1
|
Chen Y, Gu X, Cao K, Tu M, Liu W, Ju J. The role of innate lymphoid cells in systemic lupus erythematosus. Cytokine 2024; 179:156623. [PMID: 38685155 DOI: 10.1016/j.cyto.2024.156623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Systemic lupus erythematosus (SLE) is a connective tissue disorder that affects various body systems. Both the innate and adaptive immunity contribute to the onset and progression of SLE. The main mechanism of SLE is an excessive immune response of immune cells to autoantigens, which leads to systemic inflammation and inflammation-induced organ damage. Notably, a subset of innate immune cells known as innate lymphoid cells (ILCs) has recently emerged. ILCs are pivotal in the early stages of infection; participate in immune responses, inflammation, and tissue repair; and regulate the immune function of the body by resisting pathogens and regulating autoimmune inflammation and metabolic homeostasis. Thus, ILCs dysfunction can lead to autoimmune diseases. This review discusses the maturation of ILCs, the potential mechanisms by which ILCs exacerbate SLE pathogenesis, and their contributions to organ inflammatory deterioration in SLE.
Collapse
Affiliation(s)
- Yong Chen
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xiaotian Gu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Miao Tu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wan Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jiyu Ju
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Jo M, Trujillo AN, Shibahara N, Breslin JW. Impact of Goreisan components on rat mesenteric collecting lymphatic vessel pumping. Microcirculation 2023; 30:e12788. [PMID: 36169611 PMCID: PMC10043042 DOI: 10.1111/micc.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Goreisan is a traditional herbal formulation with diuretic properties tested as a clinical therapeutic to alleviate lymphedema in Japan. The present study aimed to determine how Goreisan and its five different components affect lymphatic pump function. METHODS Mesenteric collecting lymphatics were isolated from anesthetized Sprague-Dawley rats and mounted on resistance-matched glass micropipettes in a 37°C physiological salt solution bath for studies. Diameter was continuously measured to obtain the following lymphatic pump parameters: contraction frequency (CF), end diastolic diameter (EDD), and end systolic diameter (ESD), contraction amplitude (AMP), ejection fraction (EF), and fractional pump flow (FPF). Goreisan and each of its components (Cinnamomi Cortex, Atractylodis Rhizoma, Alismatis Rhizoma, Polyporus, and Poria) were applied to the bath at concentrations of 1-30 μg/mL. RESULTS The results show that while Goreisan causes no significant changes to lymphatic pumping, Alismatis Rhizoma and Polyporus each significantly reduce CF and FPF. In addition, rats that received oral administration of Goreisan and Alismatis Rhizoma for 1 week had elevated expression of VEGFR-3 in their mesenteric collecting lymphatics. CONCLUSIONS Collectively, the results suggest that some components of Goreisan have a direct, rapid impact on lymphatic pumping. These findings provide new insights but also raise new questions about the therapeutic potential of Goreisan in patients with secondary lymphedema.
Collapse
Affiliation(s)
- Michiko Jo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Andrea N. Trujillo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Naotoshi Shibahara
- Kampo Education and Training Center, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
3
|
Higashiyama M, Miura S, Hokari R. Modulation by luminal factors on the functions and migration of intestinal innate immunity. Front Immunol 2023; 14:1113467. [PMID: 36860849 PMCID: PMC9968923 DOI: 10.3389/fimmu.2023.1113467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Luminal antigens, nutrients, metabolites from commensal bacteria, bile acids, or neuropeptides influence the function and trafficking of immune cells in the intestine. Among the immune cells in the gut, innate lymphoid cells, including macrophages, neutrophils, dendritic cells, mast cells, and innate lymphoid cells, play an important role for the maintenance of intestinal homeostasis through a rapid immune response to luminal pathogens. These innate cells are influenced by several luminal factors, possibly leading to dysregulated gut immunity and intestinal disorders such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and intestinal allergy. Luminal factors are sensed by distinct neuro-immune cell units, which also have a strong impact on immunoregulation of the gut. Immune cell trafficking from the blood stream through the lymphatic organ to lymphatics, an essential function for immune responses, is also modulated by luminal factors. This mini-review examines knowledge of luminal and neural factors that regulate and modulate response and migration of leukocytes including innate immune cells, some of which are clinically associated with pathological intestinal inflammation.
Collapse
Affiliation(s)
- Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan,*Correspondence: Masaaki Higashiyama,
| | - Soichiro Miura
- International University of Health and Welfare, Tokyo, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
4
|
Sasse C, Barinberg D, Obermeyer S, Debus A, Schleicher U, Bogdan C. Eosinophils, but Not Type 2 Innate Lymphoid Cells, Are the Predominant Source of Interleukin 4 during the Innate Phase of Leishmania major Infection. Pathogens 2022; 11:pathogens11080828. [PMID: 35894051 PMCID: PMC9331382 DOI: 10.3390/pathogens11080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Interleukin (IL)-4 plays a central role in the initiation of a type 2 T helper cell (Th2) response, which leads to non-healing and progressive infections with the protozoan parasite Leishmania (L.) major. Here, we tested the hypothesis that type 2 innate lymphoid cells (ILC2), which promote the development of Th2 cells, form an important source of IL-4 early after intradermal or subcutaneous L. major infection. Lineage-marker negative CD90.2+CD127+PD1− ILC2 were readily detectable in the ear or foot skin, but hardly in the draining lymph nodes of both naïve and L. major-infected self-healing C57BL/6 and non-healing BALB/c mice and made up approximately 20% to 30% of all CD45+SiglecF− cells. Dermal ILC2 of C57BL/6 mice expressed the inducible T cell-costimulator (ICOS, CD278), whereas BALB/C ILC2 were positive for the stem cell antigen (Sca)-1. Within the first 5 days of infection, the absolute numbers of ILC2 did not significantly change in the dermis, which is in line with the unaltered expression of cytokines activating (IL-18, IL-25, IL-33, TSLP) or inhibiting ILC2 (IL-27, IFN-γ). At day 5 to 6 post infection, we observed an upregulation of IL-4, but not of IL-5, IL-10 or IL-13 mRNA. Using IL-4-reporter (4get) mice, we found that the production of IL-4 by C57BL/6 or BALB/c mice was largely restricted to CD45+SiglecF+ cells of high granularity, i.e., eosinophils. From these data, we conclude that eosinophils, but not ILC2, are a major innate source of IL-4 at the skin site of L. major infection.
Collapse
Affiliation(s)
- Carolin Sasse
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; (C.S.); (D.B.); (S.O.); (A.D.)
| | - David Barinberg
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; (C.S.); (D.B.); (S.O.); (A.D.)
| | - Stephanie Obermeyer
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; (C.S.); (D.B.); (S.O.); (A.D.)
| | - Andrea Debus
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; (C.S.); (D.B.); (S.O.); (A.D.)
| | - Ulrike Schleicher
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; (C.S.); (D.B.); (S.O.); (A.D.)
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Schlossplatz 4, D-91054 Erlangen, Germany
- Correspondence: (U.S.); (C.B.); Tel.: +49-9131-852-3647 (U.S.); +49-9131-852-2551 (C.B.); Fax: +49-9131-852-2573 (U.S. & C.B.)
| | - Christian Bogdan
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; (C.S.); (D.B.); (S.O.); (A.D.)
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Schlossplatz 4, D-91054 Erlangen, Germany
- Correspondence: (U.S.); (C.B.); Tel.: +49-9131-852-3647 (U.S.); +49-9131-852-2551 (C.B.); Fax: +49-9131-852-2573 (U.S. & C.B.)
| |
Collapse
|
5
|
Watanabe-Asaka T, Hayashi M, Maejima D, Kawai Y, Ohhashi T. From digestion and absorption to innate immunity and health care: water and food intake may contribute to IL-22 in ILC3-dependent mucosal immunity in the jejunum. J Physiol Sci 2021; 71:31. [PMID: 34641788 PMCID: PMC10718039 DOI: 10.1186/s12576-021-00817-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022]
Abstract
In this review, with our current studies we demonstrated medical evidence that water and food intake are useful for IL-22-related mucosal immunity-dependent maintenance of health care. The traditional Japanese health care practices recommend daily consumption of suitable volume of water. However, immunological mechanisms that support of the traditional practices are still unsolved. We focused on type 3 innate lymphoid cells (ILC3s), because the ILC3s are mainly housed in the lamina propria of the jejunum. IL-22 released from the ILC3 is transported through mesenteric lymph in collaboration with the albumin-mediated movement of consumed water. Thus, water intake-mediated upregulation of IL-22-dependent mucosal immunity contributes to the traditional Japanese health care practices. We also reviewed current studies that food intake-mediated increase in VIP-dependent neuronal activity in the small intestine and the food intake included with tryptophan-derived metabolites may accelerate the IL-22 in ILC3s-dependent mucosal immunity and then contribute in keeping health care.
Collapse
Affiliation(s)
- Tomomi Watanabe-Asaka
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Physiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Moyuru Hayashi
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Physiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daisuke Maejima
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yoshiko Kawai
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Physiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Toshio Ohhashi
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| |
Collapse
|