1
|
Horn AG, Schulze KM, Muller-Delp J, Poole DC, Behnke BJ. Effects of aging on diaphragm hyperemia and blood flow distribution in male and female Fischer 344 rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R328-R337. [PMID: 39005080 PMCID: PMC11444501 DOI: 10.1152/ajpregu.00099.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Aging is associated with inspiratory muscle dysfunction; however, the impact of aging on diaphragm blood flow (BF) regulation, and whether sex differences exist, is unknown. We tested the hypotheses in young animals that diaphragm BF and vascular conductance (VC) would be greater in females and that aging would decrease the diaphragm's ability to increase BF with contractions. Young (4-6 mo) and old (22-24 mo) Fischer 344 rats were divided into four groups: young female (YF, n = 7), young male (YM, n = 8), old female (OF, n = 9), and old male (OM, n = 9). Diaphragm BF (mL/min/100 g) and VC (mL/mmHg/min/100 g) were determined, via fluorescent microspheres, at rest and during 1 Hz contractions. In YF versus OF, aging blunted the increase in medial costal diaphragm BF (44 ± 5% vs. 16 ± 12%; P < 0.05) and VC (43 ± 7% vs. 21 ± 12%; P < 0.05). Similarly, in YM versus OM, aging blunted the increase in medial costal diaphragm BF (43 ± 6% vs. 24 ± 12%; P < 0.05) and VC (50 ± 6% vs. 34 ± 10%; P < 0.05). In female rats, age increased dorsal costal diaphragm BF, whereas in male rats, age increased crural diaphragm BF (P < 0.05). Compared with age-matched females, dorsal costal diaphragm BF was lower in YM and OM (P < 0.05). In conclusion, aging results in an inability to augment medial costal diaphragm BF and alters regional diaphragm BF distribution in response to muscular contractions. Furthermore, sex differences in regional diaphragm BF are present in young and old animals.NEW & NOTEWORTHY This is the first study, to our knowledge, to demonstrate that old age impairs the hyperemic response and alters blood flow distribution in the diaphragm of both female and male rats. In addition, this investigation provides novel evidence of sex differences in regional diaphragm blood flow distribution with contractions. The data presented herein suggest that aging compromises diaphragm vascular function and provides a potential mechanism for the diaphragm contractile dysfunction associated with old age.
Collapse
Affiliation(s)
- Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Judy Muller-Delp
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| |
Collapse
|
2
|
Schulze KM, Horn AG, Muller-Delp JM, White ZJ, Hall SE, Medarev SL, Weber RE, Poole DC, Musch TI, Behnke BJ. Pulmonary hypertension impairs vasomotor function in rat diaphragm arterioles. Microvasc Res 2024; 154:104686. [PMID: 38614154 PMCID: PMC11198381 DOI: 10.1016/j.mvr.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Pulmonary hypertension (PH) is a chronic, progressive condition in which respiratory muscle dysfunction is a primary contributor to exercise intolerance and dyspnea in patients. Contractile function, blood flow distribution, and the hyperemic response are altered in the diaphragm with PH, and we sought to determine whether this may be attributed, in part, to impaired vasoreactivity of the resistance vasculature. We hypothesized that there would be blunted endothelium-dependent vasodilation and impaired myogenic responsiveness in arterioles from the diaphragm of PH rats. Female Sprague-Dawley rats were randomized into healthy control (HC, n = 9) and monocrotaline-induced PH rats (MCT, n = 9). Endothelium-dependent and -independent vasodilation and myogenic responses were assessed in first-order arterioles (1As) from the medial costal diaphragm in vitro. There was a significant reduction in endothelium-dependent (via acetylcholine; HC, 78 ± 15% vs. MCT, 47 ± 17%; P < 0.05) and -independent (via sodium nitroprusside; HC, 89 ± 10% vs. MCT, 66 ± 10%; P < 0.05) vasodilation in 1As from MCT rats. MCT-induced PH also diminished myogenic constriction (P < 0.05) but did not alter passive pressure responses. The diaphragmatic weakness, impaired hyperemia, and blood flow redistribution associated with PH may be due, in part, to diaphragm vascular dysfunction and thus compromised oxygen delivery which occurs through both endothelium-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America.
| | - Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, United States of America
| | - Zachary J White
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Stephanie E Hall
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Steven L Medarev
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, United States of America
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America
| |
Collapse
|
3
|
Zhang J, Tu R, Guan F, Feng J, Jia J, Zhou J, Wang X, Liu L. Irisin attenuates ventilator-induced diaphragmatic dysfunction by inhibiting endoplasmic reticulum stress through activation of AMPK. J Cell Mol Med 2024; 28:e18259. [PMID: 38676364 PMCID: PMC11053354 DOI: 10.1111/jcmm.18259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanical ventilation (MV) is an essential life-saving technique, but prolonged MV can cause significant diaphragmatic dysfunction due to atrophy and decreased contractility of the diaphragm fibres, called ventilator-induced diaphragmatic dysfunction (VIDD). It is not clear about the mechanism of occurrence and prevention measures of VIDD. Irisin is a newly discovered muscle factor that regulates energy metabolism. Studies have shown that irisin can exhibit protective effects by downregulating endoplasmic reticulum (ER) stress in a variety of diseases; whether irisin plays a protective role in VIDD has not been reported. Sprague-Dawley rats were mechanically ventilated to construct a VIDD model, and intervention was performed by intravenous administration of irisin. Diaphragm contractility, degree of atrophy, cross-sectional areas (CSAs), ER stress markers, AMPK protein expression, oxidative stress indicators and apoptotic cell levels were measured at the end of the experiment.Our findings showed that as the duration of ventilation increased, the more severe the VIDD was, the degree of ER stress increased, and the expression of irisin decreased.ER stress may be one of the causes of VIDD. Intervention with irisin ameliorated VIDD by reducing the degree of ER stress, attenuating oxidative stress, and decreasing the apoptotic index. MV decreases the expression of phosphorylated AMPK in the diaphragm, whereas the use of irisin increases the expression of phosphorylated AMPK. Irisin may exert its protective effect by activating the phosphorylated AMPK pathway.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Rui Tu
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Fasheng Guan
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Jun Zhou
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaobin Wang
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Li Liu
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
4
|
Horn AG, Behnke BJ, Poole DC. Comment on "Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health". J Appl Physiol (1985) 2022; 133:320-321. [PMID: 35926223 DOI: 10.1152/japplphysiol.00300.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
5
|
Trinity JD, Drummond MJ, Fermoyle C, McKenzie AI, Supiano MA, Richardson RS. Reply to Horn et al. J Appl Physiol (1985) 2022; 133:322. [PMID: 35926222 DOI: 10.1152/japplphysiol.00339.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Horn AG, Kunkel ON, Schulze KM, Baumfalk DR, Weber RE, Poole DC, Behnke BJ. Supplemental oxygen administration during mechanical ventilation reduces diaphragm blood flow and oxygen delivery. J Appl Physiol (1985) 2022; 132:1190-1200. [PMID: 35323060 PMCID: PMC9054262 DOI: 10.1152/japplphysiol.00021.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
During mechanical ventilation (MV), supplemental oxygen (O2) is commonly administered to critically ill patients to combat hypoxemia. Previous studies demonstrate that hyperoxia exacerbates MV-induced diaphragm oxidative stress and contractile dysfunction. Whereas normoxic MV (i.e., 21% O2) diminishes diaphragm perfusion and O2 delivery in the quiescent diaphragm, the effect of MV with 100% O2 is unknown. We tested the hypothesis that MV supplemented with hyperoxic gas (100% O2) would increase diaphragm vascular resistance and reduce diaphragmatic blood flow and O2 delivery to a greater extent than MV alone. Female Sprague-Dawley rats (4-6 mo) were randomly divided into two groups: 1) MV + 100% O2 followed by MV + 21% O2 (n = 9) or 2) MV + 21% O2 followed by MV + 100% O2 (n = 10). Diaphragmatic blood flow (mL/min/100 g) and vascular resistance were determined, via fluorescent microspheres, during spontaneous breathing (SB), MV + 100% O2, and MV + 21% O2. Compared with SB, total diaphragm vascular resistance was increased, and blood flow was decreased with both MV + 100% O2 and MV + 21% O2 (all P < 0.05). Medial costal diaphragmatic blood flow was lower with MV + 100% O2 (26 ± 6 mL/min/100 g) versus MV + 21% O2 (51 ± 15 mL/min/100 g; P < 0.05). Second, the addition of 100% O2 during normoxic MV exacerbated the MV-induced reductions in medial costal diaphragm perfusion (23 ± 7 vs. 51 ± 15 mL/min/100 g; P < 0.05) and O2 delivery (3.4 ± 0.2 vs. 6.4 ± 0.3 mL O2/min/100 g; P < 0.05). These data demonstrate that administration of supplemental 100% O2 during MV increases diaphragm vascular resistance and diminishes perfusion and O2 delivery to a significantly greater degree than normoxic MV. This suggests that prolonged bouts of MV (i.e., 6 h) with hyperoxia may accelerate MV-induced vascular dysfunction in the quiescent diaphragm and potentially exacerbate downstream contractile dysfunction.NEW & NOTEWORTHY This is the first study, to our knowledge, demonstrating that supplemental oxygen (i.e., 100% O2) during mechanical ventilation (MV) augments the MV-induced reductions in diaphragmatic blood flow and O2 delivery. The accelerated reduction in diaphragmatic blood flow with hyperoxic MV would be expected to potentiate MV-induced diaphragm vascular dysfunction and consequently, downstream contractile dysfunction. The data presented herein provide a putative mechanism for the exacerbated oxidative stress and diaphragm dysfunction reported with prolonged hyperoxic MV.
Collapse
Affiliation(s)
- Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Olivia N Kunkel
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Dryden R Baumfalk
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
- Johnson Cancer Research Center, Kansas State University, Manhattan, Kansas
| |
Collapse
|