1
|
Poudel A, Ayer S, Joshi R, Gautam J, Timilsina S, Khadka K, Bhatta KP, Maharjan M. Effect of the irregular shelterwood system on soil organic carbon stock and soil quality of Shorea robusta Gaertn. f. forest in Nepal. Heliyon 2024; 10:e35441. [PMID: 39170572 PMCID: PMC11336644 DOI: 10.1016/j.heliyon.2024.e35441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The effective management of forests relies on the crucial role played bysilvicultural systems. However there exist a significant knowledge gap regarding impact of these systems in Nepalese forests. Therefore, this research was conducted to assess the effects of the forest management activities under irregular shelterwood system on soil organic carbon (SOC) stock and the overall soil quality of Sal (Shorea robusta Gaertn. f.) forests in Terai region of Nepal. Stratified random sampling method with 1.67 % sampling intensity was adopted in this study where management of stands was used as basis of strata. A total of 30 composite soil samples (15 each from managed and unmanaged forest stands) were collected from a depth of 0-30 cm, taken from the four corners and the center of each plot. Soil quality index (SQI) method was used for soil quality assessment using indicators on the basis of prior studies conducted in Nepal. Our study found significant difference in soil parameters except organic carbon, pH, silt, and clay among the managed and unmanaged forest stands (p < 0.05). SOC stock of unmanaged forest stands (48.87 ± 1.34 ton ha-1) was significantly greater than managed forest stands (27.76 ± 1.27 ton ha-1). Similarly, unmanaged forest stands demonstrated better soil quality with higher SQI value (0.66) than managed forest stands (0.50). This negative impact of irregular shelterwood silviculture system highlights the necessity for management interventions to enhance SOC stock and overall soil quality. To establish a robust conclusion, further replication of similar studies at different soil depths and in other management regimes, along with longitudinal studies, is essential.
Collapse
Affiliation(s)
- Anil Poudel
- College of Natural Resource Management (CNRM), Agriculture and Forestry University, Katari, 56310, Nepal
| | - Santosh Ayer
- College of Natural Resource Management (CNRM), Agriculture and Forestry University, Katari, 56310, Nepal
| | - Rajeev Joshi
- College of Natural Resource Management (CNRM), Agriculture and Forestry University, Katari, 56310, Nepal
| | - Jeetendra Gautam
- Faculty of Forestry, Agriculture and Forestry University, Hetauda, 44100, Nepal
| | - Sachin Timilsina
- Institute of Forestry, Tribhuvan University, Pokhara, 33700, Nepal
| | - Keshav Khadka
- Ministry of Forests, Environment and Soil Conservation, Lumbini Province, 32900, Nepal
| | | | - Menuka Maharjan
- School of Forestry and Natural Resource Management, Institute of Forestry, Tribhuvan University, Kathmandu, 44600, Nepal
- Institute of Forestry, Tribhuvan University, Hetauda, 44100, Nepal
| |
Collapse
|
2
|
Sadiq S, Harvey E, Mifsud JCO, Minasny B, McBratney AB, Pozza LE, Mahar JE, Holmes EC. Australian terrestrial environments harbour extensive RNA virus diversity. Virology 2024; 593:110007. [PMID: 38346363 DOI: 10.1016/j.virol.2024.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024]
Abstract
Australia is home to a diverse range of unique native fauna and flora. To address whether Australian ecosystems also harbour unique viruses, we performed meta-transcriptomic sequencing of 16 farmland and sediment samples taken from the east and west coasts of Australia. We identified 2460 putatively novel RNA viruses across 18 orders, the vast majority of which belonged to the microbe-associated phylum Lenarviricota. In many orders, such as the Nodamuvirales and Ghabrivirales, the novel viruses identified here comprised entirely new clades. Novel viruses also fell between established genera or families, such as in the Cystoviridae and Picornavirales, while highly divergent lineages were identified in the Sobelivirales and Ghabrivirales. Viral read abundance and alpha diversity were influenced by sampling site, soil type and land use, but not by depth from the surface. In sum, Australian soils and sediments are home to remarkable viral diversity, reflecting the biodiversity of local fauna and flora.
Collapse
Affiliation(s)
- Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Budiman Minasny
- School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alex B McBratney
- School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liana E Pozza
- School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Edwin NR, Fitzpatrick AH, Brennan F, Abram F, O'Sullivan O. An in-depth evaluation of metagenomic classifiers for soil microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:19. [PMID: 38549112 PMCID: PMC10979606 DOI: 10.1186/s40793-024-00561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Recent endeavours in metagenomics, exemplified by projects such as the human microbiome project and TARA Oceans, have illuminated the complexities of microbial biomes. A robust bioinformatic pipeline and meticulous evaluation of their methodology have contributed to the success of these projects. The soil environment, however, with its unique challenges, requires a specialized methodological exploration to maximize microbial insights. A notable limitation in soil microbiome studies is the dearth of soil-specific reference databases available to classifiers that emulate the complexity of soil communities. There is also a lack of in-vitro mock communities derived from soil strains that can be assessed for taxonomic classification accuracy. RESULTS In this study, we generated a custom in-silico mock community containing microbial genomes commonly observed in the soil microbiome. Using this mock community, we simulated shotgun sequencing data to evaluate the performance of three leading metagenomic classifiers: Kraken2 (supplemented with Bracken, using a custom database derived from GTDB-TK genomes along with its own default database), Kaiju, and MetaPhlAn, utilizing their respective default databases for a robust analysis. Our results highlight the importance of optimizing taxonomic classification parameters, database selection, as well as analysing trimmed reads and contigs. Our study showed that classifiers tailored to the specific taxa present in our samples led to fewer errors compared to broader databases including microbial eukaryotes, protozoa, or human genomes, highlighting the effectiveness of targeted taxonomic classification. Notably, an optimal classifier performance was achieved when applying a relative abundance threshold of 0.001% or 0.005%. The Kraken2 supplemented with bracken, with a custom database demonstrated superior precision, sensitivity, F1 score, and overall sequence classification. Using a custom database, this classifier classified 99% of in-silico reads and 58% of real-world soil shotgun reads, with the latter identifying previously overlooked phyla using a custom database. CONCLUSION This study underscores the potential advantages of in-silico methodological optimization in metagenomic analyses, especially when deciphering the complexities of soil microbiomes. We demonstrate that the choice of classifier and database significantly impacts microbial taxonomic profiling. Our findings suggest that employing Kraken2 with Bracken, coupled with a custom database of GTDB-TK genomes and fungal genomes at a relative abundance threshold of 0.001% provides optimal accuracy in soil shotgun metagenome analysis.
Collapse
Affiliation(s)
- Niranjana Rose Edwin
- Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Functional Environmental Microbiology, School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | | | - Fiona Brennan
- Teagasc, Soils, Environment and Landuse Department, Johnstown Castle, Wexford, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Orla O'Sullivan
- Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
- VistaMilk SFI Research Centre, Cork, Ireland.
| |
Collapse
|
4
|
Hopkins AJM, Brace AJ, Bruce JL, Hyde J, Fontaine JB, Walden L, Veber W, Ruthrof KX. Drought legacy interacts with wildfire to alter soil microbial communities in a Mediterranean climate-type forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170111. [PMID: 38232837 DOI: 10.1016/j.scitotenv.2024.170111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Mediterranean forest ecosystems will be increasingly affected by hotter drought and more frequent and severe wildfire events in the future. However, little is known about the longer-term responses of these forests to multiple disturbances and the forests' capacity to maintain ecosystem function. This is particularly so for below-ground organisms, which have received less attention than those above-ground, despite their essential contributions to forest function. We investigated rhizosphere microbial communities in a resprouting Eucalyptus marginata forest, southwestern Australia, that had experienced a severe wildfire four years previously, and a hotter drought eight years previously. Our aim was to understand how microbial communities are affected over longer-term trajectories by hotter drought and wildfire, singularly, and in combination. Fungal and bacterial DNA was extracted from soil samples, amplified, and subjected to high throughput sequencing. Richness, diversity, composition, and putative functional groups were then examined. We found a monotonic decrease in fungal, but not bacterial, richness and diversity with increasing disturbance with the greatest changes resulting from the combination of drought and wildfire. Overall fungal and bacterial community composition reflected a stronger effect of fire than drought, but the combination of both produced the greatest number of indicator taxa for fungi, and a significant negative effect on the abundance of several fungal functional groups. Key mycorrhizal fungi, fungal saprotrophs and fungal pathogens were found at lower proportions in sites affected by drought plus wildfire. Wildfire had a positive effect on bacterial hydrogen and bacterial nitrogen recyclers. Fungal community composition was positively correlated with live tree height. These results suggest that microbial communities, in particular key fungal functional groups, are highly responsive to wildfire following drought. Thus, a legacy of past climate conditions such as hotter drought can be important for mediating the responses of soil microbial communities to subsequent disturbance like wildfire.
Collapse
Affiliation(s)
- A J M Hopkins
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - A J Brace
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - J L Bruce
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - J Hyde
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia
| | - J B Fontaine
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - L Walden
- Soil and Landscape Science, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - W Veber
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - K X Ruthrof
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
5
|
Solanki AC, Gurjar NS, Sharma S, Wang Z, Kumar A, Solanki MK, Kumar Divvela P, Yadav K, Kashyap BK. Decoding seasonal changes: soil parameters and microbial communities in tropical dry deciduous forests. Front Microbiol 2024; 15:1258934. [PMID: 38440136 PMCID: PMC10910104 DOI: 10.3389/fmicb.2024.1258934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
In dry deciduous tropical forests, both seasons (winter and summer) offer habitats that are essential ecologically. How these seasonal changes affect soil properties and microbial communities is not yet fully understood. This study aimed to investigate the influence of seasonal fluctuations on soil characteristics and microbial populations. The soil moisture content dramatically increases in the summer. However, the soil pH only gradually shifts from acidic to slightly neutral. During the summer, electrical conductivity (EC) values range from 0.62 to 1.03 ds m-1, in contrast to their decline in the winter. The levels of soil macronutrients and micronutrients increase during the summer, as does the quantity of soil organic carbon (SOC). A two-way ANOVA analysis reveals limited impacts of seasonal fluctuations and specific geographic locations on the amounts of accessible nitrogen (N) and phosphorus (P). Moreover, dehydrogenase, nitrate reductase, and urease activities rise in the summer, while chitinase, protease, and acid phosphatase activities are more pronounced in the winter. The soil microbes were identified in both seasons through 16S rRNA and ITS (Internal Transcribed Spacer) gene sequencing. Results revealed Proteobacteria and Ascomycota as predominant bacterial and fungal phyla. However, Bacillus, Pseudomonas, and Burkholderia are dominant bacterial genera, and Aspergillus, Alternaria, and Trichoderma are dominant fungal genera in the forest soil samples. Dominant bacterial and fungal genera may play a role in essential ecosystem services such as soil health management and nutrient cycling. In both seasons, clear relationships exist between soil properties, including pH, moisture, iron (Fe), zinc (Zn), and microbial diversity. Enzymatic activities and microbial shift relate positively with soil parameters. This study highlights robust soil-microbial interactions that persist mainly in the top layers of tropical dry deciduous forests in the summer and winter seasons. It provides insights into the responses of soil-microbial communities to seasonal changes, advancing our understanding of ecosystem dynamics and biodiversity preservation.
Collapse
Affiliation(s)
| | - Narendra Singh Gurjar
- Department of Soil Science and Agriculture Chemistry, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Satish Sharma
- Department of Plant Pathology, B. M. College of Agriculture, Khandwa, Madhya Pradesh, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | - Kajal Yadav
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
6
|
Fernández-Guisuraga JM, Marcos E, Sáenz de Miera LE, Ansola G, Pinto R, Calvo L. Short-term responses of ecosystem multifunctionality to fire severity are modulated by fire-induced impacts on plant and soil microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165477. [PMID: 37451468 DOI: 10.1016/j.scitotenv.2023.165477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
This study represents a first attempt to shed light into the mechanisms that modulate the response of ecosystem multifunctionality (EMF) to fire severity in post-fire landscapes. We specifically investigated the role played by fire-induced changes on above and belowground communities in the modulation of EMF responses at short-term after fire. For this purpose, we estimated EMF using an averaging approach from three ecosystem functions (carbon regulation, decomposition and soil fertility) and their standardized functional indicators in field plots burned at low and high fire severity 1-year after a wildfire occurred in a Mediterranean ecosystem in the central region of Spain. Plant taxonomic and functional richness, and the bacterial and fungal taxonomic richness, were measured in the plots as community properties with a potential intermediate control over fire severity effects on EMF. The ecological effects of fire severity on above and belowground communities were important in shaping EMF as evidenced by Structural Equation Modeling (SEM). Indeed, the evidenced shrinkage exerted by high fire severity on EMF at short-term after fire was not direct, but modulated by fire-induced effects on the plant functional richness and the microbial taxonomic richness. However, EMF variation was more strongly modulated by indirect effects of fire severity on the biodiversity of soil microbial communities, than by the effects on the plant communities. Particularly, the fungal community exerted the strongest intermediate control (standardized SEM β coefficient = 0.62), which can be linked to the differential response of bacterial (β = -0.36) and fungal (β = -0.84) communities to fire severity evidenced here. Our findings demonstrate that the effects of fire severity on above and belowground communities are important drivers of short-term ecosystem functioning. Efforts tailored to secure the provision of multiple functions should be focused on promoting the recovery on soil microbial communities under high-severity scenarios.
Collapse
Affiliation(s)
- José Manuel Fernández-Guisuraga
- Centro de Investigação e de Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain.
| | - Elena Marcos
- Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | - Luis E Sáenz de Miera
- Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | - Gemma Ansola
- Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | - Rayo Pinto
- Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | - Leonor Calvo
- Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| |
Collapse
|
7
|
Osburn ED, Moon C, Stephenson T, Kittipalawattanapol K, Jones M, Strickland MS, Lynch LM. Disturbance of eucalypt forests alters the composition, function, and assembly of soil microbial communities. FEMS Microbiol Ecol 2023; 99:fiad085. [PMID: 37481693 DOI: 10.1093/femsec/fiad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/24/2023] Open
Abstract
Forest disturbance has well-characterized effects on soil microbial communities in tropical and northern hemisphere ecosystems, but little is known regarding effects of disturbance in temperate forests of the southern hemisphere. To address this question, we collected soils from intact and degraded Eucalyptus forests along an east-west transect across Tasmania, Australia, and characterized prokaryotic and fungal communities using amplicon sequencing. Forest degradation altered soil microbial community composition and function, with consistent patterns across soil horizons and regions of Tasmania. Responses of prokaryotic communities included decreased relative abundance of Acidobacteriota, nitrifying archaea, and methane-oxidizing prokaryotes in the degraded forest sites, while fungal responses included decreased relative abundance of some saprotrophic taxa (e.g. litter saprotrophs). Forest degradation also reduced network connectivity in prokaryotic communities and increased the importance of dispersal limitation in assembling both prokaryotic and fungal communities, suggesting recolonization dynamics drive microbial composition following disturbance. Further, changes in microbial functional groups reflected changes in soil chemical properties-reductions in nitrifying microorganisms corresponded with reduced NO3-N pools in the degraded soils. Overall, our results show that soil microbiota are highly responsive to forest degradation in eucalypt forests and demonstrate that microbial responses to degradation will drive changes in key forest ecosystem functions.
Collapse
Affiliation(s)
- Ernest D Osburn
- Department of Soil and Water Systems, University of Idaho, 875 Perimeter Dr. MS 2340, Moscow, ID 83844, USA
| | - Cooper Moon
- Department of Environmental Science, University of Idaho, 875 Perimeter Dr. MS 1139, Moscow, ID 83844, USA
| | - Torrey Stephenson
- Department of Soil and Water Systems, University of Idaho, 875 Perimeter Dr. MS 2340, Moscow, ID 83844, USA
| | - Kawinwit Kittipalawattanapol
- School of Natural Sciences, University of Tasmania, Life Sciences Building, Biological Sciences, Hobart, Tasmania 7001, Australia
| | - Menna Jones
- School of Natural Sciences, University of Tasmania, Life Sciences Building, Biological Sciences, Hobart, Tasmania 7001, Australia
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, 875 Perimeter Dr. MS 2340, Moscow, ID 83844, USA
| | - Laurel M Lynch
- Department of Soil and Water Systems, University of Idaho, 875 Perimeter Dr. MS 2340, Moscow, ID 83844, USA
| |
Collapse
|
8
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
9
|
Baldrian P, López-Mondéjar R, Kohout P. Forest microbiome and global change. Nat Rev Microbiol 2023:10.1038/s41579-023-00876-4. [PMID: 36941408 DOI: 10.1038/s41579-023-00876-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Forests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria. The effects of global change differ among boreal, temperate and tropical forests. The future of forests depends mostly on the performance and balance of fungal symbiotic guilds, saprotrophic fungi and bacteria, and fungal plant pathogens. Drought severely weakens forest resilience, as it triggers adverse processes such as pathogen outbreaks and fires that impact the microbial and forest performance for carbon storage and nutrient turnover. Nitrogen deposition also substantially affects forest microbial processes, with a pronounced effect in the temperate zone. Considering plant-microorganism interactions would help predict the future of forests and identify management strategies to increase ecosystem stability and alleviate climate change effects. In this Review, we describe the impact of global change on the forest ecosystem and its microbiome across different climatic zones. We propose potential approaches to control the adverse effects of global change on forest stability, and present future research directions to understand the changes ahead.
Collapse
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Navarrete AA, Aburto F, González-Rocha G, Guzmán CM, Schmidt R, Scow K. Anthropogenic degradation alter surface soil biogeochemical pools and microbial communities in an Andean temperate forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158508. [PMID: 36063938 DOI: 10.1016/j.scitotenv.2022.158508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial communities regulate a myriad of critical biogeochemical functions in forest ecosystems. Anthropogenic disturbances in natural forests could drive major shifts in plant and microbial communities resulting in substantial biogeochemical alterations. We evaluated the effect of anthropogenic disturbances in the soils of Andean temperate forests with different levels of degradation: i) mature forest (MF), ii) secondary forest (SF), iii) degraded forest (DF), and iv) deforested site converted into a prairie (DP). We quantified total soil carbon, nitrogen and phosphorous (TC, TN, and TP), and available nutrient stocks. The soil microbial community structure (i.e., composition, diversity, and abundance) was assessed under each condition from amplicon sequence variants (ASVs) obtained via NGS-Illumina sequencing and subsequent microbiome analysis. There were no significant differences in TC, TN, and TP across the forested states (MF, SF, DF). The deforested site condition presented significantly higher soil TC, TN, and TP and the lowest C:N, C:P, and N:P ratios. The DP soil microbiome was significantly more diverse in bacteria (D' = 0.47 ± 0.04); and fungi (H' = 5.11 ± 0.33). The bacterial microbiome was dominated by Proteobacteria (45.35 ± 0.89 %), Acidobacteria (20.73 ± 1.48 %), Actinobacteria (12.59 ± 0.34 %), and Bacteroidetes (7.32 ± 0.36 %) phyla in all sites. The soil fungal community was dominated by the phyla Ascomycota (42.11 ± 0.95 %), Mortierellomycota (28.74 ± 2.25 %), Basidiomycota (24.61 ± 0.52), and Mucoromycota (2.06 ± 0.43 %). Yet, there were significant differences at the genus level across conditions. Forest to prairie conversion facilitated the introduction of exotic bacterial and fungal taxa associated with agricultural activities and livestock grazing (∼50 % of DP core microbiome composed of unique ASVs). For example, the ammonia-oxidizing bacteria community emerged as a dominant group in the DP soils, along with a reduction in the ectomycorrhizal fungi community. The surface soil microbial community was surprisingly resistant to forest degradation and did not show a clear succession along the degradation gradient, but it was strongly altered after deforestation.
Collapse
Affiliation(s)
- Alejandro Atenas Navarrete
- Postgrado Facultad de Ciencias Forestales, Universidad de Concepción, Chile; Laboratorio de Investigación en Suelos, Aguas y Bosques (LISAB), Universidad de Concepción, Chile; Iniciativa Foresta Nativa, Universidad de Concepción, Concepción, Chile
| | - Felipe Aburto
- Soil and Crop Sciences Department, Texas A&M University, 370 Olsen Blvd. Heep Center, TX 77845, USA; Departamento de Planificación Territorial y Sistemas Urbanos, Facultad de Ciencias Ambientales, Universidad de Concepción, Chile.
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Carolina Merino Guzmán
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, BIOREN, Universidad de La Frontera, Chile
| | - Radomir Schmidt
- Working Lands Innovation Center at the Institute of the Environment, University of California, Davis, USA
| | - Kate Scow
- Soil Microbial Ecology Lab, Department of Land, Air and Water Resources, University of California, Davis, USA
| |
Collapse
|
11
|
Larson ER, Crandall SG. Recovery of the soil fungal microbiome after steam disinfection to manage the plant pathogen Fusarium solani. FRONTIERS IN PLANT SCIENCE 2023; 14:1128518. [PMID: 37152156 PMCID: PMC10161934 DOI: 10.3389/fpls.2023.1128518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 05/09/2023]
Abstract
Soil disinfection using high temperatures via steam is a promising approach to manage plant pathogens, pests, and weeds. Soil steaming is a viable option for growers who are moving away from dependence on chemical soil fumigants, especially in plant nursery or high tunnel environments. However, there are few studies that investigate how soil steaming causes substantial disturbance to the soil by killing both target pathogens and other soil biota. Steaming treatments also change the trajectory of the soil microbiome as it reassembles over time. Growers are interested in the health of soils after using steam-disinfection, especially if a virulent pathogen colonizes the soil and then flourishes in a situation where there are very few microbes to suppress its growth. Should recruitment of a virulent pathogen occur in the soil, this could have devasting effects on seed germination, seedling establishment and survival. Beneficial microbes are often used to prevent the colonization of plant pathogens, especially after a soil-steaming event. Here, we experimentally test how soil fungal communities assemble after steaming disinfection. We introduce to steam-treated soil Fusarium solani, an important fungal pathogen of soybean and Trichoderma harzianum, a known beneficial fungus used for soilborne pathogen suppression. Results show that F. solani significantly affects the relative abundance and diversity of the soil fungal microbiome, however, T. harzianum does not mitigate the amount of F. solani in the steam treated soil. Within the T. harzianum microbial addition, the soil fungal communities were similar to the control (steaming only). This result suggests inoculating the soil with T. harzianum does not drastically alter the assembly trajectory of the soil fungal microbiome. Other soil amendments such as a combination of Trichoderma spp. or other genera could suppress F. solani growth and shift soil microbiome composition and function post-steaming, however, more experimental research is needed.
Collapse
Affiliation(s)
- Eric R. Larson
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
- Microbiome Center, Penn State Institutes of the Life Sciences, University Park, PA, United States
- *Correspondence: Eric R. Larson,
| | - Sharifa G. Crandall
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
- Microbiome Center, Penn State Institutes of the Life Sciences, University Park, PA, United States
| |
Collapse
|
12
|
Zunino P. Native microbiomes in danger: Could One Health help to cope with this threat to global health? INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.178-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Planetary health faces an emergency associated with global change. Climate change, the increase in world population and urban concentration, the hyperintensification of productive systems, and the associated changes in land use, among other factors, are generating a risky substrate for global health deterioration. The emergence of the coronavirus disease 2019 pandemic is an example of the problems that this situation can provoke. Several researchers and health professionals have addressed the role of microorganisms, particularly bacteria, in promoting global health, mainly in the past decades. However, global changes have contributed to the extinction of a wide array of bacterial species and the disruption of microbial communities that support the homeostasis of humans, animals, and the environment. The need to protect the diversity and richness of native microbiomes in biotic and abiotic environments is crucial but has been frequently underestimated. The "One Health" approach, based on integrating traditionally unconnected fields such as human, animal, and environmental health, could provide a helpful framework to face this challenge. Anyway, drastic political decisions will be needed to tackle this global health crisis, in which the preservation of native microbial resources plays a critical role, even in preventing the risk of a new pandemic. This review aims to explain the importance of native microbiomes in biotic and abiotic ecosystems and the need to consider bacterial extinction as a crucial problem that could be addressed under a One Health approach.
Collapse
Affiliation(s)
- Pablo Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| |
Collapse
|
13
|
Li C, Bo H, Song B, Chen X, Cao Q, Yang R, Ji S, Wang L, Liu J. Reshaping of the soil microbiome by the expansion of invasive plants: shifts in structure, diversity, co-occurrence, niche breadth, and assembly processes. PLANT AND SOIL 2022; 477:629-646. [DOI: 10.1007/s11104-022-05445-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2024]
|
14
|
Senn S, Bhattacharyya S, Presley G, Taylor AE, Nash B, Enke RA, Barnard-Kubow KB, Ford J, Jasinski B, Badalova Y. The Functional Biogeography of eDNA Metacommunities in the Post-Fire Landscape of the Angeles National Forest. Microorganisms 2022; 10:microorganisms10061218. [PMID: 35744735 PMCID: PMC9229275 DOI: 10.3390/microorganisms10061218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Wildfires have continued to increase in frequency and severity in Southern California due in part to climate change. To gain a further understanding of microbial soil communities’ response to fire and functions that may enhance post-wildfire resilience, soil fungal and bacterial microbiomes were studied from different wildfire areas in the Gold Creek Preserve within the Angeles National Forest using 16S, FITS, 18S, 12S, PITS, and COI amplicon sequencing. Sequencing datasets from December 2020 and June 2021 samplings were analyzed using QIIME2, ranacapa, stats, vcd, EZBioCloud, and mixomics. Significant differences were found among bacterial and fungal taxa associated with different fire areas in the Gold Creek Preserve. There was evidence of seasonal shifts in the alpha diversity of the bacterial communities. In the sparse partial least squares analysis, there were strong associations (r > 0.8) between longitude, elevation, and a defined cluster of Amplicon Sequence Variants (ASVs). The Chi-square test revealed differences in fungi−bacteria (F:B) proportions between different trails (p = 2 × 10−16). sPLS results focused on a cluster of Green Trail samples with high elevation and longitude. Analysis revealed the cluster included the post-fire pioneer fungi Pyronema and Tremella. Chlorellales algae and possibly pathogenic Fusarium sequences were elevated. Bacterivorous Corallococcus, which secretes antimicrobials, and bacterivorous flagellate Spumella were associated with the cluster. There was functional redundancy in clusters that were differently composed but shared similar ecological functions. These results implied a set of traits for post-fire resiliency. These included photo-autotrophy, mineralization of pyrolyzed organic matter and aromatic/oily compounds, potential pathogenicity and parasitism, antimicrobials, and N-metabolism.
Collapse
Affiliation(s)
- Savanah Senn
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Correspondence:
| | - Sharmodeep Bhattacharyya
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Gerald Presley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Anne E. Taylor
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Bruce Nash
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
| | - Ray A. Enke
- Department of Biology, Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA 22807, USA; (R.A.E.); (K.B.B.-K.)
| | - Karen B. Barnard-Kubow
- Department of Biology, Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA 22807, USA; (R.A.E.); (K.B.B.-K.)
| | - Jillian Ford
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| | - Brandon Jasinski
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| | - Yekaterina Badalova
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| |
Collapse
|