1
|
Kalita AI, Keller Valsecchi CI. Dosage compensation in non-model insects - progress and perspectives. Trends Genet 2024:S0168-9525(24)00207-5. [PMID: 39341686 DOI: 10.1016/j.tig.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.
Collapse
|
2
|
Šimková H, Câmara AS, Mascher M. Hi-C techniques: from genome assemblies to transcription regulation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5357-5365. [PMID: 38430521 DOI: 10.1093/jxb/erae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/04/2024]
Abstract
The invention of chromosome conformation capture (3C) techniques, in particular the key method Hi-C providing genome-wide information about chromatin contacts, revolutionized the way we study the three-dimensional organization of the nuclear genome and how it affects transcription, replication, and DNA repair. Because the frequency of chromatin contacts between pairs of genomic segments predictably relates to the distance in the linear genome, the information obtained by Hi-C has also proved useful for scaffolding genomic sequences. Here, we review recent improvements in experimental procedures of Hi-C and its various derivatives, such as Micro-C, HiChIP, and Capture Hi-C. We assess the advantages and limitations of the techniques, and present examples of their use in recent plant studies. We also report on progress in the development of computational tools used in assembling genome sequences.
Collapse
Affiliation(s)
- Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, CZ-779 00 Olomouc, Czech Republic
| | - Amanda Souza Câmara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, D-06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
3
|
Sato M, Fukuda K, Kadota M, Makino-Itou H, Tatsumi K, Yamauchi S, Kuraku S. Chromosomal DNA sequences of the Pacific saury genome: versatile resources for fishery science and comparative biology. DNA Res 2024; 31:dsae004. [PMID: 38451834 PMCID: PMC11090075 DOI: 10.1093/dnares/dsae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
Pacific saury (Cololabis saira) is a commercially important small pelagic fish species in Asia. In this study, we conducted the first-ever whole genome sequencing of this species, with single molecule, real-time (SMRT) sequencing technology. The obtained high-fidelity (HiFi) long-read sequence data, which amount to ~30-folds of its haploid genome size that was measured with quantitative PCR (1.17 Gb), were assembled into contigs. Scaffolding with Hi-C reads yielded a whole genome assembly containing 24 chromosome-scale sequences, with a scaffold N50 length of 47.7 Mb. Screening of repetitive elements including telomeric repeats was performed to characterize possible factors that need to be resolved towards 'telomere-to-telomere' sequencing. The larger genome size than in medaka, a close relative in Beloniformes, is at least partly explained by larger repetitive element quantity, which is reflected in more abundant tRNAs, in the Pacific saury genome. Protein-coding regions were predicted using transcriptome data, which resulted in 22,274 components. Retrieval of Pacific saury homologs of aquaporin (AQP) genes known from other teleost fishes validated high completeness and continuity of the genome assembly. These resources are available at https://treethinkers.nig.ac.jp/saira/ and will assist various molecular-level studies in fishery science and comparative biology.
Collapse
Affiliation(s)
- Mana Sato
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kazuya Fukuda
- Laboratory of Reproductive Physiology of Aquatic Organisms, School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hatsune Makino-Itou
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kaori Tatsumi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Shinya Yamauchi
- Fukushima Marine Science Museum (Aquamarine Fukushima), Iwaki, Fukushima, Japan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| |
Collapse
|
4
|
Taylor RS, Manseau M, Keobouasone S, Liu P, Mastromonaco G, Solmundson K, Kelly A, Larter NC, Gamberg M, Schwantje H, Thacker C, Polfus J, Andrew L, Hervieux D, Simmons D, Wilson PJ. High genetic load without purging in caribou, a diverse species at risk. Curr Biol 2024; 34:1234-1246.e7. [PMID: 38417444 DOI: 10.1016/j.cub.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
High intra-specific genetic diversity is associated with adaptive potential, which is key for resilience to global change. However, high variation may also support deleterious alleles through genetic load, thereby increasing the risk of inbreeding depression if population sizes decrease. Purging of deleterious variation has been demonstrated in some threatened species. However, less is known about the costs of declines and inbreeding in species with large population sizes and high genetic diversity even though this encompasses many species globally that are expected to undergo population declines. Caribou is a species of ecological and cultural significance in North America with a wide distribution supporting extensive phenotypic variation but with some populations undergoing significant declines resulting in their at-risk status in Canada. We assessed intra-specific genetic variation, adaptive divergence, inbreeding, and genetic load across populations with different demographic histories using an annotated chromosome-scale reference genome and 66 whole-genome sequences. We found high genetic diversity and nine phylogenomic lineages across the continent with adaptive diversification of genes, but also high genetic load among lineages. We found highly divergent levels of inbreeding across individuals, including the loss of alleles by drift but not increased purging in inbred individuals, which had more homozygous deleterious alleles. We also found comparable frequencies of homozygous deleterious alleles between lineages regardless of nucleotide diversity. Thus, further inbreeding may need to be mitigated through conservation efforts. Our results highlight the "double-edged sword" of genetic diversity that may be representative of other species atrisk affected by anthropogenic activities.
Collapse
Affiliation(s)
- Rebecca S Taylor
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Micheline Manseau
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Sonesinh Keobouasone
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Peng Liu
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | | | - Kirsten Solmundson
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 1Z8, Canada
| | - Allicia Kelly
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Nicholas C Larter
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Mary Gamberg
- Gamberg Consulting, Jarvis Street, Whitehorse, YK Y1A 2J2, Canada
| | - Helen Schwantje
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Caeley Thacker
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Jean Polfus
- Canadian Wildlife Service - Pacific Region, Environment and Climate Change Canada, 1238 Discovery Avenue, Kelowna, BC V1V 1V9, Canada
| | - Leon Andrew
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Dave Hervieux
- Alberta Ministry of Environment and Protected Areas, Government of Alberta, 10320-99 Street, Grande Prairie, AB T8V 6J4, Canada
| | - Deborah Simmons
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Paul J Wilson
- Biology Department, Trent University, East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| |
Collapse
|
5
|
Young BD, Williamson OM, Kron NS, Andrade Rodriguez N, Isma LM, MacKnight NJ, Muller EM, Rosales SM, Sirotzke SM, Traylor-Knowles N, Williams SD, Studivan MS. Annotated genome and transcriptome of the endangered Caribbean mountainous star coral (Orbicella faveolata) using PacBio long-read sequencing. BMC Genomics 2024; 25:226. [PMID: 38424480 PMCID: PMC10905781 DOI: 10.1186/s12864-024-10092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Long-read sequencing is revolutionizing de-novo genome assemblies, with continued advancements making it more readily available for previously understudied, non-model organisms. Stony corals are one such example, with long-read de-novo genome assemblies now starting to be publicly available, opening the door for a wide array of 'omics-based research. Here we present a new de-novo genome assembly for the endangered Caribbean star coral, Orbicella faveolata, using PacBio circular consensus reads. Our genome assembly improved the contiguity (51 versus 1,933 contigs) and complete and single copy BUSCO orthologs (93.6% versus 85.3%, database metazoa_odb10), compared to the currently available reference genome generated using short-read methodologies. Our new de-novo assembled genome also showed comparable quality metrics to other coral long-read genomes. Telomeric repeat analysis identified putative chromosomes in our scaffolded assembly, with these repeats at either one, or both ends, of scaffolded contigs. We identified 32,172 protein coding genes in our assembly through use of long-read RNA sequencing (ISO-seq) of additional O. faveolata fragments exposed to a range of abiotic and biotic treatments, and publicly available short-read RNA-seq data. With anthropogenic influences heavily affecting O. faveolata, as well as its increasing incorporation into reef restoration activities, this updated genome resource can be used for population genomics and other 'omics analyses to aid in the conservation of this species.
Collapse
Affiliation(s)
- Benjamin D Young
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA.
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA.
| | - Olivia M Williamson
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Natalia Andrade Rodriguez
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Lys M Isma
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Nicholas J MacKnight
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | | | - Stephanie M Rosales
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | | | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | | | - Michael S Studivan
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| |
Collapse
|
6
|
Al-Jawabreh R, Lastik D, McKenzie D, Reynolds K, Suleiman M, Mousley A, Atkinson L, Hunt V. Advancing Strongyloides omics data: bridging the gap with Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220437. [PMID: 38008117 PMCID: PMC10676819 DOI: 10.1098/rstb.2022.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 11/28/2023] Open
Abstract
Among nematodes, the free-living model organism Caenorhabditis elegans boasts the most advanced portfolio of high-quality omics data. The resources available for parasitic nematodes, including Strongyloides spp., however, are lagging behind. While C. elegans remains the most tractable nematode and has significantly advanced our understanding of many facets of nematode biology, C. elegans is not suitable as a surrogate system for the study of parasitism and it is important that we improve the omics resources available for parasitic nematode species. Here, we review the omics data available for Strongyloides spp. and compare the available resources to those for C. elegans and other parasitic nematodes. The advancements in C. elegans omics offer a blueprint for improving omics-led research in Strongyloides. We suggest areas of priority for future research that will pave the way for expansions in omics resources and technologies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Reem Al-Jawabreh
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Dominika Lastik
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - Kieran Reynolds
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Mona Suleiman
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Vicky Hunt
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
7
|
Feldmeyer B, Bornberg-Bauer E, Dohmen E, Fouks B, Heckenhauer J, Huylmans AK, Jones ARC, Stolle E, Harrison MC. Comparative Evolutionary Genomics in Insects. Methods Mol Biol 2024; 2802:473-514. [PMID: 38819569 DOI: 10.1007/978-1-0716-3838-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.
Collapse
Affiliation(s)
- Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Bertrand Fouks
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Ann Kathrin Huylmans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Alun R C Jones
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Eckart Stolle
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
8
|
Nuss AB, Lomas JS, Reyes JB, Garcia-Cruz O, Lei W, Sharma A, Pham MN, Beniwal S, Swain ML, McVicar M, Hinne IA, Zhang X, Yim WC, Gulia-Nuss M. The highly improved genome of Ixodes scapularis with X and Y pseudochromosomes. Life Sci Alliance 2023; 6:e202302109. [PMID: 37813487 PMCID: PMC10561763 DOI: 10.26508/lsa.202302109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Ixodes scapularis, the black-legged tick, is the principal vector of the Lyme disease spirochete, Borrelia burgdorferi, and is responsible for most of the ∼470,000 estimated Lyme disease cases annually in the USA. Ixodes scapularis can transmit six additional pathogens of human health significance. Because of its medical importance, I. scapularis was the first tick genome to be sequenced and annotated. However, the first assembly, I. scapularis Wikel (IscaW), was highly fragmented because of the technical challenges posed by the long, repetitive genome sequences characteristic of arthropod genomes and the lack of long-read sequencing techniques. Although I. scapularis has emerged as a model for tick research because of the availability of new tools such as embryo injection and CRISPR-Cas9-mediated gene editing yet the lack of chromosome-scale scaffolds has slowed progress in tick biology and the development of tools for their control. Here we combine diverse technologies to produce the I. scapularis Gulia-Nuss (IscGN) genome assembly and gene set. We used DNA from eggs and male and female adult ticks and took advantage of Hi-C, PacBio HiFi sequencing, and Illumina short-read sequencing technologies to produce a chromosome-level assembly. In this work, we present the predicted pseudochromosomes consisting of 13 autosomes and the sex pseudochromosomes: X and Y, and a markedly improved genome annotation compared with the existing assemblies and annotations.
Collapse
Affiliation(s)
- Andrew B Nuss
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
- https://ror.org/01keh0577 Department of Agriculture, Veterinary, and Rangeland Sciences, The University of Nevada, Reno, NV, USA
| | - Johnathan S Lomas
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Jeremiah B Reyes
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
- https://ror.org/01keh0577 Nevada Bioinformatics Center, University of Nevada, Reno, NV, USA
| | - Omar Garcia-Cruz
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Wenlong Lei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Arvind Sharma
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Michael N Pham
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Saransh Beniwal
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
- https://ror.org/01keh0577 Department of Computer Science and Engineering, The University of Nevada, Reno, NV, USA
| | - Mia L Swain
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Molly McVicar
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Isaac Amankona Hinne
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Xingtan Zhang
- https://ror.org/01keh0577 Nevada Bioinformatics Center, University of Nevada, Reno, NV, USA
| | - Won C Yim
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Monika Gulia-Nuss
- https://ror.org/01keh0577 Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| |
Collapse
|
9
|
Hou Y, Wang L, Pan W. Comparison of Hi-C-Based Scaffolding Tools on Plant Genomes. Genes (Basel) 2023; 14:2147. [PMID: 38136968 PMCID: PMC10742964 DOI: 10.3390/genes14122147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
De novo genome assembly holds paramount significance in the field of genomics. Scaffolding, as a pivotal component within the genome assembly process, is instrumental in determining the orientation and arrangement of contigs, ultimately facilitating the generation of a chromosome-level assembly. Scaffolding is contingent on supplementary linkage information, including paired-end reads, bionano, physical mapping, genetic mapping, and Hi-C (an abbreviation for High-throughput Chromosome Conformation Capture). In recent years, Hi-C has emerged as the predominant source of linkage information in scaffolding, attributed to its capacity to offer long-range signals, leading to the development of numerous Hi-C-based scaffolding tools. However, to the best of our knowledge, there has been a paucity of comprehensive studies assessing and comparing the efficacy of these tools. In order to address this gap, we meticulously selected six tools, namely LACHESIS, pin_hic, YaHS, SALSA2, 3d-DNA, and ALLHiC, and conducted a comparative analysis of their performance across haploid, diploid, and polyploid genomes. This endeavor has yielded valuable insights in advancing the field of genome scaffolding research.
Collapse
Affiliation(s)
- Yuze Hou
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Li Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Weihua Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
10
|
Bringloe TT, Parent GJ. Contrasting new and available reference genomes to highlight uncertainties in assemblies and areas for future improvement: an example with monodontid species. BMC Genomics 2023; 24:693. [PMID: 37985969 PMCID: PMC10659057 DOI: 10.1186/s12864-023-09779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Reference genomes provide a foundational framework for evolutionary investigations, ecological analysis, and conservation science, yet uncertainties in the assembly of reference genomes are difficult to assess, and by extension rarely quantified. Reference genomes for monodontid cetaceans span a wide spectrum of data types and analytical approaches, providing the context to derive broader insights related to discrepancies and regions of uncertainty in reference genome assembly. We generated three beluga (Delphinapterus leucas) and one narwhal (Monodon monoceros) reference genomes and contrasted these with published chromosomal scale assemblies for each species to quantify discrepancies associated with genome assemblies. RESULTS The new reference genomes achieved chromosomal scale assembly using a combination of PacBio long reads, Illumina short reads, and Hi-C scaffolding data. For beluga, we identified discrepancies in the order and orientation of contigs in 2.2-3.7% of the total genome depending on the pairwise comparison of references. In addition, unsupported higher order scaffolding was identified in published reference genomes. In contrast, we estimated 8.2% of the compared narwhal genomes featured discrepancies, with inversions being notably abundant (5.3%). Discrepancies were linked to repetitive elements in both species. CONCLUSIONS We provide several new reference genomes for beluga (Delphinapterus leucas), while highlighting potential avenues for improvements. In particular, additional layers of data providing information on ultra-long genomic distances are needed to resolve persistent errors in reference genome construction. The comparative analyses of monodontid reference genomes suggested that the three new reference genomes for beluga are more accurate compared to the currently published reference genome, but that the new narwhal genome is less accurate than one published. We also present a conceptual summary for improving the accuracy of reference genomes with relevance to end-user needs and how they relate to levels of assembly quality and uncertainty.
Collapse
Affiliation(s)
- Trevor T Bringloe
- Laboratory of Genomics, Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, QC, Canada.
| | - Geneviève J Parent
- Laboratory of Genomics, Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, QC, Canada.
| |
Collapse
|
11
|
Palacios C, Wang P, Wang N, Brown MA, Capatosto L, Du J, Jiang J, Zhang Q, Dahal N, Lamichhaney S. Genomic Variation, Population History, and Long-Term Genetic Adaptation to High Altitudes in Tibetan Partridge (Perdix hodgsoniae). Mol Biol Evol 2023; 40:msad214. [PMID: 37768198 PMCID: PMC10583571 DOI: 10.1093/molbev/msad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Species residing across elevational gradients display adaptations in response to environmental changes such as oxygen availability, ultraviolet radiation, and temperature. Here, we study genomic variation, gene expression, and long-term adaptation in Tibetan Partridge (Perdix hodgsoniae) populations residing across the elevational gradient of the Tibetan Plateau. We generated a high-quality draft genome and used it to carry out downstream population genomic and transcriptomic analysis. The P. hodgsoniae populations residing across various elevations were genetically distinct, and their phylogenetic clustering was consistent with their geographic distribution. We identified possible evidence of gene flow between populations residing in <3,000 and >4,200 m elevation that is consistent with known habitat expansion of high-altitude populations of P. hodgsoniae to a lower elevation. We identified a 60 kb haplotype encompassing the Estrogen Receptor 1 (ESR1) gene, showing strong genetic divergence between populations of P. hodgsoniae. We identified six single nucleotide polymorphisms within the ESR1 gene fixed for derived alleles in high-altitude populations that are strongly conserved across vertebrates. We also compared blood transcriptome profiles and identified differentially expressed genes (such as GAPDH, LDHA, and ALDOC) that correlated with differences in altitude among populations of P. hodgsoniae. These candidate genes from population genomics and transcriptomics analysis were enriched for neutrophil degranulation and glycolysis pathways, which are known to respond to hypoxia and hence may contribute to long-term adaptation to high altitudes in P. hodgsoniae. Our results highlight Tibetan Partridges as a useful model to study molecular mechanisms underlying long-term adaptation to high altitudes.
Collapse
Affiliation(s)
- Catalina Palacios
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Pengcheng Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Nan Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Megan A Brown
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Lukas Capatosto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jiahu Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qingze Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Nishma Dahal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
12
|
Olazagoitia-Garmendia A, Senovilla-Ganzo R, García-Moreno F, Castellanos-Rubio A. Functional evolutionary convergence of long noncoding RNAs involved in embryonic development. Commun Biol 2023; 6:908. [PMID: 37670146 PMCID: PMC10480150 DOI: 10.1038/s42003-023-05278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Long noncoding RNAs have been identified in most vertebrates, but the functional characterization of these molecules is challenging, mainly due to the lack of linear sequence homology between species. In this work, we aimed to find functional evolutionary convergent lncRNAs involved in development by screening of k-mer content (nonlinear similarity) and secondary structure-based approaches combining in silico, in vitro and in vivo validation analysis. From the Madagascar gecko genes, we have found a non-orthologous lncRNA with a similar k-mer content and structurally concordant with the human lncRNA EVX1AS. Analysis of function-related characteristics together with locus-specific targeting of human EVX1AS and gecko EVX1AS-like (i.e., CRISPR Display) in human neuroepithelial cells and chicken mesencephalon have confirmed that gecko EVX1AS-like lncRNA mimics human EVX1AS function and induces EVX1 expression independently of the target species. Our data shows functional convergence of non-homologous lncRNAs and presents a useful approach for the definition and manipulation of lncRNA function within different model organisms.
Collapse
Affiliation(s)
- Ane Olazagoitia-Garmendia
- University of the Basque Country, UPV-EHU, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Fernando García-Moreno
- University of the Basque Country, UPV-EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ainara Castellanos-Rubio
- University of the Basque Country, UPV-EHU, Leioa, Spain.
- Biobizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- CIBERDEM/CIBERER, Madrid, Spain.
| |
Collapse
|
13
|
Pinto BJ, Gamble T, Smith CH, Keating SE, Havird JC, Chiari Y. The revised reference genome of the leopard gecko (Eublepharis macularius) provides insight into the considerations of genome phasing and assembly. J Hered 2023; 114:513-520. [PMID: 36869788 PMCID: PMC10445513 DOI: 10.1093/jhered/esad016] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest-quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified 9 of the 19 chromosomal scaffolds were assembled as a near-single contig, whereas the other 10 chromosomes were each scaffolded together from multiple contigs. We qualitatively identified that the percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction of previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
- Department of Biological Sciences, Marquette University, Milwaukee WI, USA
- Bell Museum of Natural History, University of Minnesota, St Paul, MN, USA
| | - Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Shannon E Keating
- Department of Biological Sciences, Marquette University, Milwaukee WI, USA
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, USA
| |
Collapse
|
14
|
Knyshov A, Gordon ERL, Masonick PK, Castillo S, Forero D, Hoey-Chamberlain R, Hwang WS, Johnson KP, Lemmon AR, Moriarty Lemmon E, Standring S, Zhang J, Weirauch C. Chromosome-Aware Phylogenomics of Assassin Bugs (Hemiptera: Reduvioidea) Elucidates Ancient Gene Conflict. Mol Biol Evol 2023; 40:msad168. [PMID: 37494292 PMCID: PMC10411492 DOI: 10.1093/molbev/msad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Though the phylogenetic signal of loci on sex chromosomes can differ from those on autosomes, chromosomal-level genome assemblies for nonvertebrates are still relatively scarce and conservation of chromosomal gene content across deep phylogenetic scales has therefore remained largely unexplored. We here assemble a uniquely large and diverse set of samples (17 anchored hybrid enrichment, 24 RNA-seq, and 70 whole-genome sequencing samples of variable depth) for the medically important assassin bugs (Reduvioidea). We assess the performance of genes based on multiple features (e.g., nucleotide vs. amino acid, nuclear vs. mitochondrial, and autosomal vs. X chromosomal) and employ different methods (concatenation and coalescence analyses) to reconstruct the unresolved phylogeny of this diverse (∼7,000 spp.) and old (>180 Ma) group. Our results show that genes on the X chromosome are more likely to have discordant phylogenies than those on autosomes. We find that the X chromosome conflict is driven by high gene substitution rates that impact the accuracy of phylogenetic inference. However, gene tree clustering showed strong conflict even after discounting variable third codon positions. Alternative topologies were not particularly enriched for sex chromosome loci, but spread across the genome. We conclude that binning genes to autosomal or sex chromosomes may result in a more accurate picture of the complex evolutionary history of a clade.
Collapse
Affiliation(s)
- Alexander Knyshov
- Department of Entomology, University of California, Riverside, CA, USA
| | - Eric R L Gordon
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, CT, USA
| | - Paul K Masonick
- Department of Entomology, University of California, Riverside, CA, USA
| | | | - Dimitri Forero
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, National University of Singapore, Queenstown, Singapore
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | | | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, China
| | | |
Collapse
|
15
|
Abe T, Kaneko M, Kiyonari H. A reverse genetic approach in geckos with the CRISPR/Cas9 system by oocyte microinjection. Dev Biol 2023; 497:26-32. [PMID: 36868446 DOI: 10.1016/j.ydbio.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
Reptiles are important model organisms in developmental and evolutionary biology, but are used less widely than other amniotes such as mouse and chicken. One of the main reasons for this is that has proven difficult to conduct CRISPR/Cas9-mediated genome editing in many reptile species despite the widespread use of this technology in other taxa. Certain features of reptile reproductive systems make it difficult to access one-cell or early-stage zygotes, which represents a key impediment to gene editing techniques. Recently, Rasys and colleagues reported a genome editing method using oocyte microinjection that allowed them to produce genome-edited Anolis lizards. This method opened a new avenue to reverse genetics studies in reptiles. In the present article, we report the development of a related method for genome editing in the Madagascar ground gecko (Paroedura picta), a well-established experimental model, and describe the generation of Tyr and Fgf10 gene-knockout geckos in the F0 generation.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
16
|
Kuraku S, Kaiya H, Tanaka T, Hyodo S. Evolution of Vertebrate Hormones and Their Receptors: Insights from Non-Osteichthyan Genomes. Annu Rev Anim Biosci 2023; 11:163-182. [PMID: 36400012 DOI: 10.1146/annurev-animal-050922-071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeostatic control and reproductive functions of humans are regulated at the molecular levels largely by peptide hormones secreted from endocrine and/or neuroendocrine cells in the central nervous system and peripheral organs. Homologs of those hormones and their receptors function similarly in many vertebrate species distantly related to humans, but the evolutionary history of the endocrine system involving those factors has been obscured by the scarcity of genome DNA sequence information of some taxa that potentially contain their orthologs. Focusing on non-osteichthyan vertebrates, namely jawless and cartilaginous fishes, this article illustrates how investigating genome sequence information assists our understanding of the diversification of vertebrate gene repertoires in four broad themes: (a) the presence or absence of genes, (b) multiplication and maintenance of paralogs, (c) differential fates of duplicated paralogs, and (d) the evolutionary timing of gene origins.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan; .,Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hiroyuki Kaiya
- Grandsoul Research Institute of Immunology, Inc., Uda, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
17
|
Marcolungo L, Vincenzi L, Ballottari M, Cecchin M, Cosentino E, Mignani T, Limongi A, Ferraris I, Orlandi M, Rossato M, Delledonne M. Structural Refinement by Direct Mapping Reveals Assembly Inconsistencies near Hi-C Junctions. PLANTS (BASEL, SWITZERLAND) 2023; 12:320. [PMID: 36679033 PMCID: PMC9861903 DOI: 10.3390/plants12020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
High-throughput chromosome conformation capture (Hi-C) is widely used for scaffolding in de novo assembly because it produces highly contiguous genomes, but its indirect statistical approach can introduce connection errors. We employed optical mapping (Bionano Genomics) as an orthogonal scaffolding technology to assess the structural solidity of Hi-C reconstructed scaffolds. Optical maps were used to assess the correctness of five de novo genome assemblies based on long-read sequencing for contig generation and Hi-C for scaffolding. Hundreds of inconsistencies were found between the reconstructions generated using the Hi-C and optical mapping approaches. Manual inspection, exploiting raw long-read sequencing data and optical maps, confirmed that several of these conflicts were derived from Hi-C joining errors. Such misjoins were widespread, involved the connection of both small and large contigs, and even overlapped annotated genes. We conclude that the integration of optical mapping data after, not before, Hi-C-based scaffolding, improves the quality of the assembly and limits reconstruction errors by highlighting misjoins that can then be subjected to further investigation.
Collapse
Affiliation(s)
- Luca Marcolungo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Leonardo Vincenzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michela Cecchin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | - Thomas Mignani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Antonina Limongi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Irene Ferraris
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Matteo Orlandi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Genartis srl, Via IV Novembre 24, 37126 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Genartis srl, Via IV Novembre 24, 37126 Verona, Italy
| |
Collapse
|
18
|
Comparison of Long-Read Methods for Sequencing and Assembly of Lepidopteran Pest Genomes. Int J Mol Sci 2022; 24:ijms24010649. [PMID: 36614092 PMCID: PMC9820851 DOI: 10.3390/ijms24010649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
Lepidopteran species are mostly pests, causing serious annual economic losses. High-quality genome sequencing and assembly uncover the genetic foundation of pest occurrence and provide guidance for pest control measures. Long-read sequencing technology and assembly algorithm advances have improved the ability to timeously produce high-quality genomes. Lepidoptera includes a wide variety of insects with high genetic diversity and heterozygosity. Therefore, the selection of an appropriate sequencing and assembly strategy to obtain high-quality genomic information is urgently needed. This research used silkworm as a model to test genome sequencing and assembly through high-coverage datasets by de novo assemblies. We report the first nearly complete telomere-to-telomere reference genome of silkworm Bombyx mori (P50T strain) produced by Pacific Biosciences (PacBio) HiFi sequencing, and highly contiguous and complete genome assemblies of two other silkworm strains by Oxford Nanopore Technologies (ONT) or PacBio continuous long-reads (CLR) that were unrepresented in the public database. Assembly quality was evaluated by use of BUSCO, Inspector, and EagleC. It is necessary to choose an appropriate assembler for draft genome construction, especially for low-depth datasets. For PacBio CLR and ONT sequencing, NextDenovo is superior. For PacBio HiFi sequencing, hifiasm is better. Quality assessment is essential for genome assembly and can provide better and more accurate results. For chromosome-level high-quality genome construction, we recommend using 3D-DNA with EagleC evaluation. Our study references how to obtain and evaluate high-quality genome assemblies, and is a resource for biological control, comparative genomics, and evolutionary studies of Lepidopteran pests and related species.
Collapse
|
19
|
Draft genome of the bluefin tuna blood fluke, Cardicola forsteri. PLoS One 2022; 17:e0276287. [PMID: 36240154 PMCID: PMC9565688 DOI: 10.1371/journal.pone.0276287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The blood fluke Cardicola forsteri (Trematoda: Aporocotylidae) is a pathogen of ranched bluefin tuna in Japan and Australia. Genomics of Cardicola spp. have thus far been limited to molecular phylogenetics of select gene sequences. In this study, sequencing of the C. forsteri genome was performed using Illumina short-read and Oxford Nanopore long-read technologies. The sequences were assembled de novo using a hybrid of short and long reads, which produced a high-quality contig-level assembly (N50 > 430 kb and L50 = 138). The assembly was also relatively complete and unfragmented, comprising 66% and 7.2% complete and fragmented metazoan Benchmarking Universal Single-Copy Orthologs (BUSCOs), respectively. A large portion (> 55%) of the genome was made up of intergenic repetitive elements, primarily long interspersed nuclear elements (LINEs), while protein-coding regions cover > 6%. Gene prediction identified 8,564 hypothetical polypeptides, > 77% of which are homologous to published sequences of other species. The identification of select putative proteins, including cathepsins, calpains, tetraspanins, and glycosyltransferases is discussed. This is the first genome assembly of any aporocotylid, a major step toward understanding of the biology of this family of fish blood flukes and their interactions within hosts.
Collapse
|
20
|
Pinto BJ, Keating SE, Nielsen SV, Scantlebury DP, Daza JD, Gamble T. Chromosome-Level Genome Assembly Reveals Dynamic Sex Chromosomes in Neotropical Leaf-Litter Geckos (Sphaerodactylidae: Sphaerodactylus). J Hered 2022; 113:272-287. [PMID: 35363859 PMCID: PMC9270867 DOI: 10.1093/jhered/esac016] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Sex determination is a critical element of successful vertebrate development, suggesting that sex chromosome systems might be evolutionarily stable across lineages. For example, mammals and birds have maintained conserved sex chromosome systems over long evolutionary time periods. Other vertebrates, in contrast, have undergone frequent sex chromosome transitions, which is even more amazing considering we still know comparatively little across large swaths of their respective phylogenies. One reptile group in particular, the gecko lizards (infraorder Gekkota), shows an exceptional lability with regard to sex chromosome transitions and may possess the majority of transitions within squamates (lizards and snakes). However, detailed genomic and cytogenetic information about sex chromosomes is lacking for most gecko species, leaving large gaps in our understanding of the evolutionary processes at play. To address this, we assembled a chromosome-level genome for a gecko (Sphaerodactylidae: Sphaerodactylus) and used this assembly to search for sex chromosomes among six closely related species using a variety of genomic data, including whole-genome re-sequencing, RADseq, and RNAseq. Previous work has identified XY systems in two species of Sphaerodactylus geckos. We expand upon that work to identify between two and four sex chromosome cis-transitions (XY to a new XY) within the genus. Interestingly, we confirmed two different linkage groups as XY sex chromosome systems that were previously unknown to act as sex chromosomes in tetrapods (syntenic with Gallus chromosome 3 and Gallus chromosomes 18/30/33), further highlighting a unique and fascinating trend that most linkage groups have the potential to act as sex chromosomes in squamates.
Collapse
Affiliation(s)
- Brendan J Pinto
- Address correspondence to B. J. Pinto at the address above, or e-mail:
| | - Shannon E Keating
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Stuart V Nielsen
- Department of Biological Sciences, Louisiana State University in Shreveport, Shreveport, LA 71115, USA,Division of Herpetology, Florida Museum of Natural History, Gainesville, FL 32611, USA
| | | | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - Tony Gamble
- Milwaukee Public Museum, Milwaukee, WI 53233, USA,Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA,Bell Museum of Natural History, University of Minnesota, St Paul, MN 55455, USA
| |
Collapse
|
21
|
Rieseberg L, Warschefsky E, O'Boyle B, Taberlet P, Ortiz-Barrientos D, Kane NC, Sibbett B. Editorial 2022. Mol Ecol 2021; 31:1-30. [PMID: 34957606 DOI: 10.1111/mec.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Loren Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Univ. Grenoble Alpes, Grenoble Cedex 9, France
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queenland, St. Lucia, Queensland, Australia
| | - Nolan C Kane
- University of Colorado at Boulder, Boulder, Colorado, USA
| | | |
Collapse
|
22
|
Taylor RS, Jensen EL, Coltman DW, Foote AD, Lamichhaney S. Seeing the whole picture: What molecular ecology is gaining from whole genomes. Mol Ecol 2021; 30:5917-5922. [PMID: 34845797 DOI: 10.1111/mec.16282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Rebecca S Taylor
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Biology Department, Western University, London, Ontario, Canada
| | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|