1
|
Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu LG, Lenco MO, Vakoc BJ, Padera TP, Munn LL. Experimental and theoretical model of microvascular network remodeling and blood flow redistribution following minimally invasive microvessel laser ablation. Sci Rep 2024; 14:8767. [PMID: 38627467 PMCID: PMC11021487 DOI: 10.1038/s41598-024-59296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and optical coherence tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5× and 3.3×, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results correlate with the post-ablation microvascular remodeling patterns.
Collapse
Affiliation(s)
- Gabriel Gruionu
- Department of Medicine, Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, 46202, USA.
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA.
- Department of Mechanical Engineering, University of Craiova, 200585, Craiova, Romania.
| | - James Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, 17837, USA
| | - Sean McMahon
- Department of Physics, Virginia Tech, Blacksburg, 24060, USA
| | - David Blauvelt
- Department of Anesthesia, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, 02115, USA
| | - Lucian G Gruionu
- Department of Mechanical Engineering, University of Craiova, 200585, Craiova, Romania
| | | | - Benjamin J Vakoc
- Department of Dermatology and Wellman Center of Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, 02114, USA
| | - Timothy P Padera
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA
| | - Lance L Munn
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA.
| |
Collapse
|
2
|
Menêses A, Krastins D, Nam M, Bailey T, Quah J, Sankhla V, Lam J, Jha P, Schulze K, O'Donnell J, Magee R, Golledge J, Greaves K, Askew CD. Toward a Better Understanding of Muscle Microvascular Perfusion During Exercise in Patients With Peripheral Artery Disease: The Effect of Lower-Limb Revascularization. J Endovasc Ther 2024; 31:115-125. [PMID: 35898156 DOI: 10.1177/15266028221114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Leg muscle microvascular blood flow (perfusion) is impaired in response to maximal exercise in patients with peripheral artery disease (PAD); however, during submaximal exercise, microvascular perfusion is maintained due to a greater increase in microvascular blood volume compared with that seen in healthy adults. It is unclear whether this submaximal exercise response reflects a microvascular impairment, or whether it is a compensatory response for the limited conduit artery flow in PAD. Therefore, to clarify the role of conduit artery blood flow, we compared whole-limb blood flow and skeletal muscle microvascular perfusion responses with exercise in patients with PAD (n=9; 60±7 years) prior to, and following, lower-limb endovascular revascularization. MATERIALS AND METHODS Microvascular perfusion (microvascular volume × flow velocity) of the medial gastrocnemius muscle was measured before and immediately after a 5 minute bout of submaximal intermittent isometric plantar-flexion exercise using contrast-enhanced ultrasound imaging. Exercise contraction-by-contraction whole-leg blood flow and vascular conductance were measured using strain-gauge plethysmography. RESULTS With revascularization there was a significant increase in whole-leg blood flow and conductance during exercise (p<0.05). Exercise-induced muscle microvascular perfusion response did not change with revascularization (pre-revascularization: 3.19±2.32; post-revascularization: 3.89±1.67 aU.s-1; p=0.38). However, the parameters that determine microvascular perfusion changed, with a reduction in the microvascular volume response to exercise (pre-revascularization: 6.76±3.56; post-revascularization: 2.42±0.69 aU; p<0.01) and an increase in microvascular flow velocity (pre-revascularization: 0.25±0.13; post-revascularization: 0.59±0.25 s-1; p=0.02). CONCLUSION These findings suggest that patients with PAD compensate for the conduit artery blood flow impairment with an increase in microvascular blood volume to maintain muscle perfusion during submaximal exercise. CLINICAL IMPACT The findings from this study support the notion that the impairment in conduit artery blood flow in patients with PAD leads to compensatory changes in microvascular blood volume and flow velocity to maintain muscle microvascular perfusion during submaximal leg exercise. Moreover, this study demonstrates that these microvascular changes are reversed and become normalized with successful lower-limb endovascular revascularization.
Collapse
Affiliation(s)
- Annelise Menêses
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Digby Krastins
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Michael Nam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Tom Bailey
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity & Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jing Quah
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Vaibhav Sankhla
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jeng Lam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Pankaj Jha
- Department of Vascular Surgery, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Karl Schulze
- Sunshine Vascular Clinic, Buderim, QLD, Australia
| | - Jill O'Donnell
- Department of Vascular Surgery, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Rebecca Magee
- Department of Vascular Surgery, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University and Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia
| | - Kim Greaves
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| |
Collapse
|
3
|
Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu LG, Lenco MO, Vakoc BJ, Padera TP, Munn LL. Experimental and Theoretical Model of Single Vessel Minimally Invasive Micro-Laser Ablation: Inducing Microvascular Network Remodeling and Blood Flow Redistribution Without Compromising Host Tissue Function. RESEARCH SQUARE 2023:rs.3.rs-3754775. [PMID: 38196660 PMCID: PMC10775362 DOI: 10.21203/rs.3.rs-3754775/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and Optical Coherence Tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5x and 3.3x, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results match the post-ablation microvascular remodeling patterns.
Collapse
Affiliation(s)
- Gabriel Gruionu
- Indiana University School of Medicine, Krannert Cardiovascular Research Center, Department of Medicine, Indianapolis, 46202, USA
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
- University of Craiova, Department of Mechanical Engineering, Craiova, 200585, Romania
| | - James Baish
- Bucknell University, Department of Biomedical Engineering, Lewisburg, 17837, USA
| | - Sean McMahon
- Virginia Tech, Department of Physics, Blacksburg, 24060, USA
| | - David Blauvelt
- Boston Children’s Hospital, Department of Anesthesia, Critical Care, and Pain Medicine, Boston, 02115, USA
| | - Lucian G. Gruionu
- University of Craiova, Department of Mechanical Engineering, Craiova, 200585, Romania
| | | | - Benjamin J. Vakoc
- Harvard Medical School and Massachusetts General Hospital, Department of Dermatology and Wellman Center of Photomedicine, Boston, 02114, USA
| | - Timothy P. Padera
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
| | - Lance L. Munn
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
| |
Collapse
|
4
|
Bethel M, Annex BH. Peripheral arterial disease: A small and large vessel problem. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 28:100291. [PMID: 38511071 PMCID: PMC10945902 DOI: 10.1016/j.ahjo.2023.100291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2024]
Abstract
Peripheral arterial disease (PAD) is one clinical manifestation of systemic atherosclerosis and is very common. Despite its prevalence, PAD remains underdiagnosed, undertreated, and understudied. The most common symptom in patients with PAD is intermittent claudication (IC), or pain in the lower extremities with walking or exertion, which is relieved after a short period of rest. Many patients with confirmed PAD are asymptomatic or have symptoms other than IC. Regardless of symptoms, patients with PAD have poor cardiovascular outcomes. PAD has largely been viewed a disease of large vessel atherosclerosis but what is becoming clear is that arterial plaques and occlusions are only one piece of the puzzle. Recent work has shown that abnormalities in the microvasculature contribute to the outcome of patients with PAD. From the perspective of the leg, limitation in blood flow is not the only problem as patients have a myriad of other problems, including muscle fibrosis, neuropathic changes, changes in the cellular respiration machinery and dysfunction of the small vessels that perfuse skeletal muscle and the supporting structures. Supervised exercise training remains one of the most effective tool to treat patients with PAD, however, the mechanisms behind its effectiveness are still being elucidated and use of structured exercise programs is not widespread. Medical therapy to treat systemic atherosclerosis is underutilized in patients with PAD. Invasive therapies are used only when patients with PAD have reached an advanced stage. While invasive strategies are effective in some patients with PAD, these strategies are costly, carry risk, and many patients are not amenable to invasive therapy. Appreciating the complex pathophysiology of PAD will hopefully spur new research and development of effective therapies for PAD.
Collapse
Affiliation(s)
- Monique Bethel
- Department of Medicine, Division of Cardiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Brian H. Annex
- Department of Medicine, Division of Cardiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
5
|
Cai Y, Pan J, Li Z. Mathematical modeling of intraplaque neovascularization and hemorrhage in a carotid atherosclerotic plaque. Biomed Eng Online 2021; 20:42. [PMID: 33926451 PMCID: PMC8082657 DOI: 10.1186/s12938-021-00878-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Growing experimental evidence has identified neovascularization from the adventitial vasa vasorum and induced intraplaque hemorrhage (IPH) as critical indicators during the development of vulnerable atherosclerotic plaques. In this study, we propose a mathematical model incorporating intraplaque angiogenesis and hemodynamic calculation of the microcirculation, to obtain the quantitative evaluation of the influences of intraplaque neovascularization and hemorrhage on vulnerable plaque development. A two-dimensional nine-point model of angiogenic microvasculature is generated based on the histology of a patient's carotid plaque. The intraplaque angiogenesis model includes three key cells (endothelial cells, smooth muscle cells, and macrophages) and three key chemical factors (vascular endothelial growth factors, extracellular matrix, and matrix metalloproteinase), which densities and concentrations are described by a series of reaction-diffusion equations. The hemodynamic calculation by coupling the intravascular blood flow, the extravascular plasma flow, and the transvascular transport is carried out on the generated angiogenic microvessel network. We then define the IPH area by using the plasma concentration in the interstitial tissue, as well as the extravascular transport across the capillary wall. RESULTS The simulational results reproduce a series of pathophysiological phenomena during the atherosclerotic plaque progression. It is found that the high microvessel density region at the shoulder areas and the extravascular flow across the leaky wall of the neovasculature contribute to the IPH observed widely in vulnerable plaques. The simulational results are validated by both the in vivo MR imaging data and in vitro experimental observations and show significant consistency in quantity ground. Moreover, the sensitivity analysis of model parameters reveals that the IPH area and extent can be reduced significantly by decreasing the MVD and the wall permeability of the neovasculature. CONCLUSIONS The current quantitative model could help us to better understand the roles of microvascular and intraplaque hemorrhage during the carotid plaque progression.
Collapse
Affiliation(s)
- Yan Cai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.
| | - Jichao Pan
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Zhiyong Li
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
6
|
Heuslein JL, Gorick CM, Price RJ. Epigenetic regulators of the revascularization response to chronic arterial occlusion. Cardiovasc Res 2020; 115:701-712. [PMID: 30629133 DOI: 10.1093/cvr/cvz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Peripheral arterial disease (PAD) is the leading cause of lower limb amputation and estimated to affect over 202 million people worldwide. PAD is caused by atherosclerotic lesions that occlude large arteries in the lower limbs, leading to insufficient blood perfusion of distal tissues. Given the severity of this clinical problem, there has been long-standing interest in both understanding how chronic arterial occlusions affect muscle tissue and vasculature and identifying therapeutic approaches capable of restoring tissue composition and vascular function to a healthy state. To date, the most widely utilized animal model for performing such studies has been the ischaemic mouse hindlimb. Despite not being a model of PAD per se, the ischaemic hindlimb model does recapitulate several key aspects of PAD. Further, it has served as a valuable platform upon which we have built much of our understanding of how chronic arterial occlusions affect muscle tissue composition, muscle regeneration and angiogenesis, and collateral arteriogenesis. Recently, there has been a global surge in research aimed at understanding how gene expression is regulated by epigenetic factors (i.e. non-coding RNAs, histone post-translational modifications, and DNA methylation). Thus, perhaps not unexpectedly, many recent studies have identified essential roles for epigenetic factors in regulating key responses to chronic arterial occlusion(s). In this review, we summarize the mechanisms of action of these epigenetic regulators and highlight several recent studies investigating the role of said regulators in the context of hindlimb ischaemia. In addition, we focus on how these recent advances in our understanding of the role of epigenetics in regulating responses to chronic arterial occlusion(s) can inform future therapeutic applications to promote revascularization and perfusion recovery in the setting of PAD.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| |
Collapse
|
7
|
Tickle PG, Hendrickse PW, Degens H, Egginton S. Impaired skeletal muscle performance as a consequence of random functional capillary rarefaction can be restored with overload-dependent angiogenesis. J Physiol 2020; 598:1187-1203. [PMID: 32012275 PMCID: PMC7154729 DOI: 10.1113/jp278975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss of skeletal muscle capillaries is thought to contribute to a reduction in exercise tolerance, but the relative contribution of a compromised microcirculation with disease, in isolation of co-morbidities, to impaired muscle function is unknown. We therefore developed a novel method to randomly occlude capillaries in the rat hindlimb to mimic the capillary rarefaction observed in many conditions. We demonstrate that muscle fatigue resistance is closely coupled with functional microvascular density, independent of arterial blood flow, while disturbance of the microcirculation leads to long-term impairment of muscle function if left untreated. Mechanical stretch due to muscle overload causes a restoration of fatigue resistance via angiogenic remodelling. These observations highlight the importance of a healthy microcirculation and suggest that restoring impaired microvascular supply, regardless of disease co-morbidities, will assist recovery of exercise tolerance in a variety of conditions that limit quality of life. ABSTRACT To what extent microvascular rarefaction contributes to impaired skeletal muscle function remains unknown. Our understanding of whether pathological changes in the microcirculation can be reversed remains limited by a lack of basic physiological data in otherwise healthy tissue. The principal objectives here were to: (1) quantify the effect of random microvascular rarefaction on limb perfusion and muscle performance, and (2) determine if these changes could be reversed. We developed a novel protocol in rats whereby microspheres injected into the femoral artery allowed a unilateral reduction in functional capillary density in the extensor digitorum longus (EDL), and assessed acute and chronic effects on muscle function. Simultaneous bilateral EDL force and hindlimb blood flow measurements were made during electrical stimulation. Following functional capillary rarefaction there was an acute microsphere dose-dependent reduction in muscle fatigue resistance (P < 0.001), despite preserved femoral artery perfusion. Histological analysis of EDL samples taken from injected animals confirmed a positive correlation between the proportion of functional capillaries and fatigue resistance (P = 0.002). Such impaired performance persisted for at least 2 weeks (P = 0.016). Concomitant mechanical overload improved both perfused capillary density and fatigue resistance (P<0.05), confirming that the capacity for muscle remodelling was retained following chronic distributed ischaemia, and that the impact of capillary rarefaction could be alleviated. These results demonstrate that loss of functional capillaries is detrimental to muscle function, even in otherwise healthy tissue, independent of arterial perfusion. Restoration of muscle performance following a mechanical overload stimulus indicates that angiogenic treatments to alleviate microvascular rarefaction may be key to restoring exercise tolerance.
Collapse
Affiliation(s)
| | - Paul W Hendrickse
- Department of Life Sciences, Manchester Metropolitan University, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Lithuania
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Lithuania
| | | |
Collapse
|
8
|
Li M, Li Z, Gao P, Jin L, Li L, Zhao W, Zhang W, Sun Y, Zhao Y, Cui J. Quantitative evaluation of postintervention foot blood supply in patients with peripheral artery disease by computed tomography perfusion. J Vasc Surg 2020; 72:1035-1042. [PMID: 31964575 DOI: 10.1016/j.jvs.2019.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to quantitatively evaluate the changes of the foot's blood supply after endovascular treatment in patients with peripheral artery disease (PAD) using foot computed tomography (CT) perfusion. METHODS Nineteen patients who underwent endovascular treatment for PAD between January 2018 and November 2018 were included in the study. Perfusion CT scanning was performed before and after intervention with the measurement of ankle-brachial index. Regions of interest were selected from two arteries and four different tissues per foot. Perfusion maps of blood volume, blood flow, permeability surface area product, time to peak (TTP), mean transit time (MTT), mean slope of increase (MSI), Tmax, and impulse response function (IRFt0) were constructed and calculated by the perfusion analysis software. Wilcoxon signed rank test was performed on the eight parameter pairs of the limbs on the treated and untreated sides before and after intervention in the 19 patients. RESULTS Differences in blood flow, MTT, TTP, Tmax, MSI, and IRFt0 on the treated side of the tissue perfusion group and statistical difference in blood flow, MTT, and MSI on the treated side of the arterial perfusion group were observed (all P < .05). Ankle-brachial index improved from 0.41 ± 0.11 to 0.76 ± 0.10 (P < .001). For the untreated side, TTP of the tissue perfusion group was significantly shortened (by 7.71 seconds) after surgery (P = .006), whereas there were no differences in the other parameters. In addition, no significant differences in parameters were observed on the untreated side of the arterial perfusion group. The average radiation dose per phase of perfusion scan was 0.00097 mSv. Moreover, the hyperperfusion zone in the plantar dermis and periosteum reappeared after revascularization. CONCLUSIONS Perfusion CT is a feasible and repeatable approach for quantifying blood supply in patients with PAD. The increase of blood flow, MSI, and MTT shortening suggest blood supply improvement after revascularization in both arterial perfusion and tissue perfusion. In addition, TTP may be a sensitive indicator of blood supply changes in tissue perfusion.
Collapse
Affiliation(s)
- Ming Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Diagnosis and Treatment Center of Small Lung Nodules, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Zheng Li
- Department of Vascular Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Pan Gao
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Li Li
- Department of Vascular Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei Zhao
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Diagnosis and Treatment Center of Small Lung Nodules, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wan Zhang
- Department of Vascular Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yingli Sun
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yun Zhao
- Department of Vascular Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiasen Cui
- Department of Vascular Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Meneses AL, Nam MCY, Bailey TG, Magee R, Golledge J, Hellsten Y, Keske MA, Greaves K, Askew CD. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease. Am J Physiol Heart Circ Physiol 2018; 315:H1425-H1433. [DOI: 10.1152/ajpheart.00232.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peripheral arterial disease (PAD) is characterized by stenosis and occlusion of the lower limb arteries. Although leg blood flow is limited in PAD, it remains unclear whether skeletal muscle microvascular perfusion is affected. We compared whole leg blood flow and calf muscle microvascular perfusion after cuff occlusion and submaximal leg exercise between patients with PAD ( n = 12, 69 ± 9 yr) and healthy age-matched control participants ( n = 12, 68 ± 7 yr). Microvascular blood flow (microvascular volume × flow velocity) of the medial gastrocnemius muscle was measured before and immediately after the following: 1) 5 min of thigh-cuff occlusion, and 2) a 5-min bout of intermittent isometric plantar-flexion exercise (400 N) using real-time contrast-enhanced ultrasound. Whole leg blood flow was measured after thigh-cuff occlusion and during submaximal plantar-flexion exercise using strain-gauge plethysmography. Postocclusion whole leg blood flow and calf muscle microvascular perfusion were lower in patients with PAD than control participants, and these parameters were strongly correlated ( r = 0.84, P < 0.01). During submaximal exercise, total whole leg blood flow and vascular conductance were not different between groups. There were also no group differences in postexercise calf muscle microvascular perfusion, although microvascular blood volume was higher in patients with PAD than control participants (12.41 ± 6.98 vs. 6.34 ± 4.98 arbitrary units, P = 0.03). This study demonstrates that the impaired muscle perfusion of patients with PAD during postocclusion hyperemia is strongly correlated with disease severity and is likely mainly determined by the limited conduit artery flow. In response to submaximal leg exercise, microvascular flow volume was elevated in patients with PAD, which may reflect a compensatory mechanism to maintain muscle perfusion and oxygen delivery during recovery from exercise. NEW & NOTEWORTHY This study suggests that peripheral arterial disease (PAD) has different effects on the microvascular perfusion responses to cuff occlusion and submaximal leg exercise. Patients with PAD have impaired microvascular perfusion after cuff occlusion, similar to that previously reported after maximal exercise. In response to submaximal exercise, however, the microvascular flow volume response was elevated in patients with PAD compared with control. This finding may reflect a compensatory mechanism to maintain perfusion and oxygen delivery during recovery from exercise.
Collapse
Affiliation(s)
- Annelise L. Meneses
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Michael C. Y. Nam
- Department of Cardiology, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
| | - Tom G. Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca Magee
- Department of Surgery, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University and Department of Vascular and Endovascular Surgery, Townsville Hospital, Townsville, Queensland, Australia
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | - Michelle A. Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Kim Greaves
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Cardiology, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
| | - Christopher D. Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
10
|
Heuslein JL, Gorick CM, McDonnell SP, Song J, Annex BH, Price RJ. Exposure of Endothelium to Biomimetic Flow Waveforms Yields Identification of miR-199a-5p as a Potent Regulator of Arteriogenesis. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:829-844. [PMID: 30153567 PMCID: PMC6118158 DOI: 10.1016/j.omtn.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Arteriogenesis, the growth of endogenous collateral arteries bypassing arterial occlusion(s), is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease (PAD). Nonetheless, endothelial mechano-signaling during arteriogenesis is incompletely understood. Here we tested the hypothesis that a mechanosensitive microRNA, miR-199a-5p, regulates perfusion recovery and collateral arteriogenesis following femoral arterial ligation (FAL) via control of monocyte recruitment and pro-arteriogenic gene expression. We have previously shown that collateral artery segments exhibit distinctly amplified arteriogenesis if they are exposed to reversed flow following FAL in the mouse. We performed a genome-wide analysis of endothelial cells exposed to a biomimetic reversed flow waveform. From this analysis, we identified mechanosensitive miR-199a-5p as a novel candidate regulator of collateral arteriogenesis. In vitro, miR-199a-5p inhibited pro-arteriogenic gene expression (IKKβ, Cav1) and monocyte adhesion to endothelium. In vivo, following FAL in mice, miR-199a-5p overexpression impaired foot perfusion and arteriogenesis. In contrast, a single intramuscular anti-miR-199a-5p injection elicited a robust therapeutic response, including complete foot perfusion recovery, markedly augmented arteriogenesis (>3.4-fold increase in segment conductance), and improved gastrocnemius tissue composition. Finally, we found plasma miR-199a-5p to be elevated in human PAD patients with intermittent claudication compared to a risk factor control population. Through our transformative analysis of endothelial mechano-signaling in response to a biomimetic amplified arteriogenesis flow waveform, we have identified miR-199a-5p as both a potent regulator of arteriogenesis and a putative target for treating PAD.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Stephanie P McDonnell
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian H Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
11
|
Guo M, Cai Y, Yao X, Li Z. Mathematical modeling of atherosclerotic plaque destabilization: Role of neovascularization and intraplaque hemorrhage. J Theor Biol 2018; 450:53-65. [PMID: 29704490 DOI: 10.1016/j.jtbi.2018.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Observational studies have identified angiogenesis from the adventitial vasa vasorum and intraplaque hemorrhage (IPH) as critical factors in atherosclerotic plaque progression and destabilization. Here we propose a mathematical model incorporating intraplaque neovascularization and hemodynamic calculation with plaque destabilization for the quantitative evaluation of the role of neoangiogenesis and IPH in the vulnerable atherosclerotic plaque formation. An angiogenic microvasculature is generated by two-dimensional nine-point discretization of endothelial cell proliferation and migration from the vasa vasorum. Three key cells (endothelial cells, smooth muscle cells and macrophages) and three key chemicals (vascular endothelial growth factors, extracellular matrix and matrix metalloproteinase) are involved in the plaque progression model, and described by the reaction-diffusion partial differential equations. The hemodynamic calculation of the microcirculation on the generated microvessel network is carried out by coupling the intravascular, interstitial and transvascular flow. The plasma concentration in the interstitial domain is defined as the description of IPH area according to the diffusion and convection with the interstitial fluid flow, as well as the extravascular movement across the leaky vessel wall. The simulation results demonstrate a series of pathophysiological phenomena during the vulnerable progression of an atherosclerotic plaque, including the expanding necrotic core, the exacerbated inflammation, the high microvessel density (MVD) region at the shoulder areas, the transvascular flow through the capillary wall and the IPH. The important role of IPH in the plaque destabilization is evidenced by simulations with varied model parameters. It is found that the IPH can significantly speed up the plaque vulnerability by increasing necrotic core and thinning fibrous cap. In addition, the decreased MVD and vessel permeability may slow down the process of plaque destabilization by reducing the IPH dramatically. We envision that the present model and its future advances can serve as a valuable theoretical platform for studying the dynamic changes in the microenvironment during the plaque destabilization.
Collapse
Affiliation(s)
- Muyi Guo
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Cai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xinke Yao
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiyong Li
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
12
|
Mandel ER, Dunford EC, Abdifarkosh G, Turnbull PC, Perry CGR, Riddell MC, Haas TL. The superoxide dismutase mimetic tempol does not alleviate glucocorticoid-mediated rarefaction of rat skeletal muscle capillaries. Physiol Rep 2018; 5:e13243. [PMID: 28533261 PMCID: PMC5449555 DOI: 10.14814/phy2.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Sustained elevations in circulating glucocorticoids elicit reductions in skeletal muscle microvascular content, but little is known of the underlying mechanisms. We hypothesized that glucocorticoid‐induced oxidative stress contributes to this phenomenon. In rats that were implanted with corticosterone (CORT) or control pellets, CORT caused a significant decrease in muscle glutathione levels and a corresponding increase in protein carbonylation, an irreversible oxidative modification of proteins. Decreased endothelial nitric oxide synthase and increased endothelin‐1 mRNA levels were detected after 9 days of CORT, and blood flow to glycolytic muscles was diminished. Control and CORT rats were treated concurrently with drinking water containing the superoxide dismutase mimetic tempol (172 mg/L) or the α‐1 adrenergic receptor antagonist prazosin (50 mg/L) for 6 or 16 days. Both tempol and prazosin alleviated skeletal muscle protein carbonylation. Tempol failed to prevent CORT‐mediated capillary rarefaction and was ineffective in restoring skeletal muscle blood flow. In contrast, prazosin blocked capillary rarefaction and restored skeletal muscle blood flow to control levels. The failure of tempol to prevent CORT‐induced skeletal muscle microvascular rarefaction does not support a dominant role of superoxide‐induced oxidative stress in this process. Although a decrease in protein carbonylation was observed with prazosin treatment, our data suggest that the maintenance of skeletal muscle microvascular content is related more closely with counteracting the CORT‐mediated influence on skeletal muscle vascular tone.
Collapse
Affiliation(s)
- Erin R Mandel
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Emily C Dunford
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ghoncheh Abdifarkosh
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Patrick C Turnbull
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Tara L Haas
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Heuslein JL, McDonnell SP, Song J, Annex BH, Price RJ. MicroRNA-146a Regulates Perfusion Recovery in Response to Arterial Occlusion via Arteriogenesis. Front Bioeng Biotechnol 2018; 6:1. [PMID: 29404323 PMCID: PMC5786509 DOI: 10.3389/fbioe.2018.00001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
The growth of endogenous collateral arteries that bypass arterial occlusion(s), or arteriogenesis, is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease. MicroRNAs (miRs) are key regulators of gene expression in response to injury and have strong therapeutic potential. In a previous study, we identified miR-146a as a candidate regulator of vascular remodeling. Here, we tested whether miR-146a regulates in vitro angiogenic endothelial cell (EC) behaviors, as well as perfusion recovery, arteriogenesis, and angiogenesis in response to femoral arterial ligation (FAL) in vivo. We found miR-146a inhibition impaired EC tube formation and migration in vitro. Following FAL, Balb/c mice were treated with a single, intramuscular injection of anti-miR-146a or scramble locked nucleic acid (LNA) oligonucleotides directly into the non-ischemic gracilis muscles. Serial laser Doppler imaging demonstrated that anti-miR-146a treated mice exhibited significantly greater perfusion recovery (a 16% increase) compared mice treated with scramble LNA. Moreover, anti-miR-146a treated mice exhibited a 22% increase in collateral artery diameter compared to controls, while there was no significant effect on in vivo angiogenesis or muscle regeneration. Despite exerting no beneficial effects on angiogenesis, the inhibition of mechanosensitive miR-146a enhances perfusion recovery after FAL via enhanced arteriogenesis.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Stephanie P McDonnell
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Brian H Annex
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
14
|
Martin KS, Virgilio KM, Peirce SM, Blemker SS. Computational Modeling of Muscle Regeneration and Adaptation to Advance Muscle Tissue Regeneration Strategies. Cells Tissues Organs 2016; 202:250-266. [DOI: 10.1159/000443635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal muscle has an exceptional ability to regenerate and adapt following injury. Tissue engineering approaches (e.g. cell therapy, scaffolds, and pharmaceutics) aimed at enhancing or promoting muscle regeneration from severe injuries are a promising and active field of research. Computational models are beginning to advance the field by providing insight into regeneration mechanisms and therapies. In this paper, we summarize the contributions computational models have made to understanding muscle remodeling and the functional implications thereof. Next, we describe a new agent-based computational model of skeletal muscle inflammation and regeneration following acute muscle injury. Our computational model simulates the recruitment and cellular behaviors of key inflammatory cells (e.g. neutrophils and M1 and M2 macrophages) and their interactions with native muscle cells (muscle fibers, satellite stem cells, and fibroblasts) that result in the clearance of necrotic tissue and muscle fiber regeneration. We demonstrate the ability of the model to track key regeneration metrics during both unencumbered regeneration and in the case of impaired macrophage function. We also use the model to simulate regeneration enhancement when muscle is primed with inflammatory cells prior to injury, which is a putative therapeutic intervention that has not yet been investigated experimentally. Computational modeling of muscle regeneration, pursued in combination with experimental analyses, provides a quantitative framework for evaluating and predicting muscle regeneration and enables the rational design of therapeutic strategies for muscle recovery.
Collapse
|
15
|
Vascular growth responses to chronic arterial occlusion are unaffected by myeloid specific focal adhesion kinase (FAK) deletion. Sci Rep 2016; 6:27029. [PMID: 27244251 PMCID: PMC4886679 DOI: 10.1038/srep27029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/12/2016] [Indexed: 01/20/2023] Open
Abstract
Arteriogenesis, or the lumenal expansion of pre-existing arterioles in the presence of an upstream occlusion, is a fundamental vascular growth response. Though alterations in shear stress stimulate arteriogenesis, the migration of monocytes into the perivascular space surrounding collateral arteries and their differentiation into macrophages is critical for this vascular growth response to occur. Focal adhesion kinase’s (FAK) role in regulating cell migration has recently been expanded to primary macrophages. We therefore investigated the effect of the myeloid-specific conditional deletion of FAK on vascular remodeling in the mouse femoral arterial ligation (FAL) model. Using laser Doppler perfusion imaging, whole mount imaging of vascular casted gracilis muscles, and immunostaining for CD31 in gastrocnemius muscles cross-sections, we found that there were no statistical differences in perfusion recovery, arteriogenesis, or angiogenesis 28 days after FAL. We therefore sought to determine FAK expression in different myeloid cell populations. We found that FAK is expressed at equally low levels in Ly6Chi and Ly6Clo blood monocytes, however expression is increased over 2-fold in bone marrow derived macrophages. Ultimately, these results suggest that FAK is not required for monocyte migration to the perivascular space and that vascular remodeling following arterial occlusion occurs independently of myeloid specific FAK.
Collapse
|
16
|
Hsiang YH, Song J, Price RJ. The partitioning of nanoparticles to endothelium or interstitium during ultrasound-microbubble-targeted delivery depends on peak-negative pressure. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:345. [PMID: 26594129 PMCID: PMC4651175 DOI: 10.1007/s11051-015-3153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
Patients diagnosed with advanced peripheral arterial disease often face poor prognoses and have limited treatment options. For some patient populations, the therapeutic growth of collateral arteries (i.e. arteriogenesis) that bypass regions affected by vascular disease may become a viable treatment option. Our group and others are developing therapeutic approaches centered on the ability of ultrasound-activated microbubbles to permeabilize skeletal muscle capillaries and facilitate the targeted delivery of pro-arteriogenic growth factor-bearing nanoparticles. The development of such approaches would benefit significantly from a better understanding of how nanoparticle diameter and ultrasound peak-negative pressure affect both total nanoparticle delivery and the partitioning of nanoparticles to endothelial or interstitial compartments. Toward this goal, using Balb/C mice that had undergone unilateral femoral artery ligation, we intra-arterially co-injected nanoparticles (50 and 100 nm) with microbubbles, applied 1 MHz ultrasound to the gracilis adductor muscle at peak-negative pressures of 0.7, 0.55, 0.4, and 0.2 MPa, and analyzed nanoparticle delivery and distribution. As expected, total nanoparticle (50 and 100 nm) delivery increased with increasing peak-negative pressure, with 50 nm nanoparticles exhibiting greater tissue coverage than 100 nm nanoparticles. Of particular interest, increasing peak-negative pressure resulted in increased delivery to the interstitium for both nanoparticle sizes, but had little influence on nanoparticle delivery to the endothelium. Thus, we conclude that alterations to peak-negative pressure may be used to adjust the fraction of nanoparticles delivered to the interstitial compartment. This information will be useful when designing ultrasound protocols for delivering pro-arteriogenic nanoparticles to skeletal muscle.
Collapse
Affiliation(s)
- Y.-H. Hsiang
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| | - J. Song
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| | - R. J. Price
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| |
Collapse
|