1
|
Rossel S, Peters J, Charzinski N, Eichsteller A, Laakmann S, Neumann H, Martínez Arbizu P. A universal tool for marine metazoan species identification: towards best practices in proteomic fingerprinting. Sci Rep 2024; 14:1280. [PMID: 38218969 PMCID: PMC10787734 DOI: 10.1038/s41598-024-51235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Proteomic fingerprinting using MALDI-TOF mass spectrometry is a well-established tool for identifying microorganisms and has shown promising results for identification of animal species, particularly disease vectors and marine organisms. And thus can be a vital tool for biodiversity assessments in ecological studies. However, few studies have tested species identification across different orders and classes. In this study, we collected data from 1246 specimens and 198 species to test species identification in a diverse dataset. We also evaluated different specimen preparation and data processing approaches for machine learning and developed a workflow to optimize classification using random forest. Our results showed high success rates of over 90%, but we also found that the size of the reference library affects classification error. Additionally, we demonstrated the ability of the method to differentiate marine cryptic-species complexes and to distinguish sexes within species.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany.
| | - Janna Peters
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, 20146, Hamburg, Germany
| | - Nele Charzinski
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Angelina Eichsteller
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129, Oldenburg, Germany
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Hermann Neumann
- Institute for Sea Fisheries, Thuenen Institute, 27572, Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
2
|
Rossel S, Peters J, Laakmann S, Martínez Arbizu P, Holst S. Potential of MALDI-TOF MS-based proteomic fingerprinting for species identification of Cnidaria across classes, species, regions and developmental stages. Mol Ecol Resour 2023; 23:1620-1631. [PMID: 37417794 DOI: 10.1111/1755-0998.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Morphological identification of cnidarian species can be difficult throughout all life stages due to the lack of distinct morphological characters. Moreover, in some cnidarian taxa genetic markers are not fully informative, and in these cases combinations of different markers or additional morphological verifications may be required. Proteomic fingerprinting based on MALDI-TOF mass spectra was previously shown to provide reliable species identification in different metazoans including some cnidarian taxa. For the first time, we tested the method across four cnidarian classes (Staurozoa, Scyphozoa, Anthozoa, Hydrozoa) and included different scyphozoan life-history stages (polyp, ephyra, medusa) in our dataset. Our results revealed reliable species identification based on MALDI-TOF mass spectra across all taxa with species-specific clusters for all 23 analysed species. In addition, proteomic fingerprinting was successful for distinguishing developmental stages, still by retaining a species specific signal. Furthermore, we identified the impact of different salinities in different regions (North Sea and Baltic Sea) on proteomic fingerprints to be negligible. In conclusion, the effects of environmental factors and developmental stages on proteomic fingerprints seem to be low in cnidarians. This would allow using reference libraries built up entirely of adult or cultured cnidarian specimens for the identification of their juvenile stages or specimens from different geographic regions in future biodiversity assessment studies.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Janna Peters
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| |
Collapse
|
3
|
Gellert M, Błażewicz M, Mamos T, Bird GJ. Diversity under a magnifier lens: the case of Typhlotanaidae (Crustacea: Tanaidacea) in the N Atlantic. Sci Rep 2023; 13:10905. [PMID: 37407596 DOI: 10.1038/s41598-023-33616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/15/2023] [Indexed: 07/07/2023] Open
Abstract
Research focusing on 'stout-bodied' typhlotanaids collected from several sites around Iceland and adjacent N Atlantic region has resulted in the description of 15 species new to science, as well as the creation of eight new genera. Typhlotanais eximius Hansen, 1913 is redescribed and transferred to a new genus, while Typhlotanais crassus and Peraeospinosus adipatus are transferred to the genus Larsenotanais. The morphological and the molecular data were combined to consolidate and confirm the validity of the results obtained from both approaches. The polyphyletic nature of the Typhlotanaidae and its serious of its taxonomic diversity are emphasized, although molecular analysis reveals that the 'stout-bodied' Typhlotanaidae form monophyletic clade. Depth and temperature are identified as the main environmental parameters determining the distribution of this group of Typhlotanaidae. Several species are clearly associated with the shelf and upper bathyal of Iceland. The Greenland-Iceland-Faroe Ridge is shown to be a distinct zoogeographical barrier for typhlotanaids inhabiting the deeper slope and abyssal regions around Iceland.
Collapse
Affiliation(s)
- Marta Gellert
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Lodz, Poland.
| | - Magdalena Błażewicz
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Lodz, Poland
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Lodz, Poland
| | | |
Collapse
|
4
|
Rossel S, Kaiser P, Bode-Dalby M, Renz J, Laakmann S, Auel H, Hagen W, Arbizu PM, Peters J. Proteomic fingerprinting enables quantitative biodiversity assessments of species and ontogenetic stages in Calanus congeners (Copepoda, Crustacea) from the Arctic Ocean. Mol Ecol Resour 2023; 23:382-395. [PMID: 36114815 DOI: 10.1111/1755-0998.13714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023]
Abstract
Species identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1-C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone. Differentiation of the three species based on mass spectrometry data was without any error. In addition, a clear stage-specific signal was detected in all species, supported by clustering approaches as well as machine learning using Random Forest. More complex mass spectra in later ontogenetic stages as well as relative intensities of certain mass peaks were found as the main drivers of stage distinction in these species. Through a dilution series, we were able to show that this did not result from the higher amount of biomass that was used in tissue processing of the larger stages. Finally, the data were tested in a simulation for application in a real biodiversity assessment by using Random Forest for stage classification of specimens absent from the training data. This resulted in a successful stage-identification rate of almost 90%, making proteomic fingerprinting a promising tool to investigate polewards shifts of Atlantic Calanus species and, in general, to assess stage compositions in biodiversity assessments of Calanoida, which can be notoriously difficult using conventional identification methods.
Collapse
Affiliation(s)
- Sven Rossel
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Patricia Kaiser
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Maya Bode-Dalby
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Jasmin Renz
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.,Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Holger Auel
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Wilhelm Hagen
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Pedro Martínez Arbizu
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Janna Peters
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| |
Collapse
|
5
|
Knauber H, Silberberg JR, Brandt A, Riehl T. Evolution and biogeography of the Haploniscus belyaevi species complex (Isopoda: Haploniscidae) revealed by means of integrative taxonomy. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2099477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Henry Knauber
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Section Crustacea, Senckenberganlage 25, Frankfurt, 60325, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| | - Jona R. Silberberg
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Section Crustacea, Senckenberganlage 25, Frankfurt, 60325, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| | - Angelika Brandt
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Section Crustacea, Senckenberganlage 25, Frankfurt, 60325, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| | - Torben Riehl
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Section Crustacea, Senckenberganlage 25, Frankfurt, 60325, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| |
Collapse
|
6
|
Deng Y, Liu L, Li J, Gao L. Sensors Based on the Carbon Nanotube Field-Effect Transistors for Chemical and Biological Analyses. BIOSENSORS 2022; 12:776. [PMID: 36290914 PMCID: PMC9599861 DOI: 10.3390/bios12100776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Nano biochemical sensors play an important role in detecting the biomarkers related to human diseases, and carbon nanotubes (CNTs) have become an important factor in promoting the vigorous development of this field due to their special structure and excellent electronic properties. This paper focuses on applying carbon nanotube field-effect transistor (CNT-FET) biochemical sensors to detect biomarkers. Firstly, the preparation method, physical and electronic properties and functional modification of CNTs are introduced. Then, the configuration and sensing mechanism of CNT-FETs are introduced. Finally, the latest progress in detecting nucleic acids, proteins, cells, gases and ions based on CNT-FET sensors is summarized.
Collapse
Affiliation(s)
- Yixi Deng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jingyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Brix S, Kaiser S, Lörz AN, Le Saout M, Schumacher M, Bonk F, Egilsdottir H, Olafsdottir SH, Tandberg AHS, Taylor J, Tewes S, Xavier JR, Linse K. Habitat variability and faunal zonation at the Ægir Ridge, a canyon-like structure in the deep Norwegian Sea. PeerJ 2022; 10:e13394. [PMID: 35726260 PMCID: PMC9206436 DOI: 10.7717/peerj.13394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/16/2022] [Indexed: 01/14/2023] Open
Abstract
The Ægir Ridge System (ARS) is an ancient extinct spreading axis in the Nordic seas extending from the upper slope east of Iceland (∼550 m depth), as part of its Exclusive Economic Zone (EEZ), to a depth of ∼3,800 m in the Norwegian basin. Geomorphologically a rift valley, the ARS has a canyon-like structure that may promote increased diversity and faunal density. The main objective of this study was to characterize benthic habitats and related macro- and megabenthic communities along the ARS, and the influence of water mass variables and depth on them. During the IceAGE3 expedition (Icelandic marine Animals: Genetics and Ecology) on RV Sonne in June 2020, benthic communities of the ARS were surveyed by means of a remotely-operated vehicle (ROV) and epibenthic sledge (EBS). For this purpose, two working areas were selected, including abyssal stations in the northeast and bathyal stations in the southwest of the ARS. Video and still images of the seabed were usedtoqualitatively describebenthic habitats based on the presence of habitat-forming taxa and the physical environment. Patterns of diversity and community composition of the soft-sediment macrofauna, retrieved from the EBS, were analyzed in a semiquantitative manner. These biological data were complemented by producing high-resolution bathymetric maps using the vessel's multi-beam echosounder system. As suspected, we were able to identify differences in species composition and number of macro- and megafaunal communities associated with a depth gradient. A biological canyon effect became evident in dense aggregates of megafaunal filter feeders and elevated macrofaunal densities. Analysis of videos and still images from the ROV transects also led to the discovery of a number ofVulnerable Marine Ecosystems (VMEs) dominated by sponges and soft corals characteristic of the Arctic region. Directions for future research encompass a more detailed, quantitative study of the megafauna and more coherent sampling over the entire depth range in order to fully capture the diversity of the habitats and biota of the region. The presence of sensitive biogenic habitats, alongside seemingly high biodiversity and naturalness are supportive of ongoing considerations of designating part of the ARS as an "Ecologically and Biologically Significant Area" (EBSA).
Collapse
Affiliation(s)
- Saskia Brix
- Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), Senckenberg Nature Research Society, Hamburg, Germany
| | - Stefanie Kaiser
- Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Łódź, Poland
- INES Integrated Environmental Solutions UG, Wilhelmshaven, Niedersachsen, Germany
| | - Anne-Nina Lörz
- Institute for Marine Ecosystems and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
| | | | - Mia Schumacher
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Frederic Bonk
- Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), Senckenberg Nature Research Society, Hamburg, Germany
| | | | | | | | - James Taylor
- Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), Senckenberg Nature Research Society, Hamburg, Germany
| | - Simon Tewes
- Bundesamt für Seeschiffahrt und Hydrographie, Hamburg, Germany
| | - Joana R. Xavier
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research of the University of Portro, Matosinhos, Portugal
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Katrin Linse
- British Antarctic Survey, Cambridge, United Kingdom
| |
Collapse
|
8
|
Hybridization between Anguillicola crassus and A. novaezelandiae, and viability of the F1 generation. J Helminthol 2022; 96:e22. [PMID: 35300740 DOI: 10.1017/s0022149x22000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For decades, it has remained unclear how the Asian swim bladder nematode Anguillicola crassus was able to supplant the previously stable population of its relative from New Zealand Anguillicola novaezelandiae in the Lake Bracciano, Italy. Previously, researchers have hypothesized that A. crassus possesses an ecological advantage due to a more efficient life cycle in combination with a pattern of unidirectional hybridization between A. novaezelandiae females and A. crassus males. The present study focuses on the viability of hybrid offspring and their allelic pattern, particularly in developed adult stages of the hybrid F1 generation. While the percentages of hybrid individuals from A. novaezelandiae mothers and A. crassus fathers increased from egg to adult stages, it was more distinct in egg stages of A. crassus females and A. novaezelandiae males, but did not occur in adult F1 individuals at all. Therefore, we corroborate the hypothesis of unidirectional hybridization by differentiating between egg and adult stages, and suggest this as another explanatory factor for the extinction of A. novaezelandiae in Lake Bracciano in Italy and the predominance of A. crassus.
Collapse
|
9
|
Uhlir C, Schwentner M, Meland K, Kongsrud JA, Glenner H, Brandt A, Thiel R, Svavarsson J, Lörz AN, Brix S. Adding pieces to the puzzle: insights into diversity and distribution patterns of Cumacea (Crustacea: Peracarida) from the deep North Atlantic to the Arctic Ocean. PeerJ 2021; 9:e12379. [PMID: 34824910 PMCID: PMC8590803 DOI: 10.7717/peerj.12379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
The Nordic Seas have one of the highest water-mass diversities in the world, yet large knowledge gaps exist in biodiversity structure and biogeographical distribution patterns of the deep macrobenthic fauna. This study focuses on the marine bottom-dwelling peracarid crustacean taxon Cumacea from northern waters, using a combined approach of morphological and molecular techniques to present one of the first insights into genetic variability of this taxon. In total, 947 specimens were assigned to 77 morphologically differing species, representing all seven known families from the North Atlantic. A total of 131 specimens were studied genetically (16S rRNA) and divided into 53 putative species by species delimitation methods (GMYC and ABGD). In most cases, morphological and molecular-genetic delimitation was fully congruent, highlighting the overall success and high quality of both approaches. Differences were due to eight instances resulting in either ecologically driven morphological diversification of species or morphologically cryptic species, uncovering hidden diversity. An interspecific genetic distance of at least 8% was observed with a clear barcoding gap for molecular delimitation of cumacean species. Combining these findings with data from public databases and specimens collected during different international expeditions revealed a change in the composition of taxa from a Northern Atlantic-boreal to an Arctic community. The Greenland-Iceland-Scotland-Ridge (GIS-Ridge) acts as a geographical barrier and/or predominate water masses correspond well with cumacean taxa dominance. A closer investigation on species level revealed occurrences across multiple ecoregions or patchy distributions within defined ecoregions.
Collapse
Affiliation(s)
- Carolin Uhlir
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany.,German Center for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| | - Martin Schwentner
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany.,Natural History Museum Vienna, Vienna, Austria
| | - Kenneth Meland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Anders Kongsrud
- Department of Natural History, University Museum of Bergen (ZMBN), Bergen, Norway
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Centre of Macroecology, Evolution and Climate (CMEC), Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf Thiel
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany
| | - Jörundur Svavarsson
- Faculty of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Anne-Nina Lörz
- Institute for Marine Ecosystems and Fisheries Science, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
| | - Saskia Brix
- German Center for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| |
Collapse
|