1
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024; 34:4968-4982.e7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
Affiliation(s)
- Ryan Greenway
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rishi De-Kayne
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anthony P Brown
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Henry Camarillo
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Cassandra Delich
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Kerry L McGowan
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Joel Nelson
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Lenin Arias-Rodriguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico
| | - Joanna L Kelley
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Michael Tobler
- University of Missouri, St. Louis, Department of Biology, 1 University Boulevard, St. Louis, MO 63121, USA; University of Missouri, St. Louis, Whitney R. Harris World Ecology Center, 1 University Boulevard, St. Louis, MO 63121, USA; Saint Louis Zoo, WildCare Institute, 1 Government Drive, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Benjelloun B, Leempoel K, Boyer F, Stucki S, Streeter I, Orozco-terWengel P, Alberto FJ, Servin B, Biscarini F, Alberti A, Engelen S, Stella A, Colli L, Coissac E, Bruford MW, Ajmone-Marsan P, Negrini R, Clarke L, Flicek P, Chikhi A, Joost S, Taberlet P, Pompanon F. Multiple genomic solutions for local adaptation in two closely related species (sheep and goats) facing the same climatic constraints. Mol Ecol 2024; 33:e17257. [PMID: 38149334 DOI: 10.1111/mec.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
The question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at putatively adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the 430 candidate adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different putative mechanisms involved in local adaptation in these two closely related species. Interestingly, the genomes of the 2 species were impacted differently by the environment, genes related to signatures of selection were most related to altitude, slope and rainfall seasonality for sheep, and summer temperature and spring rainfall for goats. The diversity of candidate adaptive pathways may result from a high number of biological functions involved in the adaptations to multiple eco-climatic gradients, and a differential role of climatic drivers on the two species, despite their co-distribution along the same environmental gradients. This study describes empirical examples of clinal variation in putatively adaptive alleles with different patterns in allele frequency distributions over continuous environmental gradients, thus showing the diversity of genetic responses in adaptive landscapes and opening new horizons for understanding genomics of adaptation in mammalian species and beyond.
Collapse
Affiliation(s)
- Badr Benjelloun
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frédéric Boyer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Florian J Alberto
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Castanet-Tolosan, France
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stefan Engelen
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Eric Coissac
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Riccardo Negrini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- AIA Associazione Italiana Allevatori, Roma, Italy
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Abdelkader Chikhi
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Taberlet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
3
|
Moreira LR, Smith BT. Convergent genomic signatures of local adaptation across a continental-scale environmental gradient. SCIENCE ADVANCES 2023; 9:eadd0560. [PMID: 37205757 PMCID: PMC10198635 DOI: 10.1126/sciadv.add0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Convergent local adaptation offers a glimpse into the role of constraint and stochasticity in adaptive evolution, in particular the extent to which similar genetic mechanisms drive adaptation to common selective forces. Here, we investigated the genomics of local adaptation in two nonsister woodpeckers that are codistributed across an entire continent and exhibit remarkably convergent patterns of geographic variation. We sequenced the genomes of 140 individuals of Downy (Dryobates pubescens) and Hairy (Dryobates villosus) woodpeckers and used a suite of genomic approaches to identify loci under selection. We showed evidence that convergent genes have been targeted by selection in response to shared environmental pressures, such as temperature and precipitation. Among candidates, we found multiple genes putatively linked to key phenotypic adaptations to climate, including differences in body size (e.g., IGFPB) and plumage (e.g., MREG). These results are consistent with genetic constraints limiting the pathways of adaptation to broad climatic gradients, even after genetic backgrounds diverge.
Collapse
Affiliation(s)
- Lucas R. Moreira
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
- Department of Ornithology, American Museum of Natural History, New York City, NY, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York City, NY, USA
| |
Collapse
|
4
|
Kang N, Hu H, Huang Z, Luo S, Guo S. Environmental Factors Drive Chalcid Body Size Increases with Altitudinal Gradients for Two Hyper-Diverse Taxa. INSECTS 2023; 14:67. [PMID: 36661995 PMCID: PMC9865982 DOI: 10.3390/insects14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Body size is the most essential feature that significantly correlates with insects' longevity, fecundity, metabolic rate, and sex ratio. Numerous biogeographical rules have been proposed to illustrate the correlation between the body sizes of different taxa and corresponding geographical or environmental factors. Whether the minute and multifarious chalcids exhibit a similar geographical pattern is still little known. In this research, we analyzed morphological data from 2953 specimens worldwide, including the two most abundant and diverse taxa (Pteromalidae and Eulophidae), which are both composed of field-collected and BOLD system specimens. We examined forewing length as a surrogate of body size and analyzed the average size separately for males and females using two methods (species and assemblage-based method). To verify Bergmann's rule, we included temperature, precipitation, wind speed and solar radiation as explanatory variables in a generalized linear model to analyze the causes of the size variation. We found that there was an increasing trend in the body size of Pteromalidae and Eulophidae with altitude. The optimal Akaike information criterion (AIC) models showed that larger sizes are significantly negatively correlated with temperature and positively correlated with precipitation, and the possible reasons for this variation are discussed and analyzed.
Collapse
Affiliation(s)
- Ning Kang
- College of Life Science and Technology, Xinjiang University, Urumqi 830049, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Hongying Hu
- College of Life Science and Technology, Xinjiang University, Urumqi 830049, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Zengqian Huang
- College of Life Science and Technology, Xinjiang University, Urumqi 830049, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Shungang Luo
- College of Life Science and Technology, Xinjiang University, Urumqi 830049, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Shuhan Guo
- College of Life Science and Technology, Xinjiang University, Urumqi 830049, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| |
Collapse
|
5
|
Pereira Martins AR, Martins LP, Ho W, McMillan WO, Ready JS, Barrett R. Scale-dependent environmental effects on phenotypic distributions in Heliconius butterflies. Ecol Evol 2022; 12:e9286. [PMID: 36177141 PMCID: PMC9471044 DOI: 10.1002/ece3.9286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Identifying the relative importance of different mechanisms responsible for the emergence and maintenance of phenotypic diversity can be challenging, as multiple selective pressures and stochastic events are involved in these processes. Therefore, testing how environmental conditions shape the distribution of phenotypes can offer important insights on local adaptation, divergence, and speciation. The red-yellow Müllerian mimicry ring of Heliconius butterflies exhibits a wide diversity of color patterns across the Neotropics and is involved in multiple hybrid zones, making it a powerful system to investigate environmental drivers of phenotypic distributions. Using the distantly related Heliconius erato and Heliconius melpomene co-mimics and a multiscale distribution approach, we investigated whether distinct phenotypes of these species are associated with different environmental conditions. We show that Heliconius red-yellow phenotypic distribution is strongly driven by environmental gradients (especially thermal and precipitation variables), but that phenotype and environment associations vary with spatial scale. While co-mimics are usually predicted to occur in similar environments at large spatial scales, patterns at local scales are not always consistent (i.e., different variables are best predictors of phenotypic occurrence in different locations) or congruent (i.e., co-mimics show distinct associations with environment). We suggest that large-scale analyses are important for identifying how environmental factors shape broad mimetic phenotypic distributions, but that local studies are essential to understand the context-dependent biotic, abiotic, and historical mechanisms driving finer-scale phenotypic transitions.
Collapse
Affiliation(s)
- Ananda R. Pereira Martins
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Lucas P. Martins
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | | | | | - Jonathan S. Ready
- Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
| | | |
Collapse
|
6
|
Repeated genetic adaptation to altitude in two tropical butterflies. Nat Commun 2022; 13:4676. [PMID: 35945236 PMCID: PMC9363431 DOI: 10.1038/s41467-022-32316-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/26/2022] [Indexed: 01/02/2023] Open
Abstract
Repeated evolution can provide insight into the mechanisms that facilitate adaptation to novel or changing environments. Here we study adaptation to altitude in two tropical butterflies, Heliconius erato and H. melpomene, which have repeatedly and independently adapted to montane habitats on either side of the Andes. We sequenced 518 whole genomes from altitudinal transects and found many regions differentiated between highland (~ 1200 m) and lowland (~ 200 m) populations. We show repeated genetic differentiation across replicate populations within species, including allopatric comparisons. In contrast, there is little molecular parallelism between the two species. By sampling five close relatives, we find that a large proportion of divergent regions identified within species have arisen from standing variation and putative adaptive introgression from high-altitude specialist species. Taken together our study supports a role for both standing genetic variation and gene flow from independently adapted species in promoting parallel local adaptation to the environment. Here, the authors study adaptation to altitude in 518 whole genomes from two species of tropical butterflies. They find repeated genetic differentiation within species, little molecular parallelism between these species, and introgression from closely related species, concluding that standing genetic variation promotes parallel local adaptation.
Collapse
|
7
|
Rieseberg L, Warschefsky E, O'Boyle B, Taberlet P, Ortiz-Barrientos D, Kane NC, Sibbett B. Editorial 2022. Mol Ecol 2021; 31:1-30. [PMID: 34957606 DOI: 10.1111/mec.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Loren Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Univ. Grenoble Alpes, Grenoble Cedex 9, France
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queenland, St. Lucia, Queensland, Australia
| | - Nolan C Kane
- University of Colorado at Boulder, Boulder, Colorado, USA
| | | |
Collapse
|
8
|
Taylor RS, Jensen EL, Coltman DW, Foote AD, Lamichhaney S. Seeing the whole picture: What molecular ecology is gaining from whole genomes. Mol Ecol 2021; 30:5917-5922. [PMID: 34845797 DOI: 10.1111/mec.16282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Rebecca S Taylor
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Biology Department, Western University, London, Ontario, Canada
| | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|