1
|
Fischer EK, Song Y, Zhou W, Hoke KL. FLEXIBILITY IN GENE COEXPRESSION AT DEVELOPMENTAL AND EVOLUTIONARY TIMESCALES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627761. [PMID: 39713302 PMCID: PMC11661222 DOI: 10.1101/2024.12.10.627761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The explosion of next-generation sequencing technologies has allowed researchers to move from studying single genes, to thousands of genes, and thereby to also consider the relationships within gene networks. Like others, we are interested in understanding how developmental and evolutionary forces shape the expression of individual genes, as well as the interactions among genes. To this end, we characterized the effects of genetic background and developmental environment on brain gene coexpression in two parallel, independent evolutionary lineages of Trinidadian guppies (Poecilia reticulata). We asked whether connectivity patterns among genes differed based on genetic background and rearing environment, and whether a gene's connectivity predicted its propensity for expression divergence. In pursuing these questions, we confronted the central challenge that standard approaches fail to control the Type I error and/or have low power in the presence of high dimensionality (i.e., large number of genes) and small sample size, as in many gene expression studies. Using our data as a case study, we detail central challenges, discuss sample size guidelines, and provide rigorous statistical approaches for exploring coexpression differences with small sample sizes. Using these approaches, we find evidence that coexpression relationships differ based on both genetic background and rearing environment. We report greater expression divergence in less connected genes and suggest this pattern may arise and be reinforced by selection.
Collapse
Affiliation(s)
- Eva K Fischer
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Youngseok Song
- Department of Statistics, West Virginia University, Morgantown, WV 26506, USA
| | - Wen Zhou
- Department of Biostatistics, School of Global Public Health, New York University, New York, NY 10003, USA
| | - Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Harry-Paul YY, Lachapelle J, Ness RW. The Evolution of Gene Expression Plasticity During Adaptation to Salt in Chlamydomonas reinhardtii. Genome Biol Evol 2024; 16:evae214. [PMID: 39378136 PMCID: PMC11534027 DOI: 10.1093/gbe/evae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
When environmental change is rapid or unpredictable, phenotypic plasticity can facilitate adaptation to new or stressful environments to promote population persistence long enough for adaptive evolution to occur. However, the underlying genetic mechanisms that contribute to plasticity and its role in adaptive evolution are generally unknown. Two main opposing hypotheses dominate-genetic compensation and genetic assimilation. Here, we predominantly find evidence for genetic compensation over assimilation in adapting the freshwater algae Chlamydomonas reinhardtii to 36 g/L salt environments over 500 generations. More canalized genes in the high-salt (HS) lines displayed a pattern of genetic compensation (63%) fixing near or at the ancestral native expression level, rather than genetic assimilation of the salt-induced level, suggesting that compensation was more common during adaptation to salt. Network analysis revealed an enrichment of genes involved in energy production and salt-resistance processes in HS lines, while an increase in DNA repair mechanisms was seen in ancestral strains. In addition, whole-transcriptome similarity among ancestral and HS lines displayed the evolution of a similar plastic response to salt conditions in independently reared HS lines. We also found more cis-acting regions in the HS lines; however, the expression patterns of most genes did not mimic that of their inherited sequence. Thus, the expression changes induced via plasticity offer temporary relief, but downstream changes are required for a sustainable solution during the evolutionary process.
Collapse
Affiliation(s)
- Yeshoda Y Harry-Paul
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Josianne Lachapelle
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Rob W Ness
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
3
|
Luo M, Hu J. Alternative splicing in parallel evolution and the evolutionary potential in sticklebacks. J Anim Ecol 2024; 93:1392-1405. [PMID: 39056271 DOI: 10.1111/1365-2656.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Repeatability of adaptation to similar environments provides opportunity to evaluate the predictability of natural selection. While many studies have investigated gene expression differences between populations adapted to contrasting environments, the role of post-transcriptional processes such as alternative splicing has rarely been evaluated in the context of parallel adaptation. To address the aforementioned knowledge gap, we reanalysed transcriptomic data from three pairs of threespine stickleback (Gasterosteus aculeatus) ecotypes adapted to marine or freshwater environment. First, we identified genes with repeated expression or splicing divergence across ecotype pairs, and compared the genetic architecture and biological processes between parallelly expressed and parallelly spliced loci. Second, we analysed the extent to which parallel adaptation was reflected at gene expression and alternative splicing levels. Finally, we tested how the two axes of transcriptional variation differed in their potential for evolutionary change. Although both repeated differential splicing and differential expression across ecotype pairs showed tendency for parallel divergence, the degree of parallelism was lower for splicing than expression. Furthermore, parallel divergences in splicing and expression were likely to be associated with distinct cis-regulatory genetic variants and functionally unique set of genes. Finally, we found that parallelly spliced genes showed higher nucleotide diversity than parallelly expressed genes, indicating splicing is less susceptible to genetic variation erosion during parallel adaptation. Our results provide novel insight into the role of splicing in parallel adaptation, and underscore the contribution of splicing to the evolutionary potential of wild populations under environmental change.
Collapse
Affiliation(s)
- Man Luo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Fox JA, Hunt DAGA, Hendry AP, Chapman LJ, Barrett RDH. Counter-gradient variation in gene expression between fish populations facilitates colonization of low-dissolved oxygen environments. Mol Ecol 2024; 33:e17419. [PMID: 38808559 DOI: 10.1111/mec.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The role of phenotypic plasticity during colonization remains unclear due to the shifting importance of plasticity across timescales. In the early stages of colonization, plasticity can facilitate persistence in a novel environment; but over evolutionary time, processes such as genetic assimilation may reduce variation in plastic traits such that species with a longer evolutionary history in an environment can show lower levels of plasticity than recent invaders. Therefore, comparing species in the early stages of colonization to long-established species provides a powerful approach for uncovering the role of phenotypic plasticity during different stages of colonization. We compared gene expression between low-dissolved oxygen (DO) and high-DO populations of two cyprinid fish: Enteromius apleurogramma, a species that has undergone a recent range expansion, and E. neumayeri, a long-established native species in the same region. We sampled tissue either immediately after capture from the field or after a 2-week acclimation under high-DO conditions, allowing us to test for both evolved and plastic differences in low-DO vs high-DO populations of each species. We found that most genes showing candidate-evolved differences in gene expression did not overlap with those showing plastic differences in gene expression. However, in the genes that did overlap, there was counter-gradient variation such that plastic and evolved gene expression responses were in opposite directions in both species. Additionally, E. apleurogramma had higher levels of plasticity and evolved divergence in gene expression between field populations. We suggest that the higher level of plasticity and counter-gradient variation may have allowed rapid genetic adaptation in E. apleurogramma and facilitated colonization. This study shows how counter-gradient variation may impact the colonization of divergent oxygen environments.
Collapse
Affiliation(s)
- Janay A Fox
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - David A G A Hunt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Lauren J Chapman
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
5
|
Yang Y, Axelrod CJ, Grant E, Earl SR, Urquhart EM, Talbert K, Johnson LE, Walker Z, Hsiao K, Stone I, Carlson BA, López-Sepulcre A, Gordon SP. Evolutionary divergence of developmental plasticity and learning of mating tactics in Trinidadian guppies. J Anim Ecol 2023. [PMID: 38156548 DOI: 10.1111/1365-2656.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Behavioural plasticity is a major driver in the early stages of adaptation, but its effects in mediating evolution remain elusive because behavioural plasticity itself can evolve. In this study, we investigated how male Trinidadian guppies (Poecilia reticulata) adapted to different predation regimes diverged in behavioural plasticity of their mating tactic. We reared F2 juveniles of high- or low-predation population origins with different combinations of social and predator cues and assayed their mating behaviour upon sexual maturity. High-predation males learned their mating tactic from conspecific adults as juveniles, while low-predation males did not. High-predation males increased courtship when exposed to chemical predator cues during development; low-predation males decreased courtship in response to immediate chemical predator cues, but only when they were not exposed to such cues during development. Behavioural changes induced by predator cues were associated with developmental plasticity in brain morphology, but changes acquired through social learning were not. We thus show that guppy populations diverged in their response to social and ecological cues during development, and correlational evidence suggests that different cues can shape the same behaviour via different neural mechanisms. Our study demonstrates that behavioural plasticity, both environmentally induced and socially learnt, evolves rapidly and shapes adaptation when organisms colonize ecologically divergent habitats.
Collapse
Affiliation(s)
- Yusan Yang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Caleb J Axelrod
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Ecology and Evolution, Cornell University, Ithaca, New York, USA
| | - Elly Grant
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shayna R Earl
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Ellen M Urquhart
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Katie Talbert
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Ecology and Evolution, Cornell University, Ithaca, New York, USA
| | - Lauren E Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zakiya Walker
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kyle Hsiao
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Isabel Stone
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrés López-Sepulcre
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Ecology and Evolution, Cornell University, Ithaca, New York, USA
| | - Swanne P Gordon
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Ecology and Evolution, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Szukala A, Lovegrove‐Walsh J, Luqman H, Fior S, Wolfe TM, Frajman B, Schönswetter P, Paun O. Polygenic routes lead to parallel altitudinal adaptation in Heliosperma pusillum (Caryophyllaceae). Mol Ecol 2023; 32:1832-1847. [PMID: 35152499 PMCID: PMC10946620 DOI: 10.1111/mec.16393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/29/2021] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
Abstract
Understanding how organisms adapt to the environment is a major goal of modern biology. Parallel evolution-the independent evolution of similar phenotypes in different populations-provides a powerful framework to investigate the evolutionary potential of populations, the constraints of evolution, its repeatability and therefore its predictability. Here, we quantified the degree of gene expression and functional parallelism across replicated ecotype formation in Heliosperma pusillum (Caryophyllaceae), and gained insights into the architecture of adaptive traits. Population structure analyses and demographic modelling support a previously formulated hypothesis of parallel polytopic divergence of montane and alpine ecotypes. We detect a large proportion of differentially expressed genes (DEGs) underlying divergence within each replicate ecotype pair, with a strikingly low number of shared DEGs across pairs. Functional enrichment of DEGs reveals that the traits affected by significant expression divergence are largely consistent across ecotype pairs, in strong contrast to the nonshared genetic basis. The remarkable redundancy of differential gene expression indicates a polygenic architecture for the diverged adaptive traits. We conclude that polygenic traits appear key to opening multiple routes for adaptation, widening the adaptive potential of organisms.
Collapse
Affiliation(s)
- Aglaia Szukala
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | | | - Hirzi Luqman
- Department of Environmental System ScienceETH ZürichZürichSwitzerland
| | - Simone Fior
- Department of Environmental System ScienceETH ZürichZürichSwitzerland
| | - Thomas M. Wolfe
- Institute for Forest EntomologyForest Pathology and Forest Protection, BOKUViennaAustria
| | - Božo Frajman
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
7
|
Wood DP, Holmberg JA, Osborne OG, Helmstetter AJ, Dunning LT, Ellison AR, Smith RJ, Lighten J, Papadopulos AST. Genetic assimilation of ancestral plasticity during parallel adaptation to zinc contamination in Silene uniflora. Nat Ecol Evol 2023; 7:414-423. [PMID: 36702857 PMCID: PMC9998271 DOI: 10.1038/s41559-022-01975-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
Phenotypic plasticity in ancestral populations is hypothesized to facilitate adaptation, but evidence is piecemeal and often contradictory. Further, whether ancestral plasticity increases the probability of parallel adaptive changes has not been explored. The most general finding is that ancestral responses to a new environment are reversed following adaptation (known as reversion). We investigated the contribution of ancestral plasticity to adaptive evolution of gene expression in two independently evolved lineages of zinc-tolerant Silene uniflora. We found that the general pattern of reversion is driven by the absence of a widespread stress response in zinc-adapted plants compared with zinc-sensitive plants. We show that ancestral plasticity that moves expression closer to the optimum value in the new environment influences the evolution of gene expression among genes that are likely to be involved in adaptation and increases the chance that genes are recruited repeatedly during adaptation. However, despite convergence in gene expression levels between independently adapted lineages, ancestral plasticity does not influence how similar expression values of adaptive genes become. Surprisingly, we also observed that ancestral plasticity that increases fitness often becomes genetically determined and fixed, that is, genetically assimilated. These results emphasize the important role of ancestral plasticity in parallel adaptation.
Collapse
Affiliation(s)
- Daniel P Wood
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | - Jon A Holmberg
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | - Owen G Osborne
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | - Andrew J Helmstetter
- Fondation pour la Recherche sur la Biodiversité - Centre for the Synthesis and Analysis of Biodiversity, Institut Bouisson Bertrand, Montpellier, France
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, Sheffield, UK
| | - Amy R Ellison
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | | | - Jackie Lighten
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Alexander S T Papadopulos
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK.
| |
Collapse
|
8
|
Hu J, Barrett RDH. The role of plastic and evolved DNA methylation in parallel adaptation of threespine stickleback (Gasterosteus aculeatus). Mol Ecol 2022; 32:1581-1591. [PMID: 36560898 DOI: 10.1111/mec.16832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Repeated phenotypic patterns among populations undergoing parallel evolution in similar environments provide support for the deterministic role of natural selection. Epigenetic modifications can mediate plastic and evolved phenotypic responses to environmental change and might make important contributions to parallel adaptation. While many studies have explored the genetic basis of repeated phenotypic divergence, the role of epigenetic processes during parallel adaptation remains unclear. The parallel evolution of freshwater ecotypes of threespine stickleback fish (Gasterosteus aculeatus) following colonization of thousands of lakes and streams from the ocean is a classic example of parallel phenotypic and genotypic adaptation. To investigate epigenetic modifications during parallel adaptation of threespine stickleback, we reanalysed three independent data sets that investigated DNA methylation variation between marine and freshwater ecotypes. Although we found widespread methylation differentiation between ecotypes, there was no significant tendency for CpG sites associated with repeated methylation differentiation across studies to be parallel versus nonparallel. To next investigate the role of plastic versus evolved changes in methylation during freshwater adaptation, we explored if CpG sites exhibiting methylation plasticity during salinity change were more likely to also show evolutionary divergence in methylation between ecotypes. The directions of divergence between ecotypes were generally in the opposite direction to those observed for plasticity when ecotypes were challenged with non-native salinity conditions, suggesting that most plastic responses are likely to be maladaptive during colonization of new environments. Finally, we found a greater number of CpG sites showing evolved changes when ancestral marine ecotypes are acclimated to freshwater environments, whereas plastic changes predominate when derived freshwater ecotypes transition back to their ancestral marine environments. These findings provide evidence for an epigenetic contribution to parallel adaptation and demonstrate the contrasting roles of plastic and evolved methylation differences during adaptation to new environments.
Collapse
Affiliation(s)
- Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Rosvall KA. Evolutionary endocrinology and the problem of Darwin's tangled bank. Horm Behav 2022; 146:105246. [PMID: 36029721 DOI: 10.1016/j.yhbeh.2022.105246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
Like Darwin's tangled bank of biodiversity, the endocrine mechanisms that give rise to phenotypic diversity also exhibit nearly endless forms. This tangled bank of mechanistic diversity can prove problematic as we seek general principles on the role of endocrine mechanisms in phenotypic evolution. A key unresolved question is therefore: to what degree are specific endocrine mechanisms re-used to bring about replicated phenotypic evolution? Related areas of inquiry are booming in molecular ecology, but behavioral traits are underrepresented in this literature. Here, I leverage the rich comparative tradition in evolutionary endocrinology to evaluate whether and how certain mechanisms may be repeated hotspots of behavioral evolutionary change. At one extreme, mechanisms may be parallel, such that evolution repeatedly uses the same gene or pathway to arrive at multiple independent (or, convergent) origins of a particular behavioral trait. At the other extreme, the building blocks of behavior may be unique, such that outwardly similar phenotypes are generated via lineage-specific mechanisms. This review synthesizes existing case studies, phylogenetic analyses, and experimental evolutionary research on mechanistic parallelism in animal behavior. These examples show that the endocrine building blocks of behavior have some elements of parallelism across replicated evolutionary events. However, support for parallelism is variable among studies, at least some of which relates to the level of complexity at which we consider sameness (i.e. pathway vs. gene level). Moving forward, we need continued experimentation and better testing of neutral models to understand whether, how - and critically, why - mechanism A is used in one lineage and mechanism B is used in another. We also need continued growth of large-scale comparative analyses, especially those that can evaluate which endocrine parameters are more or less likely to undergo parallel evolution alongside specific behavioral traits. These efforts will ultimately deepen understanding of how and why hormone-mediated behaviors are constructed the way that they are.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Indiana University, Bloomington, USA; Department of Biology, USA; Center for the Integrative Study of Animal Behavior, USA.
| |
Collapse
|
10
|
Yang F, Crossley MS, Schrader L, Dubovskiy IM, Wei SJ, Zhang R. Polygenic adaptation contributes to the invasive success of the Colorado potato beetle. Mol Ecol 2022; 31:5568-5580. [PMID: 35984732 DOI: 10.1111/mec.16666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 07/03/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
How invasive species cope with novel selective pressures with limited genetic variation is a fundamental question in molecular ecology. Several mechanisms have been proposed, but they can lack generality. Here, we addressed an alternative solution, polygenic adaptation, wherein traits that arise from multiple combinations of loci may be less sensitive to loss of variation during invasion. We tested the polygenic signal of environmental adaptation of Colorado potato beetle (CPB) introduced in Eurasia. Population genomic analyses showed declining genetic diversity in the eastward expansion of Eurasian populations, and weak population genetic structure (except for the invasion fronts in Asia). Demographic history showed that all populations shared a strong bottleneck about 100 years ago when CPB was introduced to Europe. Genome scans revealed a suite of genes involved in activity regulation functions that are plausibly related to cold stress, including some well-founded functions (e.g., the activity of phosphodiesterase, the G-protein regulator) and discrete functions. Such polygenic architecture supports the hypothesis that polygenic adaptation and potentially genetic redundancy can fuel the adaptation of CPB despite strong genetic depletion, thus representing a promising general mechanism for resolving the genetic paradox of invasion. More broadly, most complex traits based on polygenes may be less sensitive to invasive bottlenecks, thus ensuring the evolutionary success of invasive species in novel environments.
Collapse
Affiliation(s)
- Fangyuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant and Environmental Protection, Beijing, China
| | - Michael S Crossley
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware, USA
| | - Lukas Schrader
- Institute for Evolution & Biodiversity, University of Münster, Münster, Germany
| | - Ivan M Dubovskiy
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - Shu-Jun Wei
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant and Environmental Protection, Beijing, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Huang Y, Lack JB, Hoppel GT, Pool JE. Gene Regulatory Evolution in Cold-Adapted Fly Populations Neutralizes Plasticity and May Undermine Genetic Canalization. Genome Biol Evol 2022; 14:evac050. [PMID: 35380655 PMCID: PMC9017818 DOI: 10.1093/gbe/evac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/12/2022] Open
Abstract
The relationships between adaptive evolution, phenotypic plasticity, and canalization remain incompletely understood. Theoretical and empirical studies have made conflicting arguments on whether adaptive evolution may enhance or oppose the plastic response. Gene regulatory traits offer excellent potential to study the relationship between plasticity and adaptation, and they can now be studied at the transcriptomic level. Here, we take advantage of three closely related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. We measure the transcriptome-wide plasticity in gene expression levels and alternative splicing (intron usage) between warm and cold laboratory environments. We find that suspected adaptive changes in both gene expression and alternative splicing tend to neutralize the ancestral plastic response. Further, we investigate the hypothesis that adaptive evolution can lead to decanalization of selected gene regulatory traits. We find strong evidence that suspected adaptive gene expression (but not splicing) changes in cold-adapted populations are more vulnerable to the genetic perturbation of inbreeding than putatively neutral changes. We find some evidence that these patterns may reflect a loss of genetic canalization accompanying adaptation, although other processes including hitchhiking recessive deleterious variants may contribute as well. Our findings augment our understanding of genetic and environmental effects on gene regulation in the context of adaptive evolution.
Collapse
Affiliation(s)
- Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Grant T Hoppel
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Brennan RS, deMayo JA, Dam HG, Finiguerra MB, Baumann H, Pespeni MH. Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod. Nat Commun 2022; 13:1147. [PMID: 35241657 PMCID: PMC8894427 DOI: 10.1038/s41467-022-28742-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod, Acartia tonsa, in future global change conditions (high temperature and high CO2). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments. Rapid adaptation will facilitate species resilience under global climate change, but its effects on plasticity are less commonly investigated. This study shows that 20 generations of experimental adaptation in a marine copepod drives a rapid loss of plasticity that carries costs and might have impacts on future resilience to environmental change.
Collapse
Affiliation(s)
- Reid S Brennan
- Department of Biology, University of Vermont, Burlington, VT, USA. .,Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - James A deMayo
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.,Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Michael B Finiguerra
- Department of Ecology and Evolutionary Biology, University of Connecticut, Groton, CT, USA
| | - Hannes Baumann
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | | |
Collapse
|
13
|
CORRIGENDUM. Mol Ecol 2021; 30:3638-3639. [PMID: 33963795 DOI: 10.1111/mec.15926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/01/2022]
|