1
|
Le Veve A, Genete M, Lepers-Blassiau C, Ponitzki C, Poux C, Vekemans X, Durand E, Castric V. The genetic architecture of the load linked to dominant and recessive self-incompatibility alleles in Arabidopsis halleri and Arabidopsis lyrata. eLife 2024; 13:RP94972. [PMID: 39222005 PMCID: PMC11368402 DOI: 10.7554/elife.94972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them. We first experimentally measured the phenotypic manifestation of the linked load at three different levels of the dominance hierarchy. We then sequenced and phased polymorphisms in the chromosomal regions linked to 126 distinct copies of S-alleles in two populations of Arabidopsis halleri and three populations of Arabidopsis lyrata. We find that linkage to the S-locus locally distorts phylogenies over about 10-30 kb along the chromosome. The more intense balancing selection on dominant S-alleles results in greater fixation of linked deleterious mutations, while recessive S-alleles accumulate more linked deleterious mutations that are segregating. Hence, the structure rather than the overall magnitude of the linked genetic load differs between dominant and recessive S-alleles. Our results have consequences for the long-term evolution of new S-alleles, the evolution of dominance modifiers between them, and raise the question of why the non-recombining regions of some sex and mating type chromosomes expand over evolutionary times while others, such as the S-locus of the Brassicaceae, remain restricted to small chromosomal regions.
Collapse
Affiliation(s)
| | | | | | | | - Céline Poux
- Univ. Lille, CNRS, UMR 8198 – Evo-Eco-PaleoLilleFrance
| | | | | | | |
Collapse
|
2
|
Rosser N, Seixas F, Queste LM, Cama B, Mori-Pezo R, Kryvokhyzha D, Nelson M, Waite-Hudson R, Goringe M, Costa M, Elias M, Mendes Eleres de Figueiredo C, Freitas AVL, Joron M, Kozak K, Lamas G, Martins ARP, McMillan WO, Ready J, Rueda-Muñoz N, Salazar C, Salazar P, Schulz S, Shirai LT, Silva-Brandão KL, Mallet J, Dasmahapatra KK. Hybrid speciation driven by multilocus introgression of ecological traits. Nature 2024; 628:811-817. [PMID: 38632397 PMCID: PMC11041799 DOI: 10.1038/s41586-024-07263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.
Collapse
Affiliation(s)
- Neil Rosser
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of York, York, UK.
| | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Bruna Cama
- Department of Biology, University of York, York, UK
| | - Ronald Mori-Pezo
- URKU Estudios Amazónicos, Tarapoto, Perú
- Universidad Nacional Autónoma de Alto Amazona, Yurimaguas, Perú
| | - Dmytro Kryvokhyzha
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | | | | | - Matt Goringe
- Department of Biology, University of York, York, UK
| | | | - Marianne Elias
- Institut Systématique, Evolution, Biodiversité, UMR 7205 MNHN-CNRS-EPHE-UPMC Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Clarisse Mendes Eleres de Figueiredo
- Institute for Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Centre for Advanced Studies of Biodiversity (CEABIO), Belém, Brazil
| | - André Victor Lucci Freitas
- Departamento de Biologia Animal and Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS, Université de Montpellier-Université Paul Valéry Montpellier-EPHE, Montpellier, France
| | - Krzysztof Kozak
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jonathan Ready
- Institute for Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Centre for Advanced Studies of Biodiversity (CEABIO), Belém, Brazil
| | - Nicol Rueda-Muñoz
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Patricio Salazar
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Stefan Schulz
- Institut für Organische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Leila T Shirai
- Departamento de Biologia Animal and Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Karina L Silva-Brandão
- Leibniz Institute for the Analysis of Biodiversity Change, Museum de Natur Hamburg Zoology, Hamburg, Germany
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Kanchon K Dasmahapatra
- Department of Biology, University of York, York, UK
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, UK
| |
Collapse
|
3
|
Xiong T, Tarikere S, Rosser N, Li X, Yago M, Mallet J. A polygenic explanation for Haldane's rule in butterflies. Proc Natl Acad Sci U S A 2023; 120:e2300959120. [PMID: 37856563 PMCID: PMC10622916 DOI: 10.1073/pnas.2300959120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Two robust rules have been discovered about animal hybrids: Heterogametic hybrids are more unfit (Haldane's rule), and sex chromosomes are disproportionately involved in hybrid incompatibility (the large-X/Z effect). The exact mechanisms causing these rules in female heterogametic taxa such as butterflies are unknown but are suggested by theory to involve dominance on the sex chromosome. We investigate hybrid incompatibilities adhering to both rules in Papilio and Heliconius butterflies and show that dominance theory cannot explain our data. Instead, many defects coincide with unbalanced multilocus introgression between the Z chromosome and all autosomes. Our polygenic explanation predicts both rules because the imbalance is likely greater in heterogametic females, and the proportion of introgressed ancestry is more variable on the Z chromosome. We also show that mapping traits polygenic on a single chromosome in backcrosses can generate spurious large-effect QTLs. This mirage is caused by statistical linkage among polygenes that inflates estimated effect sizes. By controlling for statistical linkage, most incompatibility QTLs in our hybrid crosses are consistent with a polygenic basis. Since the two genera are very distantly related, polygenic hybrid incompatibilities are likely common in butterflies.
Collapse
Affiliation(s)
- Tianzhu Xiong
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Shreeharsha Tarikere
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Neil Rosser
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Masaya Yago
- The University Museum, The University of Tokyo, Bunkyo-ku113-0033, Japan
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
4
|
Shipilina D, Näsvall K, Höök L, Vila R, Talavera G, Backström N. Linkage mapping and genome annotation give novel insights into gene family expansions and regional recombination rate variation in the painted lady (Vanessa cardui) butterfly. Genomics 2022; 114:110481. [PMID: 36115505 DOI: 10.1016/j.ygeno.2022.110481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 01/14/2023]
Abstract
Characterization of gene family expansions and crossing over is crucial for understanding how organisms adapt to the environment. Here, we develop a high-density linkage map and detailed genome annotation of the painted lady butterfly (Vanessa cardui) - a non-diapausing, highly polyphagous species famous for its long-distance migratory behavior and almost cosmopolitan distribution. Our results reveal a complex interplay between regional recombination rate variation, gene duplications and transposable element activity shaping the genome structure of the painted lady. We identify several lineage specific gene family expansions. Their functions are mainly associated with protein and fat metabolism, detoxification, and defense against infection - critical processes for the painted lady's unique life-history. Furthermore, the detailed recombination maps allow us to characterize the regional recombination landscape, data that reveal a strong effect of chromosome size on the recombination rate, a limited impact of GC-biased gene conversion and a positive association between recombination and short interspersed elements.
Collapse
Affiliation(s)
- Daria Shipilina
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden; Swedish Collegium for Advanced Study, Thunbergsvägen 2, 75236 Uppsala, Sweden.
| | - Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Roger Vila
- The Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva, Passeig Martim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Passeig del Migdia s/n, 08038 Barcelona, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| |
Collapse
|