1
|
McNamara JM, Dall SRX, Houston AI, Leimar O. The evolutionary consequences of learning under competition. Proc Biol Sci 2024; 291:20241141. [PMID: 39110908 PMCID: PMC11305653 DOI: 10.1098/rspb.2024.1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Learning is a taxonomically widespread process by which animals change their behavioural responses to stimuli as a result of experience. In this way, it plays a crucial role in the development of individual behaviour and underpins substantial phenotypic variation within populations. Nevertheless, the impact of learning in social contexts on evolutionary change is not well understood. Here, we develop game theoretical models of competition for resources in small groups (e.g. producer-scrounger and hawk-dove games) in which actions are controlled by reinforcement learning and show that biases in the subjective valuation of different actions readily evolve. Moreover, in many cases, the convergence stable levels of bias exist at fitness minima and therefore lead to disruptive selection on learning rules and, potentially, to the evolution of genetic polymorphisms. Thus, we show how reinforcement learning in social contexts can be a driver of evolutionary diversification. In addition, we consider the evolution of ability in our games, showing that learning can also drive disruptive selection on the ability to perform a task.
Collapse
Affiliation(s)
- John M. McNamara
- School of Mathematics, University of Bristol, BristolBS8 1UG, UK
| | - Sasha R. X. Dall
- Centre for Ecology and Conservation, University of Exeter, ExeterTR10 9FE, UK
| | | | - Olof Leimar
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
2
|
Ahi EP, Verta JP, Kurko J, Ruokolainen A, Singh P, Debes PV, Erkinaro J, Primmer CR. Gene co-expression patterns in Atlantic salmon adipose tissue provide a molecular link among seasonal changes, energy balance and age at maturity. Mol Ecol 2024:e17313. [PMID: 38429895 DOI: 10.1111/mec.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Sexual maturation in many fishes requires a major physiological change that involves a rapid transition between energy storage and usage. In Atlantic salmon, this transition for the initiation of maturation is tightly controlled by seasonality and requires a high-energy status. Lipid metabolism is at the heart of this transition since lipids are the main energy storing molecules. The balance between lipogenesis (lipid accumulation) and lipolysis (lipid use) determines energy status transitions. A genomic region containing a transcription co-factor of the Hippo pathway, vgll3, is the main determinant of maturation timing in Atlantic salmon. Interestingly, vgll3 acts as an inhibitor of adipogenesis in mice and its genotypes are potentially associated with seasonal heterochrony in lipid storage and usage in juvenile Atlantic salmon. Here, we explored changes in expression of more than 300 genes directly involved in the processes of adipogenesis, lipogenesis and lipolysis, as well as the Hippo pathway in the adipose tissue of immature and mature Atlantic salmon with distinct vgll3 genotypes. We found molecular evidence consistent with a scenario in which immature males with different vgll3 genotypes exhibit contrasting seasonal dynamics in their lipid profiles. We also identified components of the Hippo signalling pathway as potential major drivers of vgll3 genotype-specific differences in adipose tissue gene expression. This study demonstrates the importance of adipose gene expression patterns for directly linking environmental changes with energy balance and age at maturity through genetic factors bridging lipid metabolism, seasonality and sexual maturation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Verta
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Johanna Kurko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Annukka Ruokolainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pooja Singh
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Paul Vincent Debes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Aquaculture and Fish Biology, Hólar University, Sauoarkrokur, Iceland
| | | | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Rieseberg L, Warschefsky E, Burton J, Huang K, Sibbett B. Editorial 2024. Mol Ecol 2024; 33:e17239. [PMID: 38146175 DOI: 10.1111/mec.17239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Affiliation(s)
- Loren Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Emily Warschefsky
- William L. Brown Center, Missouri Botanical Garden, Saint Louis, MO, USA
| | - Jade Burton
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Sibbett
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| |
Collapse
|