1
|
Perez E, Baker JR, Di Giandomenico S, Kermani P, Parker J, Kim K, Yang J, Barnes PJ, Vaulont S, Scandura JM, Donnelly LE, Stout-Delgado H, Cloonan SM. Hepcidin Is Essential for Alveolar Macrophage Function and Is Disrupted by Smoke in a Murine Chronic Obstructive Pulmonary Disease Model. THE JOURNAL OF IMMUNOLOGY 2020; 205:2489-2498. [PMID: 32958690 DOI: 10.4049/jimmunol.1901284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease associated with cigarette smoking. Alterations in local lung and systemic iron regulation are associated with disease progression and pathogenesis. Hepcidin, an iron regulatory peptide hormone, is altered in subjects with COPD; however, the molecular role of hepcidin in COPD pathogenesis remains to be determined. In this study, using a murine model of smoke-induced COPD, we demonstrate that lung and circulating hepcidin levels are inhibited by cigarette smoke. We show that cigarette smoke exposure increases erythropoietin and bone marrow-derived erythroferrone and leads to expanded but inefficient erythropoiesis in murine bone marrow and an increase in ferroportin on alveolar macrophages (AMs). AMs from smokers and subjects with COPD display increased expression of ferroportin as well as hepcidin. Notably, murine AMs exposed to smoke fail to increase hepcidin in response to Gram-negative or Gram-positive infection. Loss of hepcidin in vivo results in blunted functional responses of AMs and exaggerated responses to Streptococcus pneumoniae infection.
Collapse
Affiliation(s)
- Elizabeth Perez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jonathan R Baker
- Airway Disease Section, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London SW3 6NP, United Kingdom
| | - Silvana Di Giandomenico
- Division of Hematology and Oncology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Pouneh Kermani
- Division of Hematology and Oncology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jacqueline Parker
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jianjun Yang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London SW3 6NP, United Kingdom
| | - Sophie Vaulont
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, 75014 Paris, France.,Laboratory of Excellence GR-Ex, 75015 Paris, France; and
| | - Joseph M Scandura
- Division of Hematology and Oncology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065
| | - Louise E Donnelly
- Airway Disease Section, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London SW3 6NP, United Kingdom
| | - Heather Stout-Delgado
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065; .,School of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin D24 NR04, Ireland
| |
Collapse
|
2
|
Nasal Delivery of a Commensal Pasteurellaceae Species Inhibits Nontypeable Haemophilus influenzae Colonization and Delays Onset of Otitis Media in Mice. Infect Immun 2020; 88:IAI.00685-19. [PMID: 31964748 PMCID: PMC7093147 DOI: 10.1128/iai.00685-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
Nasopharyngeal colonization with nontypeable Haemophilus influenzae (NTHi) is a prerequisite for developing NTHi-associated infections, including otitis media. Therapies that block NTHi colonization may prevent disease development. We previously demonstrated that Haemophilus haemolyticus, a closely related human commensal, can inhibit NTHi colonization and infection of human respiratory epithelium in vitro. We have now assessed whether Muribacter muris (a rodent commensal from the same family) can prevent NTHi colonization and disease in vivo using a murine NTHi otitis media model. Nasopharyngeal colonization with nontypeable Haemophilus influenzae (NTHi) is a prerequisite for developing NTHi-associated infections, including otitis media. Therapies that block NTHi colonization may prevent disease development. We previously demonstrated that Haemophilus haemolyticus, a closely related human commensal, can inhibit NTHi colonization and infection of human respiratory epithelium in vitro. We have now assessed whether Muribacter muris (a rodent commensal from the same family) can prevent NTHi colonization and disease in vivo using a murine NTHi otitis media model. Otitis media was modeled in BALB/c mice using coinfection with 1 × 104.5 PFU of influenza A virus MEM H3N2, followed by intranasal challenge with 5 × 107 CFU of NTHi R2866 Specr. Mice were pretreated or not with an intranasal inoculation of 5 × 107 CFU M. muris 24 h before coinfection. NTHi and M. muris viable counts and inflammatory mediators (gamma interferon [IFN-γ], interleukin-1β [IL-1β], IL-6, keratinocyte chemoattractant [KC], and IL-10) were measured in nasal washes and middle ear tissue homogenate. M. muris pretreatment decreased the median colonization density of NTHi from 6 × 105 CFU/ml to 9 × 103 CFU/ml (P = 0.0004). Only 1/12 M. muris-pretreated mice developed otitis media on day 5 compared to 8/15 mice with no pretreatment (8% versus 53%, P = 0.0192). Inflammation, clinical score, and weight loss were also lower in M. muris-pretreated mice. We have demonstrated that a single dose of a closely related commensal can delay onset of NTHi otitis media in vivo. Human challenge studies investigating prevention of NTHi colonization are warranted to reduce the global burden of otitis media and other NTHi diseases.
Collapse
|
3
|
Proteome of a Moraxella catarrhalis Strain under Iron-Restricted Conditions. Microbiol Resour Announc 2020; 9:9/12/e00064-20. [PMID: 32193234 PMCID: PMC7082453 DOI: 10.1128/mra.00064-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Moraxella catarrhalis is a leading cause of otitis media and exacerbations of chronic obstructive pulmonary disease; however, its response to iron starvation during infection is not completely understood. Here, we announce a sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) data set describing the differential expression of the M. catarrhalis CCRI-195ME proteome under iron-restricted versus iron-replete conditions. Moraxella catarrhalis is a leading cause of otitis media and exacerbations of chronic obstructive pulmonary disease; however, its response to iron starvation during infection is not completely understood. Here, we announce a sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) data set describing the differential expression of the M. catarrhalis CCRI-195ME proteome under iron-restricted versus iron-replete conditions.
Collapse
|
4
|
Serum IgM and C-Reactive Protein Binding to Phosphorylcholine of Nontypeable Haemophilus influenzae Increases Complement-Mediated Killing. Infect Immun 2019; 87:IAI.00299-19. [PMID: 31109949 DOI: 10.1128/iai.00299-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) colonizes the human upper respiratory tract without causing disease symptoms, but it is also a major cause of upper and lower respiratory tract infections in children and elderly, respectively. NTHi synthesizes various molecules to decorate its lipooligosaccharide (LOS), which modulates the level of virulence. The presence of phosphorylcholine (PCho) on NTHi LOS increases adhesion to epithelial cells, which is an advantage for the bacterium enabling nasopharyngeal colonization. However, when PCho is incorporated on the LOS of NTHi, it is recognized by the acute-phase C-reactive protein (CRP) and PCho-specific antibodies, both potent initiators of the classical pathway of complement activation. We determined the presence of PCho and binding of IgG and IgM to the bacterial surface for 319 NTHi strains collected from the nasopharynx/oropharynx, middle ear, and lower respiratory tract. PCho detection was higher for NTHi strains collected from the nasopharynx/oropharynx, which was associated with increased binding of IgM and IgG to the bacterial surface. Binding of CRP and IgM to the bacterial surface of PChohigh NTHi strains increased complement-mediated killing, which was largely dependent on PCho-specific IgM. The levels of PCho-specific IgM varied in sera from 12 healthy individuals, and higher PCho-specific IgM levels were associated with increased complement-mediated killing of a PChohigh NTHi strain. In conclusion, incorporation of PCho on the LOS of NTHi marks the bacterium for binding of CRP and IgM, resulting in complement-mediated killing. Therefore, having a lower PCho might be beneficial in situations where sufficient PCho-specific antibodies and complement are present.
Collapse
|
5
|
Uptake of Sialic Acid by Nontypeable Haemophilus influenzae Increases Complement Resistance through Decreasing IgM-Dependent Complement Activation. Infect Immun 2019; 87:IAI.00077-19. [PMID: 30936154 DOI: 10.1128/iai.00077-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/21/2019] [Indexed: 01/15/2023] Open
Abstract
Although nontypeable Haemophilus influenzae (NTHi) is a human-specific nasopharyngeal commensal bacterium, it also causes upper respiratory tract infections in children and lower respiratory tract infections in the elderly, resulting in frequent antibiotic use. The transition from symbiotic colonizing bacterium to opportunistic pathogen is not completely understood. Incorporation of sialic acids into lipooligosaccharides is thought to play an important role in bacterial virulence. It has been known for more than 25 years that sialic acids increase resistance to complement-mediated killing; however, the mechanism of action has not been elucidated thus far. Here, we provide evidence that growth of NTHi in the presence of sialic acids Neu5Ac and Neu5Gc decreases complement-mediated killing through abrogating the classical pathway of complement activation by preventing mainly IgM antibody binding to the bacterial surface. Therefore, strategies that interfere with uptake or incorporation of sialic acids into the lipooligosaccharide, such as novel antibiotics and vaccines, might be worth exploring to prevent or treat NTHi infections.
Collapse
|
6
|
Heise T, Langereis JD, Rossing E, de Jonge MI, Adema GJ, Büll C, Boltje TJ. Selective Inhibition of Sialic Acid-Based Molecular Mimicry in Haemophilus influenzae Abrogates Serum Resistance. Cell Chem Biol 2018; 25:1279-1285.e8. [PMID: 29983272 DOI: 10.1016/j.chembiol.2018.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023]
Abstract
Pathogens such as non-typeable Haemophilus influenzae (NTHi) evade the immune system by presenting host-derived sialic acids. NTHi cannot synthesize sialic acids and therefore needs to utilize sialic acids originating from host tissue. Here we report sialic acid-based probes to visualize and inhibit the transfer of host sialic acids to NTHi. Inhibition of sialic acid utilization by NTHi enhanced serum-mediated killing. Furthermore, in an in vitro model of the human respiratory tract, we demonstrate efficient inhibition of sialic acid transfer from primary human bronchial epithelial cells to NTHi using bioorthogonal chemistry.
Collapse
Affiliation(s)
- Torben Heise
- Cluster of Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Jeroen D Langereis
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, the Netherlands; Radboud Centre for Infectious Diseases, Radboudumc, Nijmegen 6525 GA, the Netherlands.
| | - Emiel Rossing
- Cluster of Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, the Netherlands; Radboud Centre for Infectious Diseases, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Thomas J Boltje
- Cluster of Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, the Netherlands.
| |
Collapse
|
7
|
Barenkamp SJ, Chonmaitree T, Hakansson AP, Heikkinen T, King S, Nokso-Koivisto J, Novotny LA, Patel JA, Pettigrew M, Swords WE. Panel 4: Report of the Microbiology Panel. Otolaryngol Head Neck Surg 2017; 156:S51-S62. [PMID: 28372529 PMCID: PMC5490388 DOI: 10.1177/0194599816639028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Objective To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.
Collapse
Affiliation(s)
- Stephen J. Barenkamp
- Department of Pediatrics, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Tasnee Chonmaitree
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Samantha King
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Johanna Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura A. Novotny
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Janak A. Patel
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Melinda Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - W. Edward Swords
- Department of Microbiology and Immunology, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
Redder P, Hausmann S, Khemici V, Yasrebi H, Linder P. Bacterial versatility requires DEAD-box RNA helicases. FEMS Microbiol Rev 2015; 39:392-412. [PMID: 25907111 DOI: 10.1093/femsre/fuv011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
RNA helicases of the DEAD-box and DEAH-box families are important players in many processes involving RNA molecules. These proteins can modify RNA secondary structures or intermolecular RNA interactions and modulate RNA-protein complexes. In bacteria, they are known to be involved in ribosome biogenesis, RNA turnover and translation initiation. They thereby play an important role in the adaptation of bacteria to changing environments and to respond to stress conditions.
Collapse
Affiliation(s)
- Peter Redder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Vanessa Khemici
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Haleh Yasrebi
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| |
Collapse
|
9
|
Mobegi FM, van Hijum SAFT, Burghout P, Bootsma HJ, de Vries SPW, van der Gaast-de Jongh CE, Simonetti E, Langereis JD, Hermans PWM, de Jonge MI, Zomer A. From microbial gene essentiality to novel antimicrobial drug targets. BMC Genomics 2014; 15:958. [PMID: 25373505 PMCID: PMC4233050 DOI: 10.1186/1471-2164-15-958] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/23/2014] [Indexed: 01/12/2023] Open
Abstract
Background Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials. Result Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept. Conclusion Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-958) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Sacha A F T van Hijum
- Radboud Institute for Molecular Life Sciences, Laboratory of Paediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen 6500 HB, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Langereis JD, de Jonge MI, Weiser JN. Binding of human factor H to outer membrane protein P5 of non-typeable Haemophilus influenzae contributes to complement resistance. Mol Microbiol 2014; 94:89-106. [PMID: 25091181 DOI: 10.1111/mmi.12741] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Abstract
Non-typeable Haemophilus influenzae is an opportunistic pathogen of the human upper respiratory tract and is often found to cause inflammatory diseases that include sinusitis, otitis media and exacerbations of chronic obstructive pulmonary disease. To persist in the inflammatory milieu during infection, non-typeable H. influenzae must resist the antimicrobial activity of the human complement system. Here, we used Tn-seq to identify genes important for resistance to complement-mediated killing. This screen identified outer membrane protein P5 in evasion of the alternative pathway of complement activation. Outer membrane protein P5 was shown to bind human complement regulatory protein factor H directly, thereby, preventing complement factor C3 deposition on the surface of the bacterium. Furthermore, we show that amino acid variation within surface-exposed regions within outer membrane P5 affected the level of factor H binding between individual strains.
Collapse
Affiliation(s)
- Jeroen D Langereis
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
11
|
Shielding of a lipooligosaccharide IgM epitope allows evasion of neutrophil-mediated killing of an invasive strain of nontypeable Haemophilus influenzae. mBio 2014; 5:e01478-14. [PMID: 25053788 PMCID: PMC4120200 DOI: 10.1128/mbio.01478-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nontypeable Haemophilus influenzae is a frequent cause of noninvasive mucosal inflammatory diseases but may also cause invasive diseases, such as sepsis and meningitis, especially in children and the elderly. Infection by nontypeable Haemophilus influenzae is characterized by recruitment of neutrophilic granulocytes. Despite the presence of a large number of neutrophils, infections with nontypeable Haemophilus influenzae are often not cleared effectively by the antimicrobial activity of these immune cells. Herein, we examined how nontypeable Haemophilus influenzae evades neutrophil-mediated killing. Transposon sequencing (Tn-seq) was used on an isolate resistant to neutrophil-mediated killing to identify genes required for its survival in the presence of human neutrophils and serum, which provided a source of complement and antibodies. Results show that nontypeable Haemophilus influenzae prevents complement-dependent neutrophil-mediated killing by expression of surface galactose-containing oligosaccharide structures. These outer-core structures block recognition of an inner-core lipooligosaccharide epitope containing glucose attached to heptose HepIII-β1,2-Glc by replacement with galactose attached to HepIII or through shielding HepIII-β1,2-Glc by phase-variable attachment of oligosaccharide chain extensions. When the HepIII-β1,2-Glc-containing epitope is expressed and exposed, nontypeable Haemophilus influenzae is opsonized by naturally acquired IgM generally present in human serum and subsequently phagocytosed and killed by human neutrophils. Clinical nontypeable Haemophilus influenzae isolates containing galactose attached to HepIII that are not recognized by this IgM are more often found to cause invasive infections. Neutrophils are white blood cells that specialize in killing pathogens and are recruited to sites of inflammation. However, despite the presence of large numbers of neutrophils in the middle ear cavity and lungs of patients with otitis media or chronic obstructive pulmonary disease, respectively, the bacterium nontypeable Haemophilus influenzae is often not effectively cleared from these locations by these immune cells. In order to understand how nontypeable Haemophilus influenzae is able to cause inflammatory diseases in the presence of neutrophils, we determined the mechanism that underlies resistance to neutrophil-mediated killing. We have shown that nontypeable Haemophilus influenzae prevents binding of antibodies of the IgM subtype through changes in their surface lipooligosaccharide structure, thereby preventing complement activation and clearance by human neutrophils.
Collapse
|
12
|
-Biao Guo F, Lin Y, -Ling Chen L. Recognition of Protein-coding Genes Based on Z-curve Algorithms. Curr Genomics 2014; 15:95-103. [PMID: 24822027 PMCID: PMC4009845 DOI: 10.2174/1389202915999140328162724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 01/18/2023] Open
Abstract
Recognition of protein-coding genes, a classical bioinformatics issue, is an absolutely needed step for annotating newly sequenced genomes. The Z-curve algorithm, as one of the most effective methods on this issue, has been successfully applied in annotating or re-annotating many genomes, including those of bacteria, archaea and viruses. Two Z-curve based ab initio gene-finding programs have been developed: ZCURVE (for bacteria and archaea) and ZCURVE_V (for viruses and phages). ZCURVE_C (for 57 bacteria) and Zfisher (for any bacterium) are web servers for re-annotation of bacterial and archaeal genomes. The above four tools can be used for genome annotation or re-annotation, either independently or combined with the other gene-finding programs. In addition to recognizing protein-coding genes and exons, Z-curve algorithms are also effective in recognizing promoters and translation start sites. Here, we summarize the applications of Z-curve algorithms in gene finding and genome annotation.
Collapse
Affiliation(s)
- Feng -Biao Guo
- Center of Bioinformatics and Key Laboratory for NeuroInformation of the Ministry of Education, University of Elec-tronic Science and Technology of China, Chengdu, 610054, China
| | - Yan Lin
- Department of Physics, Tianjin University, Tianjin 300072, China
| | - Ling -Ling Chen
- cCollege of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
de Vries SPW, Rademakers RJA, van der Gaast-de Jongh CE, Eleveld MJ, Hermans PWM, Bootsma HJ. Deciphering the genetic basis ofMoraxella catarrhaliscomplement resistance: a critical role for the disulphide bond formation system. Mol Microbiol 2013; 91:522-37. [DOI: 10.1111/mmi.12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Stefan P. W. de Vries
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Rob J. A. Rademakers
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | | | - Marc J. Eleveld
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Hester J. Bootsma
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
14
|
de Vries SPW, Eleveld MJ, Hermans PWM, Bootsma HJ. Characterization of the molecular interplay between Moraxella catarrhalis and human respiratory tract epithelial cells. PLoS One 2013; 8:e72193. [PMID: 23936538 PMCID: PMC3735583 DOI: 10.1371/journal.pone.0072193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
Abstract
Moraxella catarrhalis is a mucosal pathogen that causes childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. During the course of infection, M. catarrhalis needs to adhere to epithelial cells of different host niches such as the nasopharynx and lungs, and consequently, efficient adhesion to epithelial cells is considered an important virulence trait of M. catarrhalis. By using Tn-seq, a genome-wide negative selection screenings technology, we identified 15 genes potentially required for adherence of M. catarrhalis BBH18 to pharyngeal epithelial Detroit 562 and lung epithelial A549 cells. Validation with directed deletion mutants confirmed the importance of aroA (3-phosphoshikimate 1-carboxyvinyl-transferase), ecnAB (entericidin EcnAB), lgt1 (glucosyltransferase), and MCR_1483 (outer membrane lipoprotein) for cellular adherence, with ΔMCR_1483 being most severely attenuated in adherence to both cell lines. Expression profiling of M. catarrhalis BBH18 during adherence to Detroit 562 cells showed increased expression of 34 genes in cell-attached versus planktonic bacteria, among which ABC transporters for molybdate and sulfate, while reduced expression of 16 genes was observed. Notably, neither the newly identified genes affecting adhesion nor known adhesion genes were differentially expressed during adhesion, but appeared to be constitutively expressed at a high level. Profiling of the transcriptional response of Detroit 562 cells upon adherence of M. catarrhalis BBH18 showed induction of a panel of pro-inflammatory genes as well as genes involved in the prevention of damage of the epithelial barrier. In conclusion, this study provides new insight into the molecular interplay between M. catarrhalis and host epithelial cells during the process of adherence.
Collapse
Affiliation(s)
- Stefan P. W. de Vries
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marc J. Eleveld
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hester J. Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
15
|
Vries S, Bootsma H. Analysis of Moraxella catarrhalis Outer Membrane Protein Profiles. Bio Protoc 2013. [DOI: 10.21769/bioprotoc.957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
16
|
Vries S, Bootsma H. Adhesion of Moraxella catarrhalis to Respiratory Tract Epithelial Cells. Bio Protoc 2013. [DOI: 10.21769/bioprotoc.956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|