1
|
Sun B, Smith N, Dixon AJ, Osei-Owusu P. Phosphodiesterases Mediate the Augmentation of Myogenic Constriction by Inhibitory G Protein Signaling and is Negatively Modulated by the Dual Action of RGS2 and 5. FUNCTION 2024; 5:zqae003. [PMID: 38486977 PMCID: PMC10935470 DOI: 10.1093/function/zqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 03/17/2024] Open
Abstract
G protein regulation by regulators of G protein signaling (RGS) proteins play a key role in vascular tone maintenance. The loss of Gi/o and Gq/11 regulation by RGS2 and RGS5 in non-pregnant mice is implicated in augmented vascular tone and decreased uterine blood flow (UBF). RGS2 and 5 are closely related and co-expressed in uterine arteries (UA). However, whether and how RGS2 and 5 coordinate their regulatory activities to finetune G protein signaling and regulate vascular tone are unclear. Here, we determined how the integrated activity of RGS2 and 5 modulates vascular tone to promote UBF. Using ultrasonography and pressure myography, we examined uterine hemodynamics and myogenic tone (MT) of UA of wild type (WT), Rgs2-/-, Rgs5-/-, and Rgs2/5 dbKO mice. We found that MT was reduced in Rgs5-/- relative to WT or Rgs2-/- UA. Activating Gi/o with dopamine increased, whereas exogenous cAMP decreased MT in Rgs5-/- UA to levels in WT UA. Dual deletion of Rgs2 and 5 abolished the reduced MT due to the absence of Rgs5 and enhanced dopamine-induced Gi/o effects in Rgs2/5 dbKO UA. Conversely, and as in WT UA, Gi/o inhibition with pertussis toxin or exogenous cAMP decreased MT in Rgs2/5 dbKO to levels in Rgs5-/- UA. Inhibition of phosphodiesterases (PDE) concentration-dependently decreased and normalized MT in all genotypes, and blocked dopamine-induced MT augmentation in Rgs2-/-, Rgs5-/-, and Rgs2/5 dbKO UA. We conclude that Gi/o augments UA MT in the absence of RGS2 by a novel mechanism involving PDE-mediated inhibition of cAMP-dependent vasodilatation..
Collapse
Affiliation(s)
- Bo Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nia Smith
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alethia J Dixon
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Patrick Osei-Owusu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Heilmann RM, Csukovich G, Burgener IA, Dengler F. Time to eRAASe chronic inflammation: current advances and future perspectives on renin-angiotensin-aldosterone-system and chronic intestinal inflammation in dogs and humans. Front Vet Sci 2023; 10:1180125. [PMID: 37456955 PMCID: PMC10340121 DOI: 10.3389/fvets.2023.1180125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic idiopathic intestinal inflammation is an increasing worldwide problem that affects companion animals, especially dogs, and human patients. Although these disease entities have been intensely investigated recently, many questions remain, and alternative therapeutic options are needed. Diarrhea caused by dysregulation of intestinal electrolyte transport and subsequent fluid and electrolyte losses often leads to secondary consequences for the patient. Currently, it is not exactly clear which mechanisms are involved in the dysregulation of intestinal fluid absorption, but differences in intestinal electrolyte shifts between human and canine patients suggest species-specific regulatory or counterregulatory mechanisms. Several intestinal electrolyte transporters are differentially expressed in human patients with inflammatory bowel disease (IBD), whereas there are virtually no studies on electrolyte transporters and their endocrine regulation in canine chronic inflammatory enteropathy. An important mechanism involved in regulating fluid and electrolyte homeostasis is the renin-angiotensin-aldosterone-system (RAAS), which may affect intestinal Na+ transport. While RAAS has previously been considered a systemic regulator of blood pressure, additional complex roles of RAAS in inflammatory processes have been unraveled. These alternative RAAS pathways may pose attractive therapeutic targets to address diarrhea and, thus, electrolyte shifts in human IBD and canine chronic inflammatory enteropathy. This article comparatively summarizes the current knowledge about electrolyte transport in human IBD and canine chronic inflammatory enteropathy and the role of RAAS and offers perspectives for novel therapeutic avenues.
Collapse
Affiliation(s)
- Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Georg Csukovich
- Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iwan A. Burgener
- Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
3
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Wagdi A, Malan D, Sathyanarayanan U, Beauchamp JS, Vogt M, Zipf D, Beiert T, Mansuroglu B, Dusend V, Meininghaus M, Schneider L, Kalthof B, Wiegert JS, König GM, Kostenis E, Patejdl R, Sasse P, Bruegmann T. Selective optogenetic control of G q signaling using human Neuropsin. Nat Commun 2022; 13:1765. [PMID: 35365606 PMCID: PMC8975936 DOI: 10.1038/s41467-022-29265-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Gq proteins are universally important for signal transduction in mammalian cells. The underlying kinetics and transformation from extracellular stimuli into intracellular signaling, however could not be investigated in detail so far. Here we present the human Neuropsin (hOPN5) for specific and repetitive manipulation of Gq signaling in vitro and in vivo with high spatio-temporal resolution. Properties and G protein specificity of hOPN5 are characterized by UV light induced IP3 generation, Ca2+ transients and inhibition of GIRK channel activity in HEK cells. In adult hearts from a transgenic animal model, light increases the spontaneous beating rate. In addition, we demonstrate light induced contractions in the small intestine, which are not detectable after pharmacological Gq protein block. All-optical high-throughput screening for TRPC6 inhibitors is more specific and sensitive than conventional pharmacological screening. Thus, we demonstrate specific Gq signaling of hOPN5 and unveil its potential for optogenetic applications.
Collapse
Affiliation(s)
- Ahmed Wagdi
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Present Address: Department of Cardiology and Pulmonology, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany
| | - Daniela Malan
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Udhayabhaskar Sathyanarayanan
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Janosch S. Beauchamp
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Vogt
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - David Zipf
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Beiert
- grid.15090.3d0000 0000 8786 803XDepartment of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Berivan Mansuroglu
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Vanessa Dusend
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Mark Meininghaus
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, 42096 Wuppertal, Germany
| | - Linn Schneider
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, 42096 Wuppertal, Germany
| | - Bernd Kalthof
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, 42096 Wuppertal, Germany
| | - J. Simon Wiegert
- grid.13648.380000 0001 2180 3484Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele M. König
- grid.10388.320000 0001 2240 3300Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- grid.10388.320000 0001 2240 3300Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Robert Patejdl
- grid.413108.f0000 0000 9737 0454Oscar-Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Philipp Sasse
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tobias Bruegmann
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany ,grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Research Training Group 1873, University of Bonn, Bonn, Germany ,grid.7450.60000 0001 2364 4210Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Jackson WF. Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone. Front Physiol 2021; 12:770450. [PMID: 34819877 PMCID: PMC8607693 DOI: 10.3389/fphys.2021.770450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Arterioles in the peripheral microcirculation regulate blood flow to and within tissues and organs, control capillary blood pressure and microvascular fluid exchange, govern peripheral vascular resistance, and contribute to the regulation of blood pressure. These important microvessels display pressure-dependent myogenic tone, the steady state level of contractile activity of vascular smooth muscle cells (VSMCs) that sets resting arteriolar internal diameter such that arterioles can both dilate and constrict to meet the blood flow and pressure needs of the tissues and organs that they perfuse. This perspective will focus on the Ca2+-dependent ion channels in the plasma and endoplasmic reticulum membranes of arteriolar VSMCs and endothelial cells (ECs) that regulate arteriolar tone. In VSMCs, Ca2+-dependent negative feedback regulation of myogenic tone is mediated by Ca2+-activated K+ (BKCa) channels and also Ca2+-dependent inactivation of voltage-gated Ca2+ channels (VGCC). Transient receptor potential subfamily M, member 4 channels (TRPM4); Ca2+-activated Cl− channels (CaCCs; TMEM16A/ANO1), Ca2+-dependent inhibition of voltage-gated K+ (KV) and ATP-sensitive K+ (KATP) channels; and Ca2+-induced-Ca2+ release through inositol 1,4,5-trisphosphate receptors (IP3Rs) participate in Ca2+-dependent positive-feedback regulation of myogenic tone. Calcium release from VSMC ryanodine receptors (RyRs) provide negative-feedback through Ca2+-spark-mediated control of BKCa channel activity, or positive-feedback regulation in cooperation with IP3Rs or CaCCs. In some arterioles, VSMC RyRs are silent. In ECs, transient receptor potential vanilloid subfamily, member 4 (TRPV4) channels produce Ca2+ sparklets that activate IP3Rs and intermediate and small conductance Ca2+ activated K+ (IKCa and sKCa) channels causing membrane hyperpolarization that is conducted to overlying VSMCs producing endothelium-dependent hyperpolarization and vasodilation. Endothelial IP3Rs produce Ca2+ pulsars, Ca2+ wavelets, Ca2+ waves and increased global Ca2+ levels activating EC sKCa and IKCa channels and causing Ca2+-dependent production of endothelial vasodilator autacoids such as NO, prostaglandin I2 and epoxides of arachidonic acid that mediate negative-feedback regulation of myogenic tone. Thus, Ca2+-dependent ion channels importantly contribute to many aspects of the regulation of myogenic tone in arterioles in the microcirculation.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Caprini D, Schwartz S, Lanza E, Milanetti E, Lucente V, Ferrarese G, Chiodo L, Nicoletti M, Folli V. A Shearless Microfluidic Device Detects a Role in Mechanosensitivity for AWC ON Neuron in Caenorhabditis elegans. Adv Biol (Weinh) 2021; 5:e2100927. [PMID: 34423577 DOI: 10.1002/adbi.202100927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Indexed: 11/08/2022]
Abstract
AWC olfactory neurons are fundamental for chemotaxis toward volatile attractants in Caenorhabditis elegans. Here, it is shown that AWCON responds not only to chemicals but also to mechanical stimuli caused by fluid flow changes in a microfluidic device. The dynamics of calcium events are correlated with the stimulus amplitude. It is further shown that the mechanosensitivity of AWCON neurons has an intrinsic nature rather than a synaptic origin, and the calcium transient response is mediated by TAX-4 cGMP-gated cation channel, suggesting the involvement of one or more "odorant" receptors in AWCON mechano-transduction. In many cases, the responses show plateau properties resembling bistable calcium dynamics where neurons can switch from one stable state to the other. To investigate the unprecedentedly observed mechanosensitivity of AWCON neurons, a novel microfluidic device is designed to minimize the fluid shear flow in the arena hosting the nematodes. Animals in this device show reduced neuronal activation of AWCON neurons. The results observed indicate that the tangential component of the mechanical stress is the main contributor to the mechanosensitivity of AWCON . Furthermore, the microfluidic platform, integrating shearless perfusion and calcium imaging, provides a novel and more controlled solution for in vivo analysis both in micro-organisms and cultured cells.
Collapse
Affiliation(s)
- Davide Caprini
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| | - Silvia Schwartz
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| | - Enrico Lanza
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| | - Edoardo Milanetti
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy.,Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Valeria Lucente
- CREST OPTICS S.p.A., Via di Torre Rossa 66, Rome, 00165, Italy
| | - Giuseppe Ferrarese
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy.,Department of Engineering, Campus Bio-Medico University, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Martina Nicoletti
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy.,Department of Engineering, Campus Bio-Medico University, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Viola Folli
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| |
Collapse
|
7
|
Jackson WF. Myogenic Tone in Peripheral Resistance Arteries and Arterioles: The Pressure Is On! Front Physiol 2021; 12:699517. [PMID: 34366889 PMCID: PMC8339585 DOI: 10.3389/fphys.2021.699517] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Resistance arteries and downstream arterioles in the peripheral microcirculation contribute substantially to peripheral vascular resistance, control of blood pressure, the distribution of blood flow to and within tissues, capillary pressure, and microvascular fluid exchange. A hall-mark feature of these vessels is myogenic tone. This pressure-induced, steady-state level of vascular smooth muscle activity maintains arteriolar and resistance artery internal diameter at 50–80% of their maximum passive diameter providing these vessels with the ability to dilate, reducing vascular resistance, and increasing blood flow, or constrict to produce the opposite effect. Despite the central importance of resistance artery and arteriolar myogenic tone in cardiovascular physiology and pathophysiology, our understanding of signaling pathways underlying this key microvascular property remains incomplete. This brief review will present our current understanding of the multiple mechanisms that appear to underlie myogenic tone, including the roles played by G-protein-coupled receptors, a variety of ion channels, and several kinases that have been linked to pressure-induced, steady-state activity of vascular smooth muscle cells (VSMCs) in the wall of resistance arteries and arterioles. Emphasis will be placed on the portions of the signaling pathways underlying myogenic tone for which there is lack of consensus in the literature and areas where our understanding is clearly incomplete.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
9
|
Lopez JR, Uryash A, Faury G, Estève E, Adams JA. Contribution of TRPC Channels to Intracellular Ca 2 + Dyshomeostasis in Smooth Muscle From mdx Mice. Front Physiol 2020; 11:126. [PMID: 32153426 PMCID: PMC7044154 DOI: 10.3389/fphys.2020.00126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an irreversible muscle disease characterized by a progressive loss of muscle function, decreased ambulation, and ultimately death as a result of cardiac or respiratory failure. DMD is caused by the lack of dystrophin, a protein that is important for membrane stability and signaling in excitable cells. Although vascular smooth muscle cells (VSMCs) dysfunction occurs in many pathological conditions, little is known about vascular smooth muscle function in DMD. We have previously shown that striated muscle cells, as well as neurons isolated from dystrophic (mdx) mice have higher intracellular Ca2+ ([Ca2+]i) and Na+ ([Na+]i) concentrations and decreased cell viability in comparison with wild type (Wt). Experiments were carried out in isolated VSMCs from mdx (a murine model of DMD) and congenic C57BL/10SnJ Wt mice. We found elevated [Ca2+]i and [Na+]i in VSMCs from mdx mice compared to Wt. Exposure to 1-oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC3 and TRPC6 channel activator, induced a greater elevation of [Ca2+]i and [Na+]i in mdx than Wt VSMCs. The OAG induced increases in [Ca2+]i could be abolished by either removal of extracellular Ca2+ or by SAR7334, a blocker of TRPC3 and TRPC 6 channels in both genotypes. Mdx and Wt VSMCs were susceptible to muscle cell stretch-induced elevations of [Ca2+]i and [Na+]i which was completely inhibited by GsMTx-4, a mechanosensitive ion channel inhibitor. Western blots showed a significant upregulation of TRPC1 -3, -6 proteins in mdx VSMCs compare to age-matched Wt. The lack of dystrophin in mdx VSMCs produced a profound alteration of [Ca2+]i and [Na+]i homeostasis that appears to be mediated by TRPC channels. Moreover, we have been able to demonstrate pharmacologically that the enhanced stretch-induced elevation of intracellular [Ca2+] and concomitant cell damage in mdx VSMCs also appears to be mediated through TRPC1, -3 and -6 channel activation.
Collapse
Affiliation(s)
- Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami, FL, United States
| | - Arkady Uryash
- Department of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| | - Gilles Faury
- HP2, CHU Grenoble Alpes, Inserm, University Grenoble Alpes, Grenoble, France
| | - Eric Estève
- HP2, CHU Grenoble Alpes, Inserm, University Grenoble Alpes, Grenoble, France
| | - Jose A Adams
- Department of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| |
Collapse
|
10
|
Yamasaki E, Thakore P, Krishnan V, Earley S. Differential expression of angiotensin II type 1 receptor subtypes within the cerebral microvasculature. Am J Physiol Heart Circ Physiol 2020; 318:H461-H469. [PMID: 31886721 PMCID: PMC7052625 DOI: 10.1152/ajpheart.00582.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/12/2023]
Abstract
Arteries and arterioles constrict in response to intraluminal pressure to generate myogenic tone, but the molecular nature of the vascular force-sensing mechanism is not fully characterized. Here, we investigated the role of angiotensin II type 1 receptors (AT1Rs) on vascular smooth muscle cells in the development of myogenic tone in cerebral parenchymal arterioles from mice. We found that pretreatment with the AT1R blocker losartan inhibited the development of myogenic tone in these vessels but did not alter the luminal diameter of arterioles with preestablished tone. Rodents express two AT1R isotypes: AT1Ra and AT1Rb. We previously demonstrated that AT1Rb is expressed at much higher levels compared with AT1Ra in cerebral pial arteries and is required for myogenic contractility in these vessels, whereas AT1Ra is unnecessary for this function. Here, we found that AT1Ra and AT1Rb are expressed at similar levels in parenchymal arterioles and that genetic knockout of AT1Ra blunted the ability of these vessels to generate myogenic tone. We also found that AT1Rb and total AT1R expression levels are much lower in parenchymal arterioles compared with pial arteries and that parenchymal arterioles are less sensitive to the vasoconstrictive effects of the endogenous AT1R ligand angiotensin II (ANG II). We conclude that 1) AT1Rs are critical for the initiation, but not the maintenance, of myogenic tone in parenchymal arterioles, and 2) lower levels of AT1Rb and total AT1R in parenchymal arterioles compared with pial arteries result in differences in myogenic and ANG II-induced vasoconstriction between these vascular segments.NEW & NOTEWORTHY Myogenic tone is critical for appropriate regulation of cerebral blood flow, but the mechanisms used by vascular smooth muscle cells to detect changes in intraluminal pressure are not fully characterized. Here, we demonstrate angiotensin II receptor type 1 (AT1R) is indispensable to initiation, but not maintenance, of myogenic tone in cerebral parenchymal arterioles. Furthermore, we demonstrate differences in AT1R expression levels lead to critical differences in contractile regulation between parenchymal arterioles and cerebral pial arteries.
Collapse
Affiliation(s)
- Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Vivek Krishnan
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
11
|
Ion channels and the regulation of myogenic tone in peripheral arterioles. CURRENT TOPICS IN MEMBRANES 2020; 85:19-58. [DOI: 10.1016/bs.ctm.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Basic Concepts of the Microcirculation. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nat Commun 2019; 10:5784. [PMID: 31857598 PMCID: PMC6923424 DOI: 10.1038/s41467-019-13722-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are versatile cellular sensors for chemical stimuli, but also serve as mechanosensors involved in various (patho)physiological settings like vascular regulation, cardiac hypertrophy and preeclampsia. However, the molecular mechanisms underlying mechanically induced GPCR activation have remained elusive. Here we show that mechanosensitive histamine H1 receptors (H1Rs) are endothelial sensors of fluid shear stress and contribute to flow-induced vasodilation. At the molecular level, we observe that H1Rs undergo stimulus-specific patterns of conformational changes suggesting that mechanical forces and agonists induce distinct active receptor conformations. GPCRs lacking C-terminal helix 8 (H8) are not mechanosensitive, and transfer of H8 to non-responsive GPCRs confers, while removal of H8 precludes, mechanosensitivity. Moreover, disrupting H8 structural integrity by amino acid exchanges impairs mechanosensitivity. Altogether, H8 is the essential structural motif endowing GPCRs with mechanosensitivity. These findings provide a mechanistic basis for a better understanding of the roles of mechanosensitive GPCRs in (patho)physiology. GPCRs are versatile cellular sensors for chemical stimuli but the molecular mechanisms underlying mechanically induced GPCR activation have remained elusive. Here authors identify the C-terminal helix 8 (H8) as the essential structural motif endowing H1R and other GPCRs with mechanosensitivity.
Collapse
|
14
|
Chennupati R, Wirth A, Favre J, Li R, Bonnavion R, Jin YJ, Wietelmann A, Schweda F, Wettschureck N, Henrion D, Offermanns S. Myogenic vasoconstriction requires G 12/G 13 and LARG to maintain local and systemic vascular resistance. eLife 2019; 8:49374. [PMID: 31549965 PMCID: PMC6777979 DOI: 10.7554/elife.49374] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Myogenic vasoconstriction is an autoregulatory function of small arteries. Recently, G-protein-coupled receptors have been involved in myogenic vasoconstriction, but the downstream signalling mechanisms and the in-vivo-function of this myogenic autoregulation are poorly understood. Here, we show that small arteries from mice with smooth muscle-specific loss of G12/G13 or the Rho guanine nucleotide exchange factor ARHGEF12 have lost myogenic vasoconstriction. This defect was accompanied by loss of RhoA activation, while vessels showed normal increases in intracellular [Ca2+]. In the absence of myogenic vasoconstriction, perfusion of peripheral organs was increased, systemic vascular resistance was reduced and cardiac output and left ventricular mass were increased. In addition, animals with defective myogenic vasoconstriction showed aggravated hypotension in response to endotoxin. We conclude that G12/G13- and Rho-mediated signaling plays a key role in myogenic vasoconstriction and that myogenic tone is required to maintain local and systemic vascular resistance under physiological and pathological condition.
Collapse
Affiliation(s)
- Ramesh Chennupati
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Angela Wirth
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Julie Favre
- Laboratoire MITOVASC, UMR CNRS 6015 - INSERM 1083, Université d'Angers, Angers, France
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rémy Bonnavion
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group Nuclear Magnetic Resonance Imaging, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Daniel Henrion
- Laboratoire MITOVASC, UMR CNRS 6015 - INSERM 1083, Université d'Angers, Angers, France
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
15
|
Holmberg J, Bhattachariya A, Alajbegovic A, Rippe C, Ekman M, Dahan D, Hien TT, Boettger T, Braun T, Swärd K, Hellstrand P, Albinsson S. Loss of Vascular Myogenic Tone in miR-143/145 Knockout Mice Is Associated With Hypertension-Induced Vascular Lesions in Small Mesenteric Arteries. Arterioscler Thromb Vasc Biol 2018; 38:414-424. [PMID: 29217510 DOI: 10.1161/atvbaha.117.310499] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Pressure-induced myogenic tone is involved in autoregulation of local blood flow and confers protection against excessive pressure levels in small arteries and capillaries. Myogenic tone is dependent on smooth muscle microRNAs (miRNAs), but the identity of these miRNAs is unclear. Furthermore, the consequences of altered myogenic tone for hypertension-induced damage to small arteries are not well understood. APPROACH AND RESULTS The importance of smooth muscle-enriched microRNAs, miR-143/145, for myogenic tone was evaluated in miR-143/145 knockout mice. Furthermore, hypertension-induced vascular injury was evaluated in mesenteric arteries in vivo after angiotensin II infusion. Myogenic tone was abolished in miR-143/145 knockout mesenteric arteries, whereas contraction in response to calyculin A and potassium chloride was reduced by ≈30%. Furthermore, myogenic responsiveness was potentiated by angiotensin II in wild-type but not in knockout mice. Angiotensin II administration in vivo elevated systemic blood pressure in both genotypes. Hypertensive knockout mice developed severe vascular lesions characterized by vascular inflammation, adventitial fibrosis, and neointimal hyperplasia in small mesenteric arteries. This was associated with depolymerization of actin filaments and fragmentation of the elastic laminae at the sites of vascular lesions. CONCLUSIONS This study demonstrates that miR-143/145 expression is essential for myogenic responsiveness. During hypertension, loss of myogenic tone results in potentially damaging levels of mechanical stress and detrimental effects on small arteries. The results presented herein provide novel insights into the pathogenesis of vascular disease and emphasize the importance of controlling mechanical factors to maintain structural integrity of the vascular wall.
Collapse
Affiliation(s)
- Johan Holmberg
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Anirban Bhattachariya
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Azra Alajbegovic
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Catarina Rippe
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Mari Ekman
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Diana Dahan
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Tran Thi Hien
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Thomas Boettger
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Thomas Braun
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Karl Swärd
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Per Hellstrand
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Sebastian Albinsson
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun).
| |
Collapse
|
16
|
Hill MA, Meininger GA. Small artery mechanobiology: Roles of cellular and non-cellular elements. Microcirculation 2018; 23:611-613. [PMID: 27681605 DOI: 10.1111/micc.12323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022]
Abstract
Small arteries and their component cellular and non-cellular elements are continually subjected to, and interact with, mechanical forces. Such interactions are key in both short- and long-term adaptation of the structure and function of the microcirculation to its local environment and metabolic requirements. Following this brief introduction is a series of papers presented as a symposium (Small Artery Mechanobiology: Roles of Cellular and Non-Cellular Elements) at the World Congress for Microcirculation, Kyoto 2015.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
17
|
Miura K. [Histopathologic studies on epithelial proliferation in the peripheral region of the lung with special consideration of tumorlets]. Cell Signal 1968; 41:89-96. [PMID: 28389414 PMCID: PMC5628105 DOI: 10.1016/j.cellsig.2017.04.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Niclosamide is an oral antihelminthic drug used to treat parasitic infections in millions of people worldwide. However recent studies have indicated that niclosamide may have broad clinical applications for the treatment of diseases other than those caused by parasites. These diseases and symptoms may include cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, and systemic sclerosis. Among the underlying mechanisms associated with the drug actions of niclosamide are uncoupling of oxidative phosphorylation, and modulation of Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways. Here we provide a brief overview of the biological activities of niclosamide, its potential clinical applications, and its challenges for use as a new therapy for systemic diseases. Niclosamide is an oral antihelminthic drug used to treat parasitic infections. Niclosamide is a multifunctional drug inhibiting multiple signaling pathways and biological processes. Niclosamide has biological activities potentially against systemic diseases.
Collapse
|