1
|
Reeve EH, Barnes JN, Moir ME, Walker AE. Impact of arterial stiffness on cerebrovascular function: a review of evidence from humans and preclincal models. Am J Physiol Heart Circ Physiol 2024; 326:H689-H704. [PMID: 38214904 PMCID: PMC11221809 DOI: 10.1152/ajpheart.00592.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
With advancing age, the cerebral vasculature becomes dysfunctional, and this dysfunction is associated with cognitive decline. However, the initiating cause of these age-related cerebrovascular impairments remains incompletely understood. A characteristic feature of the aging vasculature is the increase in stiffness of the large elastic arteries. This increase in arterial stiffness is associated with elevated pulse pressure and blood flow pulsatility in the cerebral vasculature. Evidence from both humans and rodents supports that increases in large elastic artery stiffness are associated with cerebrovascular impairments. These impacts on cerebrovascular function are wide-ranging and include reductions in global and regional cerebral blood flow, cerebral small vessel disease, endothelial cell dysfunction, and impaired perivascular clearance. Furthermore, recent findings suggest that the relationship between arterial stiffness and cerebrovascular function may be influenced by genetics, specifically APOE and NOTCH genotypes. Given the strength of the evidence that age-related increases in arterial stiffness have deleterious impacts on the brain, interventions that target arterial stiffness are needed. The purpose of this review is to summarize the evidence from human and rodent studies, supporting the role of increased arterial stiffness in age-related cerebrovascular impairments.
Collapse
Affiliation(s)
- Emily H Reeve
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jill N Barnes
- Department of Kinesiology University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - M Erin Moir
- Department of Kinesiology University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
2
|
Liao W, Wen Y, Yang S, Duan Y, Liu Z. Research progress and perspectives of N-methyl-D-aspartate receptor in myocardial and cerebral ischemia-reperfusion injury: A review. Medicine (Baltimore) 2023; 102:e35490. [PMID: 37861505 PMCID: PMC10589574 DOI: 10.1097/md.0000000000035490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
There is an urgent need to find common targets for precision therapy, as there are no effective preventive therapeutic measures for combined clinical heart-brain organ protection and common pathways associated with glutamate receptors are involved in heart-brain injury, but current glutamate receptor-related clinical trials have failed. Ischemia-reperfusion injury (IRI) is a common pathological condition that occurs in multiple organs, including the heart and brain, and can lead to severe morbidity and mortality. N-methyl-D-aspartate receptor (NMDAR), a type of ionotropic glutamate receptor, plays a crucial role in the pathogenesis of IRI. NMDAR activity is mainly regulated by endogenous activators, agonists, antagonists, and voltage-gated channels, and activation leads to excessive calcium influx, oxidative stress, mitochondrial dysfunction, inflammation, apoptosis, and necrosis in ischemic cells. In this review, we summarize current research advances regarding the role of NMDAR in myocardial and cerebral IRI and discuss potential therapeutic strategies to modulate NMDAR signaling to prevent and treat IRI.
Collapse
Affiliation(s)
- Wei Liao
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuehui Wen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaochun Yang
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yanyu Duan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ziyou Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Cardiac Surgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Geiseler SJ, Phan KD, Brox C, Nguyen TD, Tartanoglu C, Doosje HL, Christiansen CL, Liesz A, Morland C. Pre-stroke exercise does not reduce atrophy in healthy young adult mice. Neurosci Lett 2023; 814:137447. [PMID: 37604388 DOI: 10.1016/j.neulet.2023.137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Stroke is the main cause of acquired disability in adults. Exercise reduces the risk for stroke and protects against functional loss after stroke. An exercise-induced reduction in key risk factors probably contributes to the protective effect, but direct effects on the brain may also contribute to stroke protection. We previously reported that exercise increases angiogenesis and neurogenesis through activation of the lactate receptor HCA1. Here we exposed young adult wild-type mice and HCA1 knockout mice to interval exercise at high or medium intensity, or to intraperitoneal injections of L-lactate or saline for seven weeks before we induced experimental stroke by permanent occlusion of the distal medial cerebral artery (dMCA). The resulting cortical atrophy measured three weeks after stroke was unaffected by exercise or L-lactate pre-treatments, and independent of HCA1 activation. Our results suggest that the beneficial effect of exercise prior to stroke where no reperfusion occurs is limited in individuals who do not carry risk factors.
Collapse
Affiliation(s)
- Samuel J Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Kimberly D Phan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Camilla Brox
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Teresa D Nguyen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Can Tartanoglu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hanne-Lise Doosje
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway; Institute for Life Science and Technology, Hanzehogeschool, Groningen, the Netherlands
| | - Cathrine L Christiansen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Artur Liesz
- Institute for Stroke and Dementia Research, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Schock S, Hakim A. The Physiological and Molecular Links Between Physical Activity and Brain Health: A Review. Neurosci Insights 2023; 18:26331055231191523. [PMID: 37600456 PMCID: PMC10436988 DOI: 10.1177/26331055231191523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
There is currently an epidemic of sedentary behavior throughout the world, leading to negative impacts on physical health and contributing to both mortality and burden of disease. The consequences of this also impact the brain, where increased levels of cognitive decline are observed in individuals who are more sedentary. This review explores the physiological and molecular responses to our sedentary propensity, its contribution to several medical conditions and cognitive deficits, and the benefits of moderate levels of physical activity and exercise. Also presented is the recommended level of activity for overall physical health improvement.
Collapse
Affiliation(s)
- Sarah Schock
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Antoine Hakim
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Lapidaire W, Forkert ND, Williamson W, Huckstep O, Tan CM, Alsharqi M, Mohamed A, Kitt J, Burchert H, Mouches P, Dawes H, Foster C, Okell TW, Lewandowski AJ, Leeson P. Aerobic exercise increases brain vessel lumen size and blood flow in young adults with elevated blood pressure. Secondary analysis of the TEPHRA randomized clinical trial. Neuroimage Clin 2023; 37:103337. [PMID: 36709637 PMCID: PMC9900452 DOI: 10.1016/j.nicl.2023.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
IMPORTANCE Cerebrovascular changes are already evident in young adults with hypertension and exercise is recommended to reduce cardiovascular risk. To what extent exercise benefits the cerebrovasculature at an early stage of the disease remains unclear. OBJECTIVE To investigate whether structured aerobic exercise increases brain vessel lumen diameter or cerebral blood flow (CBF) and whether lumen diameter is associated with CBF. DESIGN Open, parallel, two-arm superiority randomized controlled (1:1) trial in the TEPHRA study on an intention-to-treat basis. The MRI sub-study was an optional part of the protocol. The outcome assessors remained blinded until the data lock. SETTING Single-centre trial in Oxford, UK. PARTICIPANTS Participants were physically inactive (<150 min/week moderate to vigorous physical activity), 18 to 35 years old, 24-hour ambulatory blood pressure 115/75 mmHg-159/99 mmHg, body mass index below 35 kg/m2 and never been on prescribed hypertension medications. Out of 203 randomized participants, 135 participated in the MRI sub-study. Randomisation was stratified for sex, age (<24, 24-29, 30-35 years) and gestational age at birth (<32, 32-37, >37 weeks). INTERVENTION Study participants were randomised to a 16 week aerobic exercise intervention targeting 3×60 min sessions per week at 60 to 80 % peak heart rate. MAIN OUTCOMES AND MEASURES cerebral blood flow (CBF) maps from ASL MRI scans, internal carotid artery (ICA), middle cerebral artery (MCA) M1 and M2 segments, anterior cerebral artery (ACA), basilar artery (BA), and posterior cerebral artery (PCA) diameters extracted from TOF MRI scans. RESULTS Of the 135 randomized participants (median age 28 years, 58 % women) who had high quality baseline MRI data available, 93 participants also had high quality follow-up data available. The exercise group showed an increase in ICA (0.1 cm, 95 % CI 0.01 to 0.18, p =.03) and MCA M1 (0.05 cm, 95 % CI 0.01 to 0.10, p =.03) vessel diameter compared to the control group. Differences in the MCA M2 (0.03 cm, 95 % CI 0.0 to 0.06, p =.08), ACA (0.04 cm, 95 % CI 0.0 to 0.08, p =.06), BA (0.02 cm, 95 % CI -0.04 to 0.09, p =.48), and PCA (0.03 cm, 95 % CI -0.01 to 0.06, p =.17) diameters or CBF were not statistically significant. The increase in ICA vessel diameter in the exercise group was associated with local increases in CBF. CONCLUSIONS AND RELEVANCE Aerobic exercise induces positive cerebrovascular remodelling in young people with early hypertension, independent of blood pressure. The long-term benefit of these changes requires further study. TRIAL REGISTRATION Clinicaltrials.gov NCT02723552, 30 March 2016.
Collapse
Affiliation(s)
- Winok Lapidaire
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Nils D Forkert
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Wilby Williamson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Odaro Huckstep
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Life Sciences Research Center, Department of Biology, United States Air Force Academy, United States.
| | - Cheryl Mj Tan
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| | - Maryam Alsharqi
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Cardiac Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Afifah Mohamed
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Malaysia.
| | - Jamie Kitt
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Holger Burchert
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.
| | - Pauline Mouches
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Helen Dawes
- NIHR Exeter BRC, Medical School, University of Exeter, Exeter, United Kingdom.
| | - Charlie Foster
- Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
6
|
The effect of two types of diet on apoptosis indexes, lipid profile and histopathological outcome in acute kidney injury during exercise. BMC Nephrol 2022; 23:315. [PMID: 36123655 PMCID: PMC9487158 DOI: 10.1186/s12882-022-02938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Exercise and some pre-AKI diets have been shown to improve injury, apoptosis, and lipid profile. In this study, the effect of two different diets along with exercise training on acute kidney injury (AKI) was investigated. Materials and methods Laboratory rats were randomly divided into four groups of control, standard diet + exercise, exercise + calorie restriction (CR) and exercise + time restriction (TR). Each group was divided into two subgroups of AKI and no AKI. The animals received endurance training and diet regimens before AKI. Fasting blood glucose, serum creatinine, Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl2) and histopathological outcome of renal tissue as well as serum lipid profile of animals were assessed 24 h after AKI. Results The percentage of changes in renal Bcl2 and Bax after AKI in the group with previous exercise was lower than the group without previous exercise (p < 0.01). After induction of AKI, serum lipid profile changed in non-exercised rats (p < 0.001). Also, after injury, fasting blood glucose levels increased in non-exercised rats (p < 0.05). After injury, the start of both CR and TR diets during exercise caused less change in Bcl2 and Bax of non-exercised rats compared to exercised rats (p < 0.001). CR diet along with exercise improved lipid profile, and also CR diet along exercise decreased fasting blood glucose levels (p < 0.001). Also, both the CR and TR diets during exercise caused fewer changes in histopathological outcome after AKI. Conclusion Exercise alone decreased changes in apoptotic and histopathological indexes, fasting blood glucose, as well as lipid profile of rats after AKI. Reduction of apoptosis and improvement of histopathological outcome after AKI appeared more when CR and TR diets were commenced during exercise. The reduction of lipid profile changes was more pronounced in the group that received CR diet during exercise.
Collapse
|
7
|
Prophylactic Zinc Administration Combined with Swimming Exercise Prevents Cognitive-Emotional Disturbances and Tissue Injury following a Transient Hypoxic-Ischemic Insult in the Rat. Behav Neurol 2022; 2022:5388944. [PMID: 35637877 PMCID: PMC9146809 DOI: 10.1155/2022/5388944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exercise performance and zinc administration individually yield a protective effect on various neurodegenerative models, including ischemic brain injury. Therefore, this work was aimed at evaluating the combined effect of subacute prophylactic zinc administration and swimming exercise in a transient cerebral ischemia model. The prophylactic zinc administration (2.5 mg/kg of body weight) was provided every 24 h for four days before a 30 min common carotid artery occlusion (CCAO), and 24 h after reperfusion, the rats were subjected to swimming exercise in the Morris Water Maze (MWM). Learning was evaluated daily for five days, and memory on day 12 postreperfusion; anxiety or depression-like behavior was measured by the elevated plus maze and the motor activity by open-field test. Nitrites, lipid peroxidation, and the activity of superoxide dismutase (SOD) and catalase (CAT) were assessed in the temporoparietal cortex and hippocampus. The three nitric oxide (NO) synthase isoforms, chemokines, and their receptor levels were measured by ELISA. Nissl staining evaluated hippocampus cytoarchitecture and Iba-1 immunohistochemistry activated the microglia. Swimming exercise alone could not prevent ischemic damage but, combined with prophylactic zinc administration, reversed the cognitive deficit, decreased NOS and chemokine levels, prevented tissue damage, and increased Iba-1 (+) cell number. These results suggest that the subacute prophylactic zinc administration combined with swimming exercise, but not the individual treatment, prevents the ischemic damage on day 12 postreperfusion in the transient ischemia model.
Collapse
|
8
|
Vasconcelos NN, Pereira LA, Silva RSR, Dias KSSA, Mourão TS, Pereira LC, Cota VR, Pinto FCH, Damázio LCM. High Intensity Physical Exercise before the Brain Ischemia Promotes Increase in Brain Injury. J Stroke Cerebrovasc Dis 2021; 30:106148. [PMID: 34644665 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 01/08/2023] Open
Abstract
Studies have demonstrated the beneficial effects of light- and moderate-intensity physical exercise on the nervous system of animals with cerebral ischemia. To investigate the effects of two high-intensity physical exercise protocols, standardized for resistance and strength gain, in rats trained before cerebral ischemia induced by Bilateral Common Carotid Artery Occlusion (BCCAO). Forty-eight male Wistar rats were divided into two groups: with ischemia and without ischemia (sham). Both groups were subdivided into animals that performed high-intensity exercises in the muscle strength modality (I+Ex2; Sham+Ex2; n=16); animals submitted to high-intensity exercises in the aerobic modality (I+Ex1; Sham+Ex1; n=16), and animals that did not practice physical exercises - sedentary (I+Sed; Sham+Sed, n=16). Cerebral ischemia was induced using the BCCAO model. The physical training program used before the procedure was of high intensity, in the aerobic and muscular strength modalities, and was performed using a vertical ladder, for 4 weeks, 5 days per week. In order to process and stain the brain tissue, the Nissl method was used for neuron labeling and quantification in the cortex, striatum, and hippocampus. As for the animals' body weight and the heart weight differences were found between the groups I+Ex2 and Sham+Ex2 (p<0.05). Data on neuron quantification in the cerebral cortex, dentate gyrus, and right and left striatum revealed significant differences between groups. High-intensity physical training in the strength gain modality promotes significant damage to the animal's brain when performed prior to BCCAO-induced cerebral ischemia.
Collapse
Affiliation(s)
- Nathália Nascimento Vasconcelos
- Graduate Program in Morphofunctional Sciences of the Department of Natural Sciences, Federal University of São João del-Rei, 36301-1600, MG, Brazil; Department of Medicine, Federal University of São João del-Rei, 36301-160, São João del-Rei, MG, Brazil
| | - Luan Alves Pereira
- Biological Sciences Course of the Department of Natural Sciences, Federal University of São João del-Rei, 36301-160, São João del-Rei, MG, Brazil
| | - Regina Suzette Rodrigues Silva
- Biological Sciences Course of the Department of Natural Sciences, Federal University of São João del-Rei, 36301-160, São João del-Rei, MG, Brazil
| | - Karine Sthéfany Serpa Amaral Dias
- Biological Sciences Course of the Department of Natural Sciences, Federal University of São João del-Rei, 36301-160, São João del-Rei, MG, Brazil
| | - Thiago Silveira Mourão
- Biological Sciences Course of the Department of Natural Sciences, Federal University of São João del-Rei, 36301-160, São João del-Rei, MG, Brazil
| | - Liliane Costa Pereira
- Department of Medicine, Federal University of São João del-Rei, 36301-160, São João del-Rei, MG, Brazil
| | - Vinícius Rosa Cota
- Department of Electrical Engineering, Federal University of São João del-Rei, 36301-160, São João del-Rei, MG, Brazil
| | - Flávia Carmo Horta Pinto
- Department of Natural Sciences, Federal University of São João del-Rei, 36301-160, São João del-Rei, MG, Brazil
| | - Laila Cristina Moreira Damázio
- Department of Medicine, Federal University of São João del-Rei, 36301-160, São João del-Rei, MG, Brazil; President Tancredo de Almeida Neves University Center, 36301-182, São João del-Rei, MG, Brazil.
| |
Collapse
|
9
|
Abstract
UNLABELLED Exercise is associated with higher cognitive function and is a promising intervention to reduce the risk of dementia. With advancing age, there are changes in the vasculature that have important clinical implications for brain health and cognition. Primary aging and vascular risk factors are associated with increases in arterial stiffness and pulse pressure, and reductions in peripheral vascular function. OBJECTIVE The purpose is to discuss the epidemiological, observational, and mechanistic evidence regarding the link between age-related changes in vascular health and brain health. METHODS We performed a literature review and integrated with our published data. RESULTS Epidemiological evidence suggests a link between age-related increases in arterial stiffness and lower cognitive function, which may be mediated by cerebral vascular function, including cerebral vasoreactivity and cerebral pulsatility. Age-associated impairments in central arterial stiffness and peripheral vascular function have been attenuated or reversed through lifestyle behaviors such as exercise. Greater volumes of habitual exercise and higher cardiorespiratory fitness are associated with beneficial effects on both peripheral vascular health and cognition. Yet, the extent to which exercise directly influences cerebral vascular function and brain health, as well as the associated mechanisms remains unclear. CONCLUSION Although there is evidence that exercise positively impacts cerebral vascular function, more research is necessary in humans to optimize experimental protocols and address methodological limitations and physiological considerations. Understanding the impact of exercise on cerebral vascular function is important for understanding the association between exercise and brain health and may inform future intervention studies that seek to improve cognition.
Collapse
|
10
|
Stephan JS, Sleiman SF. Exercise Factors Released by the Liver, Muscle, and Bones Have Promising Therapeutic Potential for Stroke. Front Neurol 2021; 12:600365. [PMID: 34108925 PMCID: PMC8181424 DOI: 10.3389/fneur.2021.600365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world. Stroke not only affects the patients, but also their families who serve as the primary caregivers. Discovering novel therapeutic targets for stroke is crucial both from a quality of life perspective as well as from a health economic perspective. Exercise is known to promote neuroprotection in the context of stroke. Indeed, exercise induces the release of blood-borne factors that promote positive effects on the brain. Identifying the factors that mediate the positive effects of exercise after ischemic stroke is crucial for the quest for novel therapies. This approach will yield endogenous molecules that normally cross the blood brain barrier (BBB) and that can mimic the effects of exercise. In this minireview, we will discuss the roles of exercise factors released by the liver such as beta-hydroxybutyrate (DBHB), by the muscle such as lactate and irisin and by the bones such as osteocalcin. We will also address their therapeutic potential in the context of ischemic stroke.
Collapse
Affiliation(s)
- Joseph S Stephan
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sama F Sleiman
- Biology Program, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
11
|
Wang J, Liu H, Chen S, Zhang W, Chen Y, Yang Y. Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes. Exp Neurol 2020; 330:113325. [PMID: 32325158 PMCID: PMC11055452 DOI: 10.1016/j.expneurol.2020.113325] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
Exosomes (EXs) are emerging as novel players in the beneficial effects induced by exercise on vascular diseases. We have recently revealed that moderate exercise enhances the function of circulating endothelial progenitor cell-derived EXs (cEPC-EXs) on protecting endothelial cells against hypoxia injury. However, the relationship between the changes of cEPC-EXs and the effects of exercise on ischemic stroke (IS) is unknown. Here, we investigated whether exercise-regulated EPC-EXs contribute to the beneficial effects of exercise on IS. C57BL/6 mice received moderate treadmill exercise (10 m/min) for 4-wks and then were subjected to middle cerebral artery occlusion (MCAO) stroke. The neurologic deficit score (NDS), infarct volume, microvessel density, cell apoptosis, angiogenesis/neurogenesis, sensorimotor functions were determined on day 2 (acute stage) and/or day 28 (chronic stage) post-stroke. The miR-126 and EPC-EX levels were analyzed by RT-PCR or nanoparticle tracking analysis combined with microbeads and used for correlation analyses. The function of EPC-EXs from exercised mice was detected in a hypoxia neuron model. Cell apoptosis, axon growth ability and gene expressions (cas-3 and Akt) were measured. Our data showed that: i) On day 2, exercised mice had decreased NDS and infarct volume, reduced cell apoptosis rate and cleaved cas-3 level, and a higher microvessel density than those in control (no-exercise) mice. The levels of EPC-EXs in plasma and brain tissue were raised and positively correlated in exercised mice. Meanwhile, the miR-126 level in cEPC-EXs and in ischemic tissue were upregulated in exercised mice. The EPC-EXs and their carried miR-126 levels negatively correlated with the infarct volume and cell apoptosis, whereas positively correlated with microvessel density. In addition, cEPC-EXs from exercised mice elicited protective effects on neurons against hypoxia-induced apoptosis and compromised axon growth ability which were blocked by miR-126 and PI3k inhibitors in vitro. ii) On day 28, exercised mice had less infarct volume, higher microvessel density, angiogenesis/neurogenesis and better sensorimotor functions. The levels of BDNF, p-TrkB/TrkB and p-Akt/Akt were upregulated in the brain of exercised mice. These recovery indexes correlated with the levels of cEPC-EXs and their miR-126. In conclusion, our data suggest that moderate exercise intervention has protective effects on the brain against MCAO-induced ischemic injury in both acute and chronic stages which might via the release of miR-126 enriched EPC-EXs.
Collapse
Affiliation(s)
- Jinju Wang
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | - Hua Liu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Shuzhen Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Wenfeng Zhang
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
12
|
Ally A, Powell I, Ally MM, Chaitoff K, Nauli SM. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states. Nitric Oxide 2020; 102:52-73. [PMID: 32590118 DOI: 10.1016/j.niox.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
This review describes and summarizes the role of neuronal nitric oxide synthase (nNOS) on the central nervous system, particularly on brain regions such as the ventrolateral medulla (VLM) and the periaqueductal gray matter (PAG), and on blood vessels and the heart that are involved in the regulation and control of the cardiovascular system (CVS). Furthermore, we shall also review the functional aspects of nNOS during several physiological, pathophysiological, and clinical conditions such as exercise, pain, cerebral vascular accidents or stroke and hypertension. For example, during stroke, a cascade of molecular, neurochemical, and cellular changes occur that affect the nervous system as elicited by generation of free radicals and nitric oxide (NO) from vulnerable neurons, peroxide formation, superoxides, apoptosis, and the differential activation of three isoforms of nitric oxide synthases (NOSs), and can exert profound effects on the CVS. Neuronal NOS is one of the three isoforms of NOSs, the others being endothelial (eNOS) and inducible (iNOS) enzymes. Neuronal NOS is a critical homeostatic component of the CVS and plays an important role in regulation of different systems and disease process including nociception. The functional and physiological roles of NO and nNOS are described at the beginning of this review. We also elaborate the structure, gene, domain, and regulation of the nNOS protein. Both inhibitory and excitatory role of nNOS on the sympathetic autonomic nervous system (SANS) and parasympathetic autonomic nervous system (PANS) as mediated via different neurotransmitters/signal transduction processes will be explored, particularly its effects on the CVS. Because the VLM plays a crucial function in cardiovascular homeostatic mechanisms, the neuroanatomy and cardiovascular regulation of the VLM will be discussed in conjunction with the actions of nNOS. Thereafter, we shall discuss the up-to-date developments that are related to the interaction between nNOS and cardiovascular diseases such as hypertension and stroke. Finally, we shall focus on the role of nNOS, particularly within the PAG in cardiovascular regulation and neurotransmission during different types of pain stimulus. Overall, this review focuses on our current understanding of the nNOS protein, and provides further insights on how nNOS modulates, regulates, and controls cardiovascular function during both physiological activity such as exercise, and pathophysiological conditions such as stroke and hypertension.
Collapse
Affiliation(s)
- Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA.
| | - Isabella Powell
- All American Institute of Medical Sciences, Black River, Jamaica
| | | | - Kevin Chaitoff
- Interventional Rehabilitation of South Florida, West Palm Beach, FL, USA
| | - Surya M Nauli
- Chapman University and University of California, Irvine, CA, USA.
| |
Collapse
|
13
|
Soltani N, Soltani Z, Khaksari M, Ebrahimi G, Hajmohammmadi M, Iranpour M. The Changes of Brain Edema and Neurological Outcome, and the Probable Mechanisms in Diffuse Traumatic Brain Injury Induced in Rats with the History of Exercise. Cell Mol Neurobiol 2020; 40:555-567. [PMID: 31836968 DOI: 10.1007/s10571-019-00753-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Since no definitive treatment has been suggested for diffuse traumatic brain injury (TBI), and also as the effect of exercise has been proven to be beneficial in neurodegenerative diseases, the effect of endurance exercise on the complications of TBI along with its possible neuroprotective mechanism was investigated in this study. Our objective was to find out whether previous endurance exercise influences brain edema and neurological outcome in TBI. We also assessed the probable mechanism of endurance exercise effect in TBI. Rats were randomly assigned into four groups of sham, TBI, exercise + sham and exercise + TBI. Endurance exercise was carried out before TBI. Brain edema was assessed by calculating the percentage of brain water content 24 h after the surgery. Neurological outcome was evaluated by obtaining veterinary coma scale (VCS) at - 1, 1, 4 and 24 h after the surgery. Interleukin-1β (IL-1β), total antioxidant capacity (TAC), malondialdehyde (MDA), protein carbonyl and histopathological changes were evaluated 24 h after the surgery. Previous exercise prevented the increase in brain water content, MDA level, histopathological edema and apoptosis following TBI. The reduction in VCS in exercise + TBI group was lower than that of TBI group. In addition, a decrease in the level of serum IL-1β and the content of brain protein carbonyl was reported in exercise + TBI group in comparison with the TBI group. We suggest that the previous endurance exercise prevents brain edema and improves neurological outcome following diffuse TBI, probably by reducing apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Nasrin Soltani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghasem Ebrahimi
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojdeh Hajmohammmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Zhang H, Lee JY, Borlongan CV, Tajiri N. A brief physical activity protects against ischemic stroke. Brain Circ 2019; 5:112-118. [PMID: 31620657 PMCID: PMC6785942 DOI: 10.4103/bc.bc_32_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/31/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
With restricted therapeutic opportunities, stroke remains a relevant, critical disease necessitating study. Due to the unique aspect of ischemic strokes, finding approaches to maintain the vigor of the cerebral vasculature, such as increased angiogenesis, may protect against stroke. Ischemic strokes are caused by disruptions in blood movement in the brain, resulting in a torrent of harmful cerebrovasculature modifications. In an investigation by Pianta et al., Sprague-Dawley rats have been separated into those that undergo exercise prior to middle cerebral artery occlusion (MCAO) and those that were not exposed to physical activity preceding MCAO. The outcomes and results of the current study gave new insights into the capacity of exercise to help prevent ischemic strokes or mitigate poststroke effects. The data collected from the study suggested that rats that went through a short bout of exercise before MCAO presented superior motor performance, more active cells in the peri-infarct region, and reduced infarct sizes. When compared to the control group, the rats that went through exercise also had heightened angiogenesis and improved neuroprotection. Thus, a brief bout of physical activity preceding a stroke may provide neuroprotection by enhancing the strength of the cerebrovasculature in the brain. This notion that even an instant of physical exercise before a stroke is induced can help dampen the effects of ischemic stroke, which could lead to future techniques in preventing the ischemic stroke so that it never happens at all.
Collapse
Affiliation(s)
- Henry Zhang
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| |
Collapse
|
15
|
Pianta S, Lee JY, Tuazon JP, Castelli V, Mantohac LM, Tajiri N, Borlongan CV. A Short Bout of Exercise Prior to Stroke Improves Functional Outcomes by Enhancing Angiogenesis. Neuromolecular Med 2019; 21:517-528. [PMID: 30941660 PMCID: PMC6882782 DOI: 10.1007/s12017-019-08533-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/23/2019] [Indexed: 12/30/2022]
Abstract
Stroke remains a significant unmet clinical need with limited therapeutic options. The peculiar feature of ischemic stroke is the interruption in brain circulation, resulting in a cascade of detrimental cerebrovasculature alterations. Treatment strategies designed to maintain potency of the cerebrovasculature may protect against stroke. The present study assessed the effects of short bouts of exercise prior to stroke induction and characterized cerebral blood flow and motor functions in vivo. Adult Sprague-Dawley rats were exposed to a single short bout of exercise (30-min or 60-min forced running wheel) then subjected to transient middle cerebral artery occlusion (MCAO). Non-exercise stroke rats served as controls while non-stroke rats represented shams. Cerebral blood flow (CBF) was evaluated by laser Doppler at baseline (prior to MCAO), during MCAO, and during reperfusion. Behavioral tests using the elevated body swing test was conducted at baseline, day 0 (day of stroke), and at days 1 and 3 after stroke. Animals that received exercise displayed typical alterations in CBF after stroke, but exhibited improved motor performance compared to non-exercise rats. Exercised stroke rats showed a reduction in infarct size and an increased number of surviving cells in the peri-infarct area, with a trend towards prolonged duration of the exercise. Immunofluorescence staining and Western blot analysis of the peri-infarct area revealed increased levels of endothelial markers/angiogenesis markers, VEGF, VEGFR-2, and Ang-2, and endothelial progenitor cell marker CD34+ in exercise groups compared with the controls. These results demonstrated that prophylactic exercise affords neuroprotection possibly by improving cerebrovascular potency.
Collapse
Affiliation(s)
- Stefano Pianta
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Jea Young Lee
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Vanessa Castelli
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Leigh Monica Mantohac
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Naoki Tajiri
- Department of Neurophysiology & Brain Science, Graduate School of Medical Sciences & Medical School, Nagoya City University, Nagoya, 467-8601, Japan
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
16
|
Arrick DM, Li C, Mayhan WG. Sex-related differences in reactivity of cerebral arterioles during moderate exercise training. Microcirculation 2018; 23:549-557. [PMID: 27562066 DOI: 10.1111/micc.12306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Our goals were to determine the influence of sex on reactivity of cerebral arterioles and whether MExT could influence sex-related differences in reactivity of cerebral arterioles. MATERIALS AND METHODS Responses of cerebral arterioles were measured in Sed and MExT adult male and female Sprague-Dawley rats to eNOS-dependent (ADP), nNOS-dependent (NMDA), and NOS-independent (nitroglycerin) agonists before and following L-NMMA. In addition, protein expression for eNOS and nNOS was determined. RESULTS NOS-dependent vasodilation was enhanced in Sed and MExT female rats compared to their male counterparts. L-NMMA produced a greater decrease in baseline diameter of arterioles in females compared to males, and produced less inhibition of NOS-dependent vasodilation in females. Expression of eNOS protein was significantly increased in Sed female when compared to Sed male rats; nNOS protein was similar in Sed males and females, but increased in MExT females. CONCLUSIONS The findings from this study indicate that while NOS-dependent vascular reactivity is increased in females, MExT does not alter vasodilation in males or females. These studies provide insights into the influence of sex and MExT on the cerebral microcirculation and may have implications regarding mechanisms that protect the brain in females compared to males.
Collapse
Affiliation(s)
- Denise M Arrick
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, USA
| | - Chun Li
- Department of Cellular Biology and Anatomy, the Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - William G Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, USA.
| |
Collapse
|
17
|
Rezaei R, Nourshahi M, Khodagholi F, Haghparast A, Nasoohi S, Bigdeli M, Ashabi G. Differential impact of treadmill training on stroke-induced neurological disorders. Brain Inj 2017; 31:1910-1917. [DOI: 10.1080/02699052.2017.1346287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rasoul Rezaei
- Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, Shahid Beheshti University, G.C., Evin 198396113, Tehran, Iran
| | - Maryam Nourshahi
- Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, Shahid Beheshti University, G.C., Evin 198396113, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Góes Junior AMDO, Abib SDCV, Alves MTDS, Ferreira PSVDS, Andrade MCD. Venous Shunt Versus Venous Ligation for Vascular Damage Control: The Immunohistochemical Evidence. Ann Vasc Surg 2017; 41:214-224. [PMID: 28163177 DOI: 10.1016/j.avsg.2016.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/09/2016] [Accepted: 10/17/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND To evaluate the expression of immunohistochemical markers of tissue ischemia (iNOS, eNOS, and HSP70) in a vascular damage control experimental model to determine if a venous temporary vascular shunt insertion leads to a better limb perfusion when compared with the ligature of the injured vein. METHODS Experimental study in male Sus Scrofa weighting 40 Kg. Animals were distributed into 5 groups: group 1 animals were submitted to right external iliac artery (EIA) shunting and right external iliac vein (EIV) ligation; group 2 animals were submitted to right EIA shunting and right EIV shunting; group 3 animals were submitted to right EIV ligation; group 4 animals were submitted to right EIV shunting; group 5 animals were not submitted to vascular shunting or venous ligation. Transonic Systems flowmeters were used to measure vascular flow on right and left external iliac vessels, and i-STAT (Abbot) portable blood analyzer was used for EIVs blood biochemical analysis. An initial baseline register of invasive arterial pressure, iliac vessels flow, and venous blood analysis was performed. Arterial pressure and iliac vessels flow were taken immediately after right iliac vessels shunting or ligation. Then, hemorrhagic shock was induced by continuous 20 mL/min blood withdraw from the external right jugular vein whereas arterial blood pressure and iliac vessels flow registers were taken every 10 min, and blood samples from EIVs were obtained every 30 min until the vascular flow through right EIA (or through the shunt inserted into the right EIV for group 4 animals) became inexistent or until the animal's death. After the end of the experiments, bilateral hind limb's biopsies were obtained for immunohistochemical analysis. Using image editing and analysis software, the expression of iNOS, eNOS, and HSP70 (3 well-known ischemic associated immunohistochemical markers) was assessed. The mean expression of each marker in the right hind limb was compared between groups. For statistical analysis, Microsoft Office Excel 2007 and BioEstat 5.0 (2007) were used. RESULTS Immunohistochemical analysis showed no difference regarding the iNOS expression; nevertheless, both eNOS and HSP70 expression were statistically more intense (P < 0.05) on group 1 (eNOS = 1.32; HSP70 = 15.05) than on group 2 (eNOS = 0.018; HSP70 = 8.56). CONCLUSIONS The higher expression of eNOS and HSP70 in the right hind limbs of group 1 animals (arterial shunt and venous ligature) than group 2 animals (arterial shunt and venous shunt) suggests that venous ligation is associated with more intense ischemic histological findings than venous shunting.
Collapse
|
19
|
Nishijima T, Torres-Aleman I, Soya H. Exercise and cerebrovascular plasticity. PROGRESS IN BRAIN RESEARCH 2016; 225:243-68. [PMID: 27130419 DOI: 10.1016/bs.pbr.2016.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging impairs cerebrovascular plasticity and subsequently leads cerebral hypoperfusion, which synergistically accelerates aging-associated cognitive dysfunction and neurodegenerative diseases associated with impaired neuronal plasticity. On the other hand, over two decades of researches have successfully demonstrated that exercise, or higher level of physical activity, is a powerful and nonpharmacological approach to improve brain function. Most of the studies have focused on the neuronal aspects and found that exercise triggers improvements in neuronal plasticity, such as neurogenesis; however, exercise can improve cerebrovascular plasticity as well. In this chapter, to understand these beneficial effects of exercise on the cerebral vasculature, we first discuss the issue of changes in cerebral blood flow and its regulation during acute bouts of exercise. Then, how regular exercise improves cerebrovascular plasticity will be discussed. In addition, to shed light on the importance of understanding interactions between the neuron and cerebral vasculature, we describe neuronal activity-driven uptake of circulating IGF-I into the brain.
Collapse
Affiliation(s)
- T Nishijima
- Tokyo Metropolitan University, Tokyo, Japan.
| | | | - H Soya
- University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Mu ZH, Jiang Z, Lin XJ, Wang LP, Xi Y, Zhang ZJ, Wang YT, Yang GY. Vessel Dilation Attenuates Endothelial Dysfunction Following Middle Cerebral Artery Occlusion in Hyperglycemic Rats. CNS Neurosci Ther 2016; 22:316-24. [PMID: 26842484 DOI: 10.1111/cns.12500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Dynamically observe cerebral vascular changes in hyperglycemic rats in vivo and explore the effect of diabetes on endothelial function after ischemic stroke. BACKGROUND Diabetes affects both large and small vessels in the brain, but the dynamic process and mechanism are unclear. METHODS We investigated the structural and functional changes of brain vasculature in living hyperglycemic rats and their impact on stroke outcomes via a novel technique: synchrotron radiation angiography. We also examined the effect of prolonged fasudil treatment on arterial reactivity and hemorrhagic transformation. Adult Sprague Dawley rats were treated by streptozotocin to induce type 1 diabetes. These hyperglycemic rats received fasudil pretreatment and then underwent transient middle cerebral artery occlusion. RESULTS We found that diabetes caused arteries narrowing in the circus Willis as early as 2 weeks after streptozotocin injection (P < 0.05). These vessels were further constricted after middle cerebral artery occlusion. L-NAME could induce regional constrictions and impaired relaxation in hyperglycemic animals. Furthermore, hemorrhagic transformation was also increased in the hyperglycemic rats compared to the control (P < 0.05). In fasudil-treated rats, the internal carotid artery narrowing was ameliorated and L-NAME-induced regional constriction was abolished. Importantly, stroke prognosis was improved in fasudil-treated rats compared to the control (P < 0.05). CONCLUSIONS Our dynamic angiographic data demonstrated that diabetes could impair the cerebral arterial reactivity. Prolonged fasudil treatment could attenuate arterial dysfunction and improve the prognosis of ischemic stroke by affecting both the large and small vasculature.
Collapse
Affiliation(s)
- Zhi-Hao Mu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Jiang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jie Lin
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Zhi-Jun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Ting Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease-Implications for Prevention. Healthcare (Basel) 2015; 3:233-51. [PMID: 27417759 PMCID: PMC4939544 DOI: 10.3390/healthcare3020233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways-exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine-which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine-mediate this benefit. Ameliorating the risk factors for SVD-including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine-also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.
Collapse
|