1
|
Saghian R, Cahill LS, Debebe SK, Rahman A, Serghides L, McDonald CR, Weckman AM, Kain KC, Sled JG. Allometric scaling relationships in mouse placenta. J R Soc Interface 2022; 19:20220579. [PMID: 36349448 PMCID: PMC9653247 DOI: 10.1098/rsif.2022.0579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 08/29/2023] Open
Abstract
Fetal growth and maturation are highly intertwined with placental development during pregnancy. Here we used placental vascular morphology measurements (depth and span) as well as the umbilical artery (UA) diameter of previously published studies on three different mouse strains (C57BL6/J, CD-1 and BALB/c), which were exposed to different conditions (combination antiretroviral therapy, chronic maternal hypoxia and malaria infection) at different embryonic days, to test the hypothesis that placental vascularization and specifically the UA size affect conceptus weight. Interaction of each study parameter with embryonic day, strain and exposure to treatments are studied to investigate the stability of the scaling relationships across and/or within strains and conditions. In addition, the effect of UA diameter on the placental growth measurements (depth and span) is studied. These results show that the power-law scaling relationship of conceptus weight and placental depth with the UA diameter is conserved across strains and conditions with the scaling exponent of approximately 3/8 and 5/8, respectively. By contrast, the relationship between conceptus weight and either the placental span or depth is different between strains and conditions, suggesting multiple mechanisms of vascular adaptation.
Collapse
Affiliation(s)
- Rojan Saghian
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lindsay S. Cahill
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Department of Chemistry, Memorial University of Newfoundland, Newfoundland and Labrador, St John’s, Canada
| | - Sarah K. Debebe
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Anum Rahman
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Lena Serghides
- Department of Immunology and Institute of Medical Sciences, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Women’s College Research Institute, Women’s College Hospital, Toronto, Ontario, Canada
| | - Chloe R. McDonald
- Institute of Medical Science, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Andrea M. Weckman
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C. Kain
- Institute of Medical Science, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John G. Sled
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Saghian R, Cahill L, Rahman A, Steinman J, Stortz G, Kingdom J, Macgowan C, Sled J. Interpretation of wave reflections in the umbilical arterial segment of the feto-placental circulation: computational modeling of the feto-placental arterial tree. IEEE Trans Biomed Eng 2021; 68:3647-3658. [PMID: 34010124 DOI: 10.1109/tbme.2021.3082064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Placental vascular abnormalities are associated with a host of pregnancy complications including placenta mediated fetal growth restriction (FGR). Umbilical arterial (UA) Doppler ultrasound velocity waveforms are widely used in the diagnosis of underlying placental vascular abnormalities in pregnancies with suspected FGR, which greatly help prevent stillbirth via ongoing fetal monitoring and timely delivery. However, the sensitivity of UA Doppler diagnosis diminishes late in gestation. Our goal was to present a generalized wave decomposition method to compute forward and reflected components from UA waveforms. A detailed anatomical based model was also developed to explain observed UA flow waveform and to explore how vascular properties affect the shape of flow wave components. Using pregnant mice and high frequency ultrasound microscopy, we obtained in utero Doppler and M- mode ultrasound measurements in 15 fetuses UA. Following ultrasound, the placentas were collected and perfused with contrast agent to obtain high-resolution 3D images of the feto-placental arteries. Model results indicate the significant role of terminal load impedance (capillary and/or veins) in creating positive or negative reflected waveforms. A negative reflected waveform is obtained when terminal impedance increases. This is consistent with the elongated and non-branching terminal villi that are proposed cause the highly abnormal UA waveforms found in early-onset FGR. The significance of these findings for the diagnostic utility of UA Doppler in human pregnancy is that the identification and measurement of wave reflections may aid in discriminating between healthy and abnormal placental vasculature in pregnancies with suspected late-onset FGR.
Collapse
|
3
|
Baratta AM, Kanyuch NR, Cole CA, Valafar H, Deslauriers J, Pocivavsek A. Acute sleep deprivation during pregnancy in rats: Rapid elevation of placental and fetal inflammation and kynurenic acid. Neurobiol Stress 2019; 12:100204. [PMID: 32258253 PMCID: PMC7109515 DOI: 10.1016/j.ynstr.2019.100204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
The kynurenine pathway (KP) is the dominant pathway for tryptophan degradation in the mammalian body and emerging evidence suggests that acute episodes of sleep deprivation (SD) disrupt tryptophan metabolism via the KP. Increases in the neuroactive KP metabolite kynurenic acid (KYNA) during pregnancy may lead to a higher risk for disrupted neurodevelopment in the offspring. As pregnancy is a critical period during which several factors, including sleep disruptions, could disrupt the fetal environment, we presently explored the relationship between maternal SD and KP metabolism and immune pathways in maternal, placenta, and fetal tissues. Pregnant Wistar rat dams were sleep deprived by gentle handling for 5 h from zeitgeber time (ZT) 0 to ZT 5. Experimental cohorts included: i) controls, ii) one session of SD on embryonic day (ED) 18 or iii) three sessions of SD occurring daily on ED 16, ED 17 and ED 18. Maternal (plasma, brain), placental and fetal (plasma, brain) tissues were collected immediately after the last session of SD or after 24 h of recovery from SD. Respective controls were euthanized at ZT 5 on ED 18 or ED 19. Maternal plasma corticosterone and fetal brain KYNA were significantly elevated only after one session of SD on ED 18. Importantly, maternal plasma corticosterone levels correlated significantly with fetal brain KYNA levels. In addition, placental levels of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) were increased following maternal SD, suggesting a relationship between placental immune response to SD and fetal brain KYNA accumulation. Collectively, our results demonstrate that sleep loss during the last week of gestation can adversely impact maternal stress, placental immune function, and fetal brain KYNA levels. We introduce KYNA as a novel molecular target influenced by sleep loss during pregnancy. Prenatal sleep deprivation influences kynurenine pathway metabolism in utero. Fetal brain kynurenic acid (KYNA) is elevated after maternal sleep deprivation. Maternal plasma corticosterone is increased after sleep deprivation. Prenatal sleep deprivation induces placental and fetal brain cytokines. These data support an interplay with stress, in utero inflammation, and KYNA.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nickole R Kanyuch
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Casey A Cole
- College of Engineering and Computing, University of South Carolina, Columba, South Carolina, USA
| | - Homayoun Valafar
- College of Engineering and Computing, University of South Carolina, Columba, South Carolina, USA
| | - Jessica Deslauriers
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
4
|
Cahill LS, Zhou YQ, Hoggarth J, Yu LX, Rahman A, Stortz G, Whitehead CL, Baschat A, Kingdom JC, Macgowan CK, Serghides L, Sled JG. Placental vascular abnormalities in the mouse alter umbilical artery wave reflections. Am J Physiol Heart Circ Physiol 2019; 316:H664-H672. [PMID: 30632765 DOI: 10.1152/ajpheart.00733.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current methods to detect placental vascular pathologies that monitor Doppler ultrasound changes in umbilical artery (UA) pulsatility have only moderate diagnostic utility, particularly in late gestation. In fetal mice, we recently demonstrated that reflected pressure waves propagate counter to the direction of flow in the UA and proposed the measurement of these reflections as a means to detect abnormalities in the placental circulation. In the present study, we used this approach in combination with microcomputed tomography to investigate the relationship between altered placental vascular architecture and changes in UA wave reflection metrics. Fetuses were assessed at embryonic day (E) 15.5 and E17.5 in control C57BL6/J mice and dams treated with combination antiretroviral therapy (cART), a known model of fetal growth restriction. Whereas the reflection coefficient was not different between groups at E15.5, it was 27% higher at E17.5 in cART-treated mice compared with control mice. This increase in reflection coefficient corresponded to a 36% increase in the total number of vessel segments, a measure of overall architectural complexity. Interestingly, there was no difference in UA pulsatility index between groups, suggesting that the wave reflections convey information about vascular architecture that is not captured by conventional ultrasound metrics. The wave reflection parameters were found to be associated with the morphology of the fetoplacental arterial tree, with the area ratio between the UA and first branch points correlating with the reflection coefficient. This study highlights the potential for wave reflection to aid in the noninvasive clinical assessment of placental vascular pathology. NEW & NOTEWORTHY We used a novel ultrasound methodology based on detecting pulse pressure waves that propagate along the umbilical artery to investigate the relationship between changes in wave reflection metrics and altered placental vascular architecture visualized by microcomputed tomography. Using pregnant mice treated with combination antiretroviral therapy, a model of fetal growth restriction, we demonstrated that reflections in the umbilical artery are sensitive to placental vascular abnormalities and associated with the geometry of the fetoplacental tree.
Collapse
Affiliation(s)
- Lindsay S Cahill
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Yu-Qing Zhou
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Johnathan Hoggarth
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Lisa X Yu
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Anum Rahman
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Medical Biophysics, University of Toronto , Ontario , Canada
| | - Greg Stortz
- Translational Medicine, Hospital for Sick Children , Toronto, Ontario , Canada
| | | | - Ahmet Baschat
- Center for Fetal Therapy, Johns Hopkins Medicine, Baltimore, Maryland
| | - John C Kingdom
- Mount Sinai Hospital , Toronto, Ontario , Canada.,Department of Obstetrics and Gynecology, University of Toronto , Ontario , Canada
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto , Ontario , Canada.,Translational Medicine, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario , Canada.,Department of Immunology and Institute of Medical Sciences, University of Toronto , Ontario , Canada.,Women's College Research Institute, Women's College Hospital , Toronto, Ontario , Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Medical Biophysics, University of Toronto , Ontario , Canada.,Translational Medicine, Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Obstetrics and Gynecology, University of Toronto , Ontario , Canada
| |
Collapse
|
5
|
Camm EJ, Botting KJ, Sferruzzi-Perri AN. Near to One's Heart: The Intimate Relationship Between the Placenta and Fetal Heart. Front Physiol 2018; 9:629. [PMID: 29997513 PMCID: PMC6029139 DOI: 10.3389/fphys.2018.00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
The development of the fetal heart is exquisitely controlled by a multitude of factors, ranging from humoral to mechanical forces. The gatekeeper regulating many of these factors is the placenta, an external fetal organ. As such, resistance within the placental vascular bed has a direct influence on the fetal circulation and therefore, the developing heart. In addition, the placenta serves as the interface between the mother and fetus, controlling substrate exchange and release of hormones into both circulations. The intricate relationship between the placenta and fetal heart is appreciated in instances of clinical placental pathology. Abnormal umbilical cord insertion is associated with congenital heart defects. Likewise, twin-to-twin transfusion syndrome, where monochorionic twins have unequal sharing of their placenta due to inter-twin vascular anastomoses, can result in cardiac remodeling and dysfunction in both fetuses. Moreover, epidemiological studies have suggested a link between placental phenotypic traits and increased risk of cardiovascular disease in adult life. To date, the mechanistic basis of the relationships between the placenta, fetal heart development and later risk of cardiac dysfunction have not been fully elucidated. However, studies using environmental exposures and gene manipulations in experimental animals are providing insights into the pathways involved. Likewise, surgical instrumentation of the maternal and fetal circulations in large animal species has enabled the manipulation of specific humoral and mechanical factors to investigate their roles in fetal cardiac development. This review will focus on such studies and what is known to date about the link between the placenta and heart development.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Mirbod P. Analytical model of the feto-placental vascular system: consideration of placental oxygen transport. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180219. [PMID: 29765697 PMCID: PMC5936962 DOI: 10.1098/rsos.180219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The placenta is a transient vascular organ that enables nutrients and blood gases to be exchanged between fetal and maternal circulations. Herein, the structure and oxygen diffusion across the trophoblast membrane between the fetal and maternal red blood cells in the feto-placental vasculature system in both human and mouse placentas are presented together as a functional unit. Previous models have claimed that the most efficient fetal blood flow relies upon structures containing a number of 'conductive' symmetrical branches, offering a path of minimal resistance that maximizes blood flow to the terminal villi, where oxygen diffusion occurs. However, most of these models have disregarded the actual descriptions of the exchange at the level of the intermediate and terminal villi. We are proposing a 'mixed model' whereby both 'conductive' and 'terminal' villi are presumed to be present at the end of single (in human) or multiple (in mouse) pregnancies. We predict an optimal number of 18 and 22 bifurcation levels in the human and the mouse placentas, respectively. Wherever possible, we have compared our model's predictions with experimental results reported in the literature and found close agreement between them.
Collapse
Affiliation(s)
- Parisa Mirbod
- Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
7
|
Leonard AS, Lee J, Schubert D, Croen LA, Fallin MD, Newschaffer CJ, Walker CK, Salafia CM, Morgan SP, Vvedensky DD. Scaling of the surface vasculature on the human placenta. Phys Rev E 2018; 96:040401. [PMID: 29347569 DOI: 10.1103/physreve.96.040401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Indexed: 11/07/2022]
Abstract
The networks of veins and arteries on the chorionic plate of the human placenta are analyzed in terms of Voronoi cells derived from these networks. Two groups of placentas from the United States are studied: a population cohort with no prescreening, and a cohort from newborns with an elevated risk of developing autistic spectrum disorder. Scaled distributions of the Voronoi cell areas in the two cohorts collapse onto a single distribution, indicating common mechanisms for the formation of the complete vasculatures, but which have different levels of activity in the two cohorts.
Collapse
Affiliation(s)
- A S Leonard
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - J Lee
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - D Schubert
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - L A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California 94612, USA
| | - M D Fallin
- Department of Epidemiology and Department of Biostatistics, Johns Hopkins, Bloomberg School of Public Health, Johns Hopkins University Baltimore, Maryland 21205, USA
| | - C J Newschaffer
- Department of Epidemiology and Biostatistics, Drexel School of Public Health, Drexel University 1505 Race Street, Mail Stop 1033, Philadelphia, Pennsylvania 19102, USA
| | - C K Walker
- Lawrence J. Ellison Ambulatory Care Center, Obstetrics and Gynecology Clinic, University of California-Davis, Sacramento, California 95817, USA
| | - C M Salafia
- Placental Analytics, LLC, 187 Overlook Circle, New Rochelle, New York 10804, USA
| | - S P Morgan
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - D D Vvedensky
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Rahman A, Cahill LS, Zhou YQ, Hoggarth J, Rennie MY, Seed M, Macgowan CK, Kingdom JC, Adamson SL, Sled JG. A mouse model of antepartum stillbirth. Am J Obstet Gynecol 2017; 217:443.e1-443.e11. [PMID: 28619691 DOI: 10.1016/j.ajog.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Many stillbirths of normally formed fetuses in the third trimester could be prevented via delivery if reliable means to anticipate this outcome existed. However, because the etiology of these stillbirths is often unexplained and although the underlying mechanism is presumed to be hypoxia from placental insufficiency, the placentas often appear normal on histopathological examination. Gestational age is a risk factor for antepartum stillbirth, with a rapid rise in stillbirth rates after 40 weeks' gestation. We speculate that a common mechanism may explain antepartum stillbirth in both the late-term and postterm periods. Mice also show increasing rates of stillbirth when pregnancy is artificially prolonged. The model therefore affords an opportunity to characterize events that precede stillbirth. OBJECTIVE The objective of the study was to prolong gestation in mice and monitor fetal and placental growth and cardiovascular changes. STUDY DESIGN From embryonic day 15.5 to embryonic day 18.5, pregnant CD-1 mice received daily progesterone injections to prolong pregnancy by an additional 24 hour period (to embryonic day 19.5). To characterize fetal and placental development, experimental assays were performed throughout late gestation (embryonic day 15.5 to embryonic day 19.5), including postnatal day 1 pups as controls. In addition to collecting fetal and placental weights, we monitored fetal blood flow using Doppler ultrasound and examined the fetoplacental arterial vascular geometry using microcomputed tomography. Evidence of hypoxic organ injury in the fetus was assessed using magnetic resonance imaging and pimonidazole immunohistochemistry. RESULTS At embryonic day 19.5, mean fetal weights were reduced by 14% compared with control postnatal day 1 pups. Ultrasound biomicroscopy showed that fetal heart rate and umbilical artery flow continued to increase at embryonic day 19.5. Despite this, the embryonic day 19.5 fetuses had significant pimonidazole staining in both brain and liver tissue, indicating fetal hypoxia. Placental weights at embryonic day 19.5 were 21% lower than at term (embryonic day 18.5). Microcomputed tomography showed no change in quantitative morphology of the fetoplacental arterial vasculature between embryonic day 18.5 and embryonic day 19.5. CONCLUSION Prolongation of pregnancy renders the murine fetus vulnerable to significant growth restriction and hypoxia because of differential loss of placental mass rather than any compromise in fetoplacental blood flow. Our data are consistent with a hypoxic mechanism of antepartum fetal death in human term and postterm pregnancy and validates the inability of umbilical artery Doppler to safely monitor such fetuses. New tests of placental function are needed to identify the late-term fetus at risk of hypoxia to intervene by delivery to avoid antepartum stillbirth.
Collapse
|
9
|
Cahill LS, Rennie MY, Hoggarth J, Yu LX, Rahman A, Kingdom JC, Seed M, Macgowan CK, Sled JG. Feto- and utero-placental vascular adaptations to chronic maternal hypoxia in the mouse. J Physiol 2017; 596:3285-3297. [PMID: 28861917 DOI: 10.1113/jp274845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Chronic fetal hypoxia is one of the most common complications of pregnancy and is known to cause fetal growth restriction. The structural adaptations of the placental vasculature responsible for growth restriction with chronic hypoxia are not well elucidated. Using a mouse model of chronic maternal hypoxia in combination with micro-computed tomography and scanning electron microscopy, we found several placental adaptations that were beneficial to fetal growth including capillary expansion, thinning of the interhaemal membrane and increased radial artery diameters, resulting in a large drop in total utero-placental vascular resistance. One of the mechanisms used to achieve the rapid increase in capillaries was intussusceptive angiogenesis, a strategy used in human placental development to form terminal gas-exchanging villi. These results contribute to our understanding of the structural mechanisms of the placental vasculature responsible for fetal growth restriction and provide a baseline for understanding adaptive physiological responses of the placenta to chronic hypoxia. ABSTRACT The fetus and the placenta in eutherian mammals have a unique set of compensatory mechanisms to respond to several pregnancy complications including chronic maternal hypoxia. This study examined the structural adaptations of the feto- and utero-placental vasculature in an experimental mouse model of chronic maternal hypoxia (11% O2 from embryonic day (E) 14.5-E17.5). While placental weights were unaffected by exposure to chronic hypoxia, using micro-computed tomography, we found a 44% decrease in the absolute feto-placental arterial vascular volume and a 30% decrease in total vessel segments in the chronic hypoxia group compared to control group. Scanning electron microscopy imaging showed significant expansion of the capillary network; consequently, the interhaemal membrane was 11% thinner to facilitate maternal-fetal exchange in the chronic hypoxia placentas. One of the mechanisms for the rapid capillary expansion was intussusceptive angiogenesis. Analysis of the utero-placental arterial tree showed significant increases (24%) in the diameter of the radial arteries, resulting in a decrease in the total utero-placental resistance by 2.6-fold in the mice exposed to chronic maternal hypoxia. Together these adaptations acted to preserve placental weight whereas fetal weight was decreased.
Collapse
Affiliation(s)
- Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Monique Y Rennie
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johnathan Hoggarth
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa X Yu
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anum Rahman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John C Kingdom
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Rennie MY, Cahill LS, Adamson SL, Sled JG. Arterio-venous fetoplacental vascular geometry and hemodynamics in the mouse placenta. Placenta 2017; 58:46-51. [PMID: 28962695 DOI: 10.1016/j.placenta.2017.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The fetoplacental vasculature network is essential for the exchange of nutrients, gases and wastes with the maternal circulation and for normal fetal development. The present study quantitatively compares arterial and venous morphological and functional differences in the mouse fetoplacental vascular network. METHODS High resolution X-ray micro-computed tomography was used to visualize the 3D geometry of the arterial and venous fetoplacental vasculature in embryonic day 15.5 CD-1 mice (n = 5). Automated image analysis was used to measure the vascular geometry of the approximately 4100 arterial segments and 3200 venous segments per specimen to simulate blood flow through these networks. RESULTS Both the arterial and venous trees demonstrated a hierarchical branching structure with 8 or 9 (arterial) or 8 (venous) orders. The venous tree was smaller in volume and overall dimensions than the arterial tree. Venous vessel diameters increased more rapidly than arteries with each successive order, leading to lower overall resistance, although the umbilical vein was notably smaller and of higher resistance than these scaling relationships would predict. Simulation of blood flow for these vascular networks showed that 57% of total resistance resides in the umbilical artery and arterial tree, 17% in the capillary bed, and 26% in the venous tree and umbilical vein. DISCUSSION A detailed examination of the mouse fetoplacental arterial and venous tree revealed features, such as the distribution of resistance and the dimension of the venous tree, that were both morphologically distinct from other vascular beds and that appeared adapted to the specialized requirements of sustaining a fetus.
Collapse
Affiliation(s)
- Monique Y Rennie
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Lee Adamson
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Viscosity and haemodynamics in a late gestation rat feto-placental arterial network. Biomech Model Mechanobiol 2017; 16:1361-1372. [PMID: 28258413 DOI: 10.1007/s10237-017-0892-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Abstract
The placenta is a transient organ which develops during pregnancy to provide haemotrophic support for healthy fetal growth and development. Fundamental to its function is the healthy development of vascular trees in the feto-placental arterial network. Despite the strong association of haemodynamics with vascular remodelling mechanisms, there is a lack of computational haemodynamic data that may improve our understanding of feto-placental physiology. The aim of this work was to create a comprehensive 3D computational fluid dynamics model of a substructure of the rat feto-placental arterial network and investigate the influence of viscosity on wall shear stress (WSS). Late gestation rat feto-placental arteries were perfused with radiopaque Microfil and scanned via micro-computed tomography to capture the feto-placental arterial geometry in 3D. A detailed description of rat fetal blood viscosity parameters was developed, and three different approaches to feto-placental haemodynamics were simulated in 3D using the finite volume method: Newtonian model, non-Newtonian Carreau-Yasuda model and Fåhræus-Lindqvist effect model. Significant variability in WSS was observed between different viscosity models. The physiologically-realistic simulations using the Fåhræus-Lindqvist effect and rat fetal blood estimates of viscosity revealed detailed patterns of WSS throughout the arterial network. We found WSS gradients at bifurcation regions, which may contribute to vessel enlargement, and sprouting and pruning during angiogenesis. This simulation of feto-placental haemodynamics shows the heterogeneous WSS distribution throughout the network and demonstrates the ability to determine physiologically-relevant WSS magnitudes, patterns and gradients. This model will help advance our understanding of vascular physiology and remodelling in the feto-placental network.
Collapse
|
12
|
Rennie MY, Rahman A, Whiteley KJ, Sled JG, Adamson SL. Site-specific increases in utero- and fetoplacental arterial vascular resistance in eNOS-deficient mice due to impaired arterial enlargement. Biol Reprod 2014; 92:48. [PMID: 25519187 DOI: 10.1095/biolreprod.114.123968] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sites of elevated vascular resistance that impede placental perfusion in pathological pregnancies are unknown. In the current study, we identified these sites in a knockout mouse model (eNOS(-/-)) with reduced uterine (-55%) and umbilical (-29%) artery blood flows caused by endothelial nitric oxide synthase deficiency. Uteroplacental and fetoplacental arterial vascular trees of pregnant mice near term were imaged using x-ray microcomputed tomography (n = 5-10 placentas from 3-5 dams/group). The resulting three-dimensional images were analyzed to assess vessel geometry and vascular resistance. In control and eNOS(-/-) trees, ∼90% of total uteroplacental vascular resistance was located in the radial arteries. Changes in eNOS(-/-) vessel geometry, including 30% reductions in uterine, radial, and spiral artery diameters, were calculated to increase arterial resistance downstream of the uterine artery by 2.3-fold, predicting a 57% decrease in uterine blood flow. Despite large reductions in eNOS(-/-) spiral arteries (-55% by volume) and maternal canals (-67% by volume), these vessels were relatively minor contributors to resistance. In the eNOS(-/-) fetoplacental tree, the number of arterioles (50-75 μm diameter) increased by 26%. Nevertheless, calculated resistance rose by 19%, predominantly because arteries near the periphery of the tree selectively exhibited a 7%-9% diameter reduction. We conclude that previously observed decreases in uterine and umbilical blood flows in eNOS(-/-) pregnancies are associated with markedly divergent structural changes in the uteroplacental versus fetoplacental circulations. Results showed the radial arteries were critical determinants of uteroplacental resistance in mice and therefore warrant greater attention in future studies in pathological human pregnancies.
Collapse
Affiliation(s)
- Monique Y Rennie
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anum Rahman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kathie J Whiteley
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - S Lee Adamson
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada Department of Physiology, University of Toronto, Toronto, Ontario, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Linask KK, Han M, Bravo-Valenzuela NJM. Changes in vitelline and utero-placental hemodynamics: implications for cardiovascular development. Front Physiol 2014; 5:390. [PMID: 25426076 PMCID: PMC4227466 DOI: 10.3389/fphys.2014.00390] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/21/2014] [Indexed: 12/31/2022] Open
Abstract
Analyses of cardiovascular development have shown an important interplay between heart function, blood flow, and morphogenesis of heart structure during the formation of a four-chambered heart. It is known that changes in vitelline and placental blood flow seemingly contribute substantially to early cardiac hemodynamics. This suggests that in order to understand mammalian cardiac structure-hemodynamic functional relationships, blood flow from the extra-embryonic circulation needs to be taken into account and its possible impact on cardiogenesis defined. Previously published Doppler ultrasound analyses and data of utero-placental blood flow from human studies and those using the mouse model are compared to changes observed with environmental exposures that lead to cardiovascular anomalies. Use of current concepts and models related to mechanotransduction of blood flow and fluid forces may help in the future to better define the characteristics of normal and abnormal utero-placental blood flow and the changes in the biophysical parameters that may contribute to congenital heart defects. Evidence from multiple studies is discussed to provide a framework for future modeling of the impact of experimental changes in blood flow on the mouse heart during normal and abnormal cardiogenesis.
Collapse
Affiliation(s)
- Kersti K Linask
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida Health St. Petersburg, FL, USA
| | - Mingda Han
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida Health St. Petersburg, FL, USA
| | | |
Collapse
|
14
|
Haas TL. Shaping and remodeling of the fetoplacental circulation: aspects of health and disease. Microcirculation 2014; 21:1-3. [PMID: 24033789 DOI: 10.1111/micc.12084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 12/11/2022]
Abstract
Extensive vascular adaptations occur during pregnancy, and these result in the formation of a low-resistance placental circulation that maintains high blood flow to the developing fetus. These adaptations encompass both functional and structural alterations, including altered vasoreactivity of resistance vessels, arterial remodeling and angiogenesis. This Special Topics issue presents a collection of expert reviews that summarize the current state of knowledge on the regulation of the structural and functional changes that occur within the fetoplacental circulation, as well as introduce emerging research questions and tools. Emphasis is placed on defining the mechanisms that underlie these physiological adaptations, as a foundation for applying this knowledge to the development of improved early detection markers and treatments for pathological conditions such as preeclampsia, gestational diabetes mellitus, and fetal growth restriction.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Faculty of Health, York University, Toronto, Ontario, Canada
| |
Collapse
|