a prolonged period, was identified as the likely source of thiaminase and subsequent deterioration in the animals' health. Symptoms in the two males arose during the annual mating period. All seven breeding pairs at the captive breeding station failed to reproduce - a phenomenon never recorded during the captive breeding facility's preceding 17-year operation. Relating our findings to peer-reviewed literature, the second part of this case report assesses how thiamine deficiency (due to thiaminase activity) likely resulted in subclinical effects that impaired the production of reproduction hormones, and thereby led to a complete breeding failure. While previous work has highlighted the potentially lethal effects of thiamine deficiency in farmed foxes, this is, to our knowledge the first study showing how subclinical effects in both males and females may inhibit reproduction in foxes in general, but specifically Arctic foxes. The findings from our case report are not only relevant for captive breeding facilities, but for the welfare and management of captive carnivorous animals in general.
Collapse
Affiliation(s)
- Craig Jackson
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Marianne Furnes
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Lars Rød‐Eriksen
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Kang Nian Yap
- Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Marie Davey
- Department of Terrestrial BiodiversityNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Frode Fossøy
- Department of Aquatic BiodiversityNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Øystein Flagstad
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Nina E. Eide
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Toralf Mjøen
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Kristine Ulvund
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| |
Collapse
|
3
|
Todisco V, Fridolfsson E, Axén C, Dahlgren E, Ejsmond MJ, Hauber MM, Hindar K, Tibblin P, Zöttl M, Söderberg L, Hylander S. Thiamin dynamics during the adult life cycle of Atlantic salmon (Salmo salar). JOURNAL OF FISH BIOLOGY 2024; 104:807-824. [PMID: 37823583 DOI: 10.1111/jfb.15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Thiamin is an essential water-soluble B vitamin known for its wide range of metabolic functions and antioxidant properties. Over the past decades, reproductive failures induced by thiamin deficiency have been observed in several salmonid species worldwide, but it is unclear why this micronutrient deficiency arises. Few studies have compared thiamin concentrations in systems of salmonid populations with or without documented thiamin deficiency. Moreover, it is not well known whether and how thiamin concentration changes during the marine feeding phase and the spawning migration. Therefore, samples of Atlantic salmon (Salmo salar) were collected when actively feeding in the open Baltic Sea, after the sea migration to natal rivers, after river migration, and during the spawning period. To compare populations of Baltic salmon with systems without documented thiamin deficiency, a population of landlocked salmon located in Lake Vänern (Sweden) was sampled as well as salmon from Norwegian rivers draining into the North Atlantic Ocean. Results showed the highest mean thiamin concentrations in Lake Vänern salmon, followed by North Atlantic, and the lowest in Baltic populations. Therefore, salmon in the Baltic Sea seem to be consistently more constrained by thiamin than those in other systems. Condition factor and body length had little to no effect on thiamin concentrations in all systems, suggesting that there is no relation between the body condition of salmon and thiamin deficiency. In our large spatiotemporal comparison of salmon populations, thiamin concentrations declined toward spawning in all studied systems, suggesting that the reduction in thiamin concentration arises as a natural consequence of starvation rather than to be related to thiamin deficiency in the system. These results suggest that factors affecting accumulation during the marine feeding phase are key for understanding the thiamin deficiency in salmonids.
Collapse
Affiliation(s)
- Vittoria Todisco
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Charlotte Axén
- Section for Fish, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Elin Dahlgren
- Institution of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Maciej J Ejsmond
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Institute of Environmental Science, Jagiellonian University, Cracow, Poland
| | - Marc M Hauber
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Petter Tibblin
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Markus Zöttl
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Linda Söderberg
- Institution of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Mathur S, Haynes E, Allender MC, Gibbs HL. Genetic mechanisms and biological processes underlying host response to ophidiomycosis (snake fungal disease) inferred from tissue-specific transcriptome analyses. Mol Ecol 2024; 33:e17210. [PMID: 38010927 DOI: 10.1111/mec.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Emerging infectious diseases in wildlife species caused by pathogenic fungi are of growing concern, yet crucial knowledge gaps remain for diseases with potentially large impacts. For example, there is detailed knowledge about host pathology and mechanisms underlying response for chytridiomycosis in amphibians and white-nose syndrome in bats, but such information is lacking for other more recently described fungal infections. One such disease is ophidiomycosis, caused by the fungus Ophidiomyces ophidiicola, which has been identified in many species of snakes, yet the biological mechanisms and molecular changes occurring during infection are unknown. To gain this information, we performed a controlled experimental infection in captive Prairie rattlesnakes (Crotalus viridis) with O. ophidiicola at two different temperatures: 20 and 26°C. We then compared liver, kidney, and skin transcriptomes to assess tissue-specific genetic responses to O. ophidiicola infection. Given previous histopathological studies and the fact that snakes are ectotherms, we expected highest fungal activity on skin and a significant impact of temperature on host response. Although we found fungal activity to be localized on skin, most of the differential gene expression occurred in internal tissues. Infected snakes at the lower temperature had the highest host mortality whereas two-thirds of the infected snakes at the higher temperature survived. Our results suggest that ophidiomycosis is likely a systemic disease with long-term effects on host response. Our analysis also identified candidate protein coding genes that are potentially involved in host response, providing genetic tools for studies of host response to ophidiomycosis in natural populations.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, Ohio, USA
| | - Ellen Haynes
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, USA
| | - Matthew C Allender
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Brookfield Zoo, Chicago Zoological Society, Brookfield, Illinois, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Christie MR, McNickle GG. Negative frequency dependent selection unites ecology and evolution. Ecol Evol 2023; 13:e10327. [PMID: 37484931 PMCID: PMC10361363 DOI: 10.1002/ece3.10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
From genes to communities, understanding how diversity is maintained remains a fundamental question in biology. One challenging to identify, yet potentially ubiquitous, mechanism for the maintenance of diversity is negative frequency dependent selection (NFDS), which occurs when entities (e.g., genotypes, life history strategies, species) experience a per capita reduction in fitness with increases in relative abundance. Because NFDS allows rare entities to increase in frequency while preventing abundant entities from excluding others, we posit that negative frequency dependent selection plays a central role in the maintenance of diversity. In this review, we relate NFDS to coexistence, identify mechanisms of NFDS (e.g., mutualism, predation, parasitism), review strategies for identifying NFDS, and distinguish NFDS from other mechanisms of coexistence (e.g., storage effects, fluctuating selection). We also emphasize that NFDS is a key place where ecology and evolution intersect. Specifically, there are many examples of frequency dependent processes in ecology, but fewer cases that link this process to selection. Similarly, there are many examples of selection in evolution, but fewer cases that link changes in trait values to negative frequency dependence. Bridging these two well-developed fields of ecology and evolution will allow for mechanistic insights into the maintenance of diversity at multiple levels.
Collapse
Affiliation(s)
- Mark R. Christie
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| | - Gordon G. McNickle
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
6
|
Oomen RA, Hutchings JA. Genomic reaction norms inform predictions of plastic and adaptive responses to climate change. J Anim Ecol 2022; 91:1073-1087. [PMID: 35445402 PMCID: PMC9325537 DOI: 10.1111/1365-2656.13707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
Genomic reaction norms represent the range of gene expression phenotypes (usually mRNA transcript levels) expressed by a genotype along an environmental gradient. Reaction norms derived from common‐garden experiments are powerful approaches for disentangling plastic and adaptive responses to environmental change in natural populations. By treating gene expression as a phenotype in itself, genomic reaction norms represent invaluable tools for exploring causal mechanisms underlying organismal responses to climate change across multiple levels of biodiversity. Our goal is to provide the context, framework and motivation for applying genomic reaction norms to study the responses of natural populations to climate change. Here, we describe the utility of integrating genomics with common‐garden‐gradient experiments under a reaction norm analytical framework to answer fundamental questions about phenotypic plasticity, local adaptation, their interaction (i.e. genetic variation in plasticity) and future adaptive potential. An experimental and analytical framework for constructing and analysing genomic reaction norms is presented within the context of polygenic climate change responses of structured populations with gene flow. Intended for a broad eco‐evo readership, we first briefly review adaptation with gene flow and the importance of understanding the genomic basis and spatial scale of adaptation for conservation and management of structured populations under anthropogenic change. Then, within a high‐dimensional reaction norm framework, we illustrate how to distinguish plastic, differentially expressed (difference in reaction norm intercepts) and differentially plastic (difference in reaction norm slopes) genes, highlighting the areas of opportunity for applying these concepts. We conclude by discussing how genomic reaction norms can be incorporated into a holistic framework to understand the eco‐evolutionary dynamics of climate change responses from molecules to ecosystems. We aim to inspire researchers to integrate gene expression measurements into common‐garden experimental designs to investigate the genomics of climate change responses as sequencing costs become increasingly accessible.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway
| | - Jeffrey A Hutchings
- Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway.,Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
| |
Collapse
|
7
|
Sirovy KA, Johnson KM, Casas SM, La Peyre JF, Kelly MW. Lack of genotype-by-environment interaction suggests limited potential for evolutionary changes in plasticity in the eastern oyster, Crassostrea virginica. Mol Ecol 2021; 30:5721-5734. [PMID: 34462983 DOI: 10.1111/mec.16156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Eastern oysters in the northern Gulf of Mexico are facing rapid environmental changes and can respond to this change via plasticity or evolution. Plasticity can act as an immediate buffer against environmental change, but this buffering could impact the organism's ability to evolve in subsequent generations. While plasticity and evolution are not mutually exclusive, the relative contribution and interaction between them remains unclear. In this study, we investigate the roles of plastic and evolved responses to environmental variation and Perkinsus marinus infection in Crassostrea virginica by using a common garden experiment with 80 oysters from six families outplanted at two field sites naturally differing in salinity. We use growth data, P. marinus infection intensities, 3' RNA sequencing (TagSeq) and low-coverage whole-genome sequencing to identify the effect of genotype, environment and genotype-by-environment interaction on the oyster's response to site. As one of first studies to characterize the joint effects of genotype and environment on transcriptomic and morphological profiles in a natural setting, we demonstrate that C. virginica has a highly plastic response to environment and that this response is parallel among genotypes. We also find that genes responding to genotype have distinct and opposing profiles compared to genes responding to environment with regard to expression levels, Ka/Ks ratios and nucleotide diversity. Our findings suggest that C. virginica may be able to buffer the immediate impacts of future environmental changes by altering gene expression and physiology, but the lack of genetic variation in plasticity suggests limited capacity for evolved responses.
Collapse
Affiliation(s)
- Kyle A Sirovy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kevin M Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sandra M Casas
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Jerome F La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
8
|
Mathur S, DeWoody JA. Genetic load has potential in large populations but is realized in small inbred populations. Evol Appl 2021; 14:1540-1557. [PMID: 34178103 PMCID: PMC8210801 DOI: 10.1111/eva.13216] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Populations with higher genetic diversity and larger effective sizes have greater evolutionary capacity (i.e., adaptive potential) to respond to ecological stressors. We are interested in how the variation captured in protein-coding genes fluctuates relative to overall genomic diversity and whether smaller populations suffer greater costs due to their genetic load of deleterious mutations compared with larger populations. We analyzed individual whole-genome sequences (N = 74) from three different populations of Montezuma quail (Cyrtonyx montezumae), a small ground-dwelling bird that is sustainably harvested in some portions of its range but is of conservation concern elsewhere. Our historical demographic results indicate that Montezuma quail populations in the United States exhibit low levels of genomic diversity due in large part to long-term declines in effective population sizes over nearly a million years. The smaller and more isolated Texas population is significantly more inbred than the large Arizona and the intermediate-sized New Mexico populations we surveyed. The Texas gene pool has a significantly smaller proportion of strongly deleterious variants segregating in the population compared with the larger Arizona gene pool. Our results demonstrate that even in small populations, highly deleterious mutations are effectively purged and/or lost due to drift. However, we find that in small populations the realized genetic load is elevated because of inbreeding coupled with a higher frequency of slightly deleterious mutations that are manifested in homozygotes. Overall, our study illustrates how population genomics can be used to proactively assess both neutral and functional aspects of contemporary genetic diversity in a conservation framework while simultaneously considering deeper demographic histories.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Present address:
Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - J. Andrew DeWoody
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
9
|
Rieseberg L, Warschefsky E, O’Boyle B, Taberlet P, Ortiz‐Barrientos D, Kane NC, Sibbett B. Editorial 2021. Mol Ecol 2020. [DOI: 10.1111/mec.15759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Bugg WS, Yoon GR, Schoen AN, Laluk A, Brandt C, Anderson WG, Jeffries KM. Effects of acclimation temperature on the thermal physiology in two geographically distinct populations of lake sturgeon ( Acipenser fulvescens). CONSERVATION PHYSIOLOGY 2020; 8:coaa087. [PMID: 34603733 PMCID: PMC7526614 DOI: 10.1093/conphys/coaa087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 05/31/2023]
Abstract
Temperature is one of the most important abiotic factors regulating development and biological processes in ectotherms. By 2050, climate change may result in temperature increases of 2.1-3.4°C in Manitoba, Canada. Lake sturgeon, Acipenser fulvescens, from both northern and southern populations in Manitoba were acclimated to 16, 20 and 24°C for 30 days, after which critical thermal maximum (CTmax) trials were conducted to investigate their thermal plasticity. We also examined the effects of temperature on morphological and physiological indices. Acclimation temperature significantly influenced the CTmax, body mass, hepatosomatic index, metabolic rate and the mRNA expression of transcripts involved in the cellular response to heat shock and hypoxia (HSP70, HSP90a, HSP90b, HIF-1α) in the gill of lake sturgeon. Population significantly affected the above phenotypes, as well as the mRNA expression of Na+/K+ ATPase-α1 and the hepatic glutathione peroxidase enzyme activity. The southern population had an average CTmax that was 0.71 and 0.45°C higher than the northern population at 20 and 24°C, respectively. Immediately following CTmax trials, mRNA expression of HSP90a and HIF-1α was positively correlated with individual CTmax of lake sturgeon across acclimation treatments and populations (r = 0.7, r = 0.62, respectively; P < 0.0001). Lake sturgeon acclimated to 20 and 24°C had decreased hepatosomatic indices (93 and 244% reduction, respectively; P < 0.0001) and metabolic suppression (27.7 and 42.1% reduction, respectively; P < 0.05) when compared to sturgeon acclimated to 16°C, regardless of population. Glutathione peroxidase activity and mRNA expression Na+/K+ ATPase-α1 were elevated in the northern relative to the southern population. Acclimation to 24°C also induced mortality in both populations when compared to sturgeon acclimated to 16 and 20°C. Thus, increased temperatures have wide-ranging population-specific physiological consequences for lake sturgeon across biological levels of organization.
Collapse
Affiliation(s)
- William S Bugg
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | - Andrew Laluk
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Catherine Brandt
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
11
|
Meek MH. Linking gene expression patterns with survival studies elucidates adaptive potential in changing environments. Mol Ecol 2020; 29:1031-1034. [PMID: 32073182 DOI: 10.1111/mec.15389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
A major goal in ecology, evolution and conservation biology is understanding how species adapt to changing conditions and using that information to improve conservation actions. Primary to advancing our understanding of adaptation and adaptive potential is determining the causes and consequences of the genetic and phenotypic intraspecific variation that allows for adaptation. However, few studies have been able to link the variation present in molecular process under differing conditions to intraspecific variation in survival. In a From the Cover article in this issue of Molecular Ecology, Harder et al explore the relationship between molecular process and survival to understand the adaptive variation underlying tolerance to low thiamine (vitamin B1, an essential micronutrient) conditions in Atlantic salmon (Salmo salar). Thiamine is required for metabolic functioning, including energy production and nervous and cardiovascular system functioning. By combining controlled breeding and phenotyping with a survival study and transcriptomics, the authors are able to quantify among-family differences in survival under low thiamine conditions. They find wide variation in survival among families, and this survival is linked to differences in gene expression patterns. Their study elucidates the importance of combining different data types to characterize within-population phenotypic variation and understand how that variation may lead to genetic adaptation under stressful conditions.
Collapse
Affiliation(s)
- Mariah H Meek
- Department of Integrative Biology and AgBioResearch, Michigan State University, East Lansing, MI, United States
| |
Collapse
|