1
|
Ding JL, Li L, Wei K, Zhang H, Keyhani NO, Feng MG, Ying SH. Alcohol dehydrogenase 1 acts as a scaffold protein in mitophagy essential for fungal pathogen adaptation to hypoxic niches within hosts. Int J Biol Macromol 2025; 295:139651. [PMID: 39793830 DOI: 10.1016/j.ijbiomac.2025.139651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Fungi have evolved diverse physiological adaptations to hypoxic environments. However, the mechanisms mediating such adaptations remain obscure for many filamentous pathogenic fungi. Here, we show that autophagy mediated mitophagy occurs in the insect pathogenic fungus Beauveria bassiana under hypoxic conditions induced by host cellular immune responses. Mitophagy was essential for fungal evasion from insect hemocyte encapsulation, allowing for fungal proliferation and colonization in the host hemocoel. Our data showed that B. bassiana autophagy-related protein 11 (Atg11) interacts with Atg8 as a scaffold mediating mitophagy. The mitochondrial protein Atg43 was demonstrated to act as a receptor for the selective mitophagy, directly interacting with Atg8 for the autophagosomal targeting. Alcohol dehydrogenase BbAdh1, as a novel scaffold protein, participates in mitophagy through interacting with Atg8 and Atg11 under hypoxic stress. BbAdh1 was critical for fungal intracellular redox homeostasis and energy metabolism under hypoxic conditions. These data provide a pathway for mitochondrial degradation via metabolism linked autophagosome- to-vacuole targeting during hypoxic stress. This mitophagy results in depletion of oxidative mitochondrial dependent functions as a cellular adaptation to the low oxygen levels.
Collapse
Affiliation(s)
- Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Puerner C, Vellanki S, Strauch JL, Cramer RA. Recent Advances in Understanding the Human Fungal Pathogen Hypoxia Response in Disease Progression. Annu Rev Microbiol 2023; 77:403-425. [PMID: 37713457 PMCID: PMC11034785 DOI: 10.1146/annurev-micro-032521-021745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.
Collapse
Affiliation(s)
- Charles Puerner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Sandeep Vellanki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Julianne L Strauch
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
- Department of Biology, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| |
Collapse
|
3
|
Ayada H, Dhioui B, Mazouz H, El Harrak A, Jaiti F, Ouhmidou B, Diouri M, Moumni M. In silico comparative genomic analysis unravels a new candidate protein arsenal specifically associated with Fusarium oxysporum f. sp. albedinis pathogenesis. Sci Rep 2022; 12:19098. [PMID: 36351932 PMCID: PMC9646873 DOI: 10.1038/s41598-022-21858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fusarium oxysporum f. sp albedinis (Foa) is a devastating fungus of date palms. To unravel the genetic characteristics associated with its pathogenesis, the two available genomes of Foa 133 and Foa 9 were compared with 49 genomes of 29 other pathogenic formae speciales belonging to Fusarium oxysporum species complex (FOSC). Foa 133 and Foa 9 have genomes of 56.23 Mb and 65.56 Mb with 17460 and 19514 putative coding genes. Of these genes, 30% lack functional annotation with no similarity to characterized proteins. The remaining genes were involved in pathways essential to the fungi's life and their adaptation. Foa secretome analysis revealed that both Foa strains possess an expanded number of secreted effectors (3003 in Foa 133 and 2418 in Foa 9). Those include effectors encoded by Foa unique genes that are involved in Foa penetration (Egh16-like family), host defense mechanisms suppression (lysM family) and pathogen protection (cysteine-rich protein family). The accessory protein SIX6, which induces plant cell death, was also predicted in Foa. Further analysis of secreted CAZymes revealed an arsenal of enzymes involved in plant cell wall degradation. This arsenal includes an exclusively Foa-specific CAZyme (GH5-7). Transcription factors and membrane transporters (MFS) involved in fungicide efflux have been predicted in Foa, in addition to a variety of secondary metabolites. These comprise mycotoxins as well as chrysogin, the latter provides Foa with resistance against adverse environmental conditions. Our results revealed new Foa proteins that could be targeted in future research in order to manage Bayoud disease.
Collapse
Affiliation(s)
- Hafida Ayada
- Biotechnology and Bioresources Valorization Laboratory, Biology Department, Faculty of Sciences, Moulay Ismail University of Meknès, Meknès, Morocco.
| | - Boutayna Dhioui
- Biotechnology and Bioresources Valorization Laboratory, Biology Department, Faculty of Sciences, Moulay Ismail University of Meknès, Meknès, Morocco
| | - Hamid Mazouz
- Biotechnology and Bioresources Valorization Laboratory, Biology Department, Faculty of Sciences, Moulay Ismail University of Meknès, Meknès, Morocco
| | - Abdelhay El Harrak
- Biotechnology and Bioresources Valorization Laboratory, Biology Department, Faculty of Sciences, Moulay Ismail University of Meknès, Meknès, Morocco
| | - Fatima Jaiti
- Biodiversity, Environment and Plant Protection Team, Faculty of Sciences and Technologies, Moulay Ismail University of Meknès, Meknès, Morocco
| | - Bouchra Ouhmidou
- Microbial biotechnology and bioactive molecules laboratory, Faculty of Sciences and Technologies, Sidi Mohammed Ben Abdellah University of Fez, Fez, Morocco
| | - Mohammed Diouri
- Biotechnology and Bioresources Valorization Laboratory, Biology Department, Faculty of Sciences, Moulay Ismail University of Meknès, Meknès, Morocco
| | - Mohieddine Moumni
- Biotechnology and Bioresources Valorization Laboratory, Biology Department, Faculty of Sciences, Moulay Ismail University of Meknès, Meknès, Morocco.
| |
Collapse
|
4
|
Kerkaert JD, Le Mauff F, Wucher BR, Beattie SR, Vesely EM, Sheppard DC, Nadell CD, Cramer RA. An Alanine Aminotransferase Is Required for Biofilm-Specific Resistance of Aspergillus fumigatus to Echinocandin Treatment. mBio 2022; 13:e0293321. [PMID: 35254131 PMCID: PMC9040767 DOI: 10.1128/mbio.02933-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Alanine metabolism has been suggested as an adaptation strategy to oxygen limitation in organisms ranging from plants to mammals. Within the pulmonary infection microenvironment, Aspergillus fumigatus forms biofilms with steep oxygen gradients defined by regions of oxygen limitation. An alanine aminotransferase, AlaA, was observed to function in alanine catabolism and is required for several aspects of A. fumigatus biofilm physiology. Loss of alaA, or its catalytic activity, results in decreased adherence of biofilms through a defect in the maturation of the extracellular matrix polysaccharide galactosaminogalactan (GAG). Additionally, exposure of cell wall polysaccharides is also impacted by loss of alaA, and loss of AlaA catalytic activity confers increased biofilm susceptibility to echinocandin treatment, which is correlated with enhanced fungicidal activity. The increase in echinocandin susceptibility is specific to biofilms, and chemical inhibition of alaA by the alanine aminotransferase inhibitor β-chloro-l-alanine is sufficient to sensitize A. fumigatus biofilms to echinocandin treatment. Finally, loss of alaA increases susceptibility of A. fumigatus to in vivo echinocandin treatment in a murine model of invasive pulmonary aspergillosis. Our results provide insight into the interplay of metabolism, biofilm formation, and antifungal drug resistance in A. fumigatus and describe a mechanism of increasing susceptibility of A. fumigatus biofilms to the echinocandin class of antifungal drugs. IMPORTANCE Aspergillus fumigatus is a ubiquitous filamentous fungus that causes an array of diseases depending on the immune status of an individual, collectively termed aspergillosis. Antifungal therapy for invasive pulmonary aspergillosis (IPA) or chronic pulmonary aspergillosis (CPA) is limited and too often ineffective. This is in part due to A. fumigatus biofilm formation within the infection environment and the resulting emergent properties, particularly increased antifungal resistance. Thus, insights into biofilm formation and mechanisms driving increased antifungal drug resistance are critical for improving existing therapeutic strategies and development of novel antifungals. In this work, we describe an unexpected observation where alanine metabolism, via the alanine aminotransferase AlaA, is required for several aspects of A. fumigatus biofilm physiology, including resistance of A. fumigatus biofilms to the echinocandin class of antifungal drugs. Importantly, we observed that chemical inhibition of alanine aminotransferases is sufficient to increase echinocandin susceptibility and that loss of alaA increases susceptibility to echinocandin treatment in a murine model of IPA. AlaA is the first gene discovered in A. fumigatus that confers resistance to an antifungal drug specifically in a biofilm context.
Collapse
Affiliation(s)
- Joshua D. Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Benjamin R. Wucher
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Exploration and characterization of hypoxia-inducible endogenous promoters in Aspergillus niger. Appl Microbiol Biotechnol 2021; 105:5529-5539. [PMID: 34254155 DOI: 10.1007/s00253-021-11417-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
Aspergillus niger is widely used for the efficient production of organic acids and enzyme preparations. However, this organism lacks basic genetic elements for dynamic control, especially inducible promoters that can respond to specific environmental signals. Since these are desirable for better adaptation of fermentation to large-scale industrial production, herein, we have identified the two first hypoxia-inducible promoters in A. niger, PsrbB and PfhbA. Their performance under high or low oxygen conditions was monitored using two reporter proteins, green fluorescent protein (EGFP) and β-glucuronidase (GUS). For comparison, basal expression of the general strong promoter PgpdA was lower than PsrbB but higher than PfhbA. However, under hypoxia, both promoters showed higher expression than under hyperoxia, and these values were also higher than those observed for PgpdA. For PsrbB, strength under hypoxia was ~2-3 times higher than under hyperoxia (for PfhbA, 3-9 times higher) and ~2.5-5 times higher than for PgpdA (for PfhbA, 2-3 times higher). Promoter truncation analysis showed that the PsrbB fragment -1024 to -588 bp is the core region that determines hypoxia response. KEY POINTS: The first identification of two hypoxia-inducible promoters in A. niger is a promising tool for modulation of target genes under hypoxia. Two reporter genes revealed a different activity and responsiveness to hypoxia of PfhbA and PsrbB promoters, which is relevant for the development of dynamic metabolic regulation of A. niger fermentation. PsrbB promoter truncation and bioinformatics analysis is the foundation for further research.
Collapse
|
6
|
Warner EF, Bohálová N, Brázda V, Waller ZAE, Bidula S. Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets? Microb Genom 2021; 7:000570. [PMID: 33956596 PMCID: PMC8209732 DOI: 10.1099/mgen.0.000570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/26/2022] Open
Abstract
Fungal infections cause >1 million deaths annually and the emergence of antifungal resistance has prompted the exploration for novel antifungal targets. Quadruplexes are four-stranded nucleic acid secondary structures, which can regulate processes such as transcription, translation, replication and recombination. They are also found in genes linked to virulence in microbes, and ligands that bind to quadruplexes can eliminate drug-resistant pathogens. Using a computational approach, we quantified putative quadruplex-forming sequences (PQS) in 1359 genomes across the fungal kingdom and explored their presence in genes related to virulence, drug resistance and biological processes associated with pathogenicity in Aspergillus fumigatus. Here we present the largest analysis of PQS in fungi and identify significant heterogeneity of these sequences throughout phyla, genera and species. PQS were genetically conserved in Aspergillus spp. and frequently pathogenic species appeared to contain fewer PQS than their lesser/non-pathogenic counterparts. GO-term analysis identified that PQS-containing genes were involved in processes linked with virulence such as zinc ion binding, the biosynthesis of secondary metabolites and regulation of transcription in A. fumigatus. Although the genome frequency of PQS was lower in A. fumigatus, PQS could be found enriched in genes involved in virulence, and genes upregulated during germination and hypoxia. Moreover, PQS were found in genes involved in drug resistance. Quadruplexes could have important roles within fungal biology and virulence, but their roles require further elucidation.
Collapse
Affiliation(s)
- Emily F. Warner
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Present address: Ikarovec Limited, Norwich Research Park Innovation Centre, Norwich, UK
| | - Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | | | - Stefan Bidula
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
7
|
Oliveira LN, Lima PDS, Araújo DS, Portis IG, Santos Júnior ADCMD, Coelho ASG, de Sousa MV, Ricart CAO, Fontes W, Soares CMDA. iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia. Microbiol Res 2021; 247:126730. [PMID: 33662850 DOI: 10.1016/j.micres.2021.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | | | | | - Marcelo Valle de Sousa
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Carlos André Ornelas Ricart
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Wagner Fontes
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
8
|
Nojosa Oliveira L, Aguiar Gonçales R, Garcia Silva M, Melo Lima R, Vieira Tomazett M, Santana de Curcio J, Domiraci Paccez J, Milhomem Cruz-Leite VR, Rodrigues F, de Sousa Lima P, Pereira M, de Almeida Soares CM. Characterization of a heme-protein responsive to hypoxia in Paracoccidioides brasiliensis. Fungal Genet Biol 2020; 144:103446. [PMID: 32822859 DOI: 10.1016/j.fgb.2020.103446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023]
Abstract
Oxygen is fundamental to the life of aerobic organisms and is not always available to Paracoccidioides cells. During the life cycle stages, reduced oxygen levels directly affect general metabolic processes and oxygen adaptation mechanisms may play a fundamental role on fungal ability to survive under such condition. Heme proteins can bind to oxygen and participate in important biological processes. Several fungi, including Paracoccidioides, express a heme-binding globin (fungoglobin - FglA) presumable to regulate fungal adaptation to hypoxia. However, the characterization of fungoglobin in Paracoccidioides spp. has not yet been performed. In this study, we predicted the structure of fungoglobin and determined its level of expression during hypoxic-mimetic conditions. Genomic screening revealed that the fungoglobin gene is conserved in all species of the Paracoccidioides genus. Molecular modeling showed biochemical and biophysical characteristics that support the hypothesis that FglA binds to the heme group and oxygen as well. The fungoglobin transcript and proteins are expressed at higher levels at the early treatment time, remaining elevated while oxygen is limited. A P. brasiliensis fglA knockdown strain depicted reduced growth in hypoxia indicating that this protein can be essential for growth at low oxygen. Biochemical analysis confirmed the binding of fungoglobin to heme. Initial analyzes were carried out to establish the relationship between FlglA and iron metabolism. The FglA transcript was up regulated in pulmonary infection, suggesting its potential role in the disease establishment. We believe that this study can contribute to the understanding of fungal biology and open new perspectives for scientific investigations.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marielle Garcia Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Raisa Melo Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Mariana Vieira Tomazett
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana Santana de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Vanessa Rafaela Milhomem Cruz-Leite
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
9
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
10
|
Shekhova E, Ivanova L, Krüger T, Stroe MC, Macheleidt J, Kniemeyer O, Brakhage AA. Redox Proteomic Analysis Reveals Oxidative Modifications of Proteins by Increased Levels of Intracellular Reactive Oxygen Species during Hypoxia Adaptation of Aspergillus fumigatus. Proteomics 2019; 19:e1800339. [PMID: 30632700 DOI: 10.1002/pmic.201800339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Indexed: 12/28/2022]
Abstract
Aspergillus fumigatus faces abrupt changes in oxygen concentrations at the site of infection. An increasing number of studies has demonstrated that elevated production of intracellular reactive oxygen species (ROS) under low oxygen conditions plays a regulatory role in modulating cellular responses for adaptation to hypoxia. To learn more about this process in A. fumigatus, intracellular ROS production during hypoxia has been determined. The results confirm increased amounts of intracellular ROS in A. fumigatus exposed to decreased oxygen levels. Moreover, nuclear accumulation of the major oxidative stress regulator AfYap1 is observed after low oxygen cultivation. For further analysis, iodoTMT labeling of redox-sensitive cysteine residues is applied to identify proteins that are reversibly oxidized. This analysis reveals that proteins with important roles in maintaining redox balance and protein folding, such as the thioredoxin Asp f 29 and the disulfide-isomerase PdiA, undergo substantial thiol modification under hypoxia. The data also show that the mitochondrial respiratory complex IV assembly protein Coa6 is significantly oxidized by hypoxic ROS. Deletion of the corresponding gene results in a complete absence of hypoxic growth, indicating the importance of complex IV during adaptation of A. fumigatus to oxygen-limiting conditions.
Collapse
Affiliation(s)
- Elena Shekhova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Lia Ivanova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Maria C Stroe
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
11
|
Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. J Ind Microbiol Biotechnol 2016; 44:647-658. [PMID: 27800562 DOI: 10.1007/s10295-016-1851-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Microaerobic growth is of importance in ecological niches, pathogenic infections and industrial production of chemicals. The use of low levels of oxygen enables the cell to gain energy and grow more robustly in the presence of a carbon source that can be oxidized and provide electrons to the respiratory chain in the membrane. A considerable amount of information is available on the genes and proteins involved in respiratory growth and the regulation of genes involved in aerobic and anaerobic metabolism. The dependence of regulation on sensing systems that respond to reduced quinones (e.g. ArcB) or oxygen levels that affect labile redox components of transcription regulators (Fnr) are key in understanding the regulation. Manipulation of the amount of respiration can be difficult to control in dense cultures or inadequately mixed reactors leading to inhomogeneous cultures that may have lower than optimal performance. Efforts to control respiration through genetic means have been reported and address mutations affecting components of the electron transport chain. In a recent report completion for intermediates of the ubiquinone biosynthetic pathway was used to dial the level of respiration vs lactate formation in an aerobically grown E. coli culture.
Collapse
|
12
|
The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus. Sci Rep 2016; 6:33396. [PMID: 27624005 PMCID: PMC5022050 DOI: 10.1038/srep33396] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3's peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target.
Collapse
|
13
|
Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence. Infect Immun 2016; 84:1866-1878. [PMID: 27068092 DOI: 10.1128/iai.00011-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022] Open
Abstract
Aspergillus fumigatus is the most common pathogenic mold infecting humans and a significant cause of morbidity and mortality in immunocompromised patients. In invasive pulmonary aspergillosis, A. fumigatus spores are inhaled into the lungs, undergoing germination and invasive hyphal growth. The fungus occludes and disrupts the blood vessels, leading to hypoxia and eventual tissue necrosis. The ability of this mold to adapt to hypoxia is regulated in part by the sterol regulatory element binding protein (SREBP) SrbA and the DscA to DscD Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage. Loss of the genes encoding these proteins results in avirulence. To identify novel regulators of hypoxia sensing, we screened the Neurospora crassa gene deletion library under hypoxia and identified a novel rhomboid family protease essential for hypoxic growth. Deletion of the A. fumigatus rhomboid homolog rbdA resulted in an inability to grow under hypoxia, hypersensitivity to CoCl2, nikkomycin Z, fluconazole, and ferrozine, abnormal swollen tip morphology, and transcriptional dysregulation-accurately phenocopying deletion of srbA. In vivo, rbdA deletion resulted in increased sensitivity to phagocytic killing, a reduced inflammatory Th1 and Th17 response, and strongly attenuated virulence. Phenotypic rescue of the ΔrbdA mutant was achieved by expression and nuclear localization of the N terminus of SrbA, including its HLH domain, further indicating that RbdA and SrbA act in the same signaling pathway. In summary, we have identified RbdA, a novel putative rhomboid family protease in A. fumigatus that mediates hypoxia adaptation and fungal virulence and that is likely linked to SrbA cleavage and activation.
Collapse
|
14
|
Kroll K, Shekhova E, Mattern DJ, Thywissen A, Jacobsen ID, Strassburger M, Heinekamp T, Shelest E, Brakhage AA, Kniemeyer O. The hypoxia-induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence ofAspergillus fumigatus. Mol Microbiol 2016; 101:92-108. [DOI: 10.1111/mmi.13377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Kristin Kroll
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Elena Shekhova
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Andreas Thywissen
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, and Friedrich Schiller University Jena; Jena Germany
| | - Maria Strassburger
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (HKI); Jena Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Department of Microbiology and Molecular Biology; Institute of Microbiology, Friedrich Schiller University; Jena Germany
| | - Ekaterina Shelest
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, and Friedrich Schiller University Jena; Jena Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Department of Microbiology and Molecular Biology; Institute of Microbiology, Friedrich Schiller University; Jena Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Department of Microbiology and Molecular Biology; Institute of Microbiology, Friedrich Schiller University; Jena Germany
| |
Collapse
|
15
|
Torres-Martínez S, Ruiz-Vázquez RM. RNAi pathways in Mucor: A tale of proteins, small RNAs and functional diversity. Fungal Genet Biol 2016; 90:44-52. [DOI: 10.1016/j.fgb.2015.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/30/2022]
|
16
|
Insights into the cellular responses to hypoxia in filamentous fungi. Curr Genet 2015; 61:441-55. [PMID: 25911540 DOI: 10.1007/s00294-015-0487-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 01/06/2023]
Abstract
Most eukaryotes require molecular oxygen for growth. In general, oxygen is the terminal electron acceptor of the respiratory chain and represents an important substrate for the biosynthesis of cellular compounds. However, in their natural environment, such as soil, and also during the infection, filamentous fungi are confronted with low levels of atmospheric oxygen. Transcriptome and proteome studies on the hypoxic response of filamentous fungi revealed significant alteration of the gene expression and protein synthesis upon hypoxia. These analyses discovered not only common but also species-specific responses to hypoxia with regard to NAD(+) regeneration systems and other metabolic pathways. A surprising outcome was that the induction of oxidative and nitrosative stress defenses during oxygen limitation represents a general trait of adaptation to hypoxia in many fungi. The interplay of these different stress responses is poorly understood, but recent studies have shown that adaptation to hypoxia contributes to virulence of pathogenic fungi. In this review, results on metabolic changes of filamentous fungi during adaptation to hypoxia are summarized and discussed.
Collapse
|
17
|
Trieu TA, Calo S, Nicolás FE, Vila A, Moxon S, Dalmay T, Torres-Martínez S, Garre V, Ruiz-Vázquez RM. A non-canonical RNA silencing pathway promotes mRNA degradation in basal Fungi. PLoS Genet 2015; 11:e1005168. [PMID: 25875805 PMCID: PMC4395119 DOI: 10.1371/journal.pgen.1005168] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/20/2015] [Indexed: 12/04/2022] Open
Abstract
The increasing knowledge on the functional relevance of endogenous small RNAs (esRNAs) as riboregulators has stimulated the identification and characterization of these molecules in numerous eukaryotes. In the basal fungus Mucor circinelloides, an emerging opportunistic human pathogen, esRNAs that regulate the expression of many protein coding genes have been described. These esRNAs share common machinery for their biogenesis consisting of an RNase III endonuclease Dicer, a single Argonaute protein and two RNA-dependent RNA polymerases. We show in this study that, besides participating in this canonical dicer-dependent RNA interference (RNAi) pathway, the rdrp genes are involved in a novel dicer-independent degradation process of endogenous mRNAs. The analysis of esRNAs accumulated in wild type and silencing mutants demonstrates that this new rdrp-dependent dicer-independent regulatory pathway, which does not produce sRNA molecules of discrete sizes, controls the expression of target genes promoting the specific degradation of mRNAs by a previously unknown RNase. This pathway mainly regulates conserved genes involved in metabolism and cellular processes and signaling, such as those required for heme biosynthesis, and controls responses to specific environmental signals. Searching the Mucor genome for candidate RNases to participate in this pathway, and functional analysis of the corresponding knockout mutants, identified a new protein, R3B2. This RNase III-like protein presents unique domain architecture, it is specifically found in basal fungi and, besides its relevant role in the rdrp-dependent dicer-independent pathway, it is also involved in the canonical dicer-dependent RNAi pathway, highlighting its crucial role in the biogenesis and function of regulatory esRNAs. The involvement of RdRPs in RNA degradation could represent the first evolutionary step towards the development of an RNAi mechanism and constitutes a genetic link between mRNA degradation and post-transcriptional gene silencing. Most eukaryotic organisms produce different classes of endogenous small RNA (esRNA) molecules that suppress gene expression through RNA interference (RNAi) pathways. These pathways, which may differ among organisms, are normally involved in genome defense, heterochromatin formation and regulation of genes involved in multiple cellular functions. In the basal fungus Mucor circinelloides, an opportunistic human pathogen, we previously demonstrated that biogenesis of a large group of esRNA molecules requires a basic RNAi machinery consisting of a Dicer-like protein, an Argonaute nuclease and two RNA-dependent RNA polymerases. This canonical dicer-dependent pathway regulates different cellular processes, such as vegetative sporulation. Besides those esRNAs generated by this canonical RNAi pathway, we have identified a new rdrp-dependent dicer-independent esRNA class. These esRNAs are produced by a degradation pathway in which the RdRP proteins signal specific transcripts that will be degraded by a newly identified RNase. This RNase, named R3B2, presents unique domain architecture, can only be found in basal fungi and it is also involved in the canonical dicer-dependent RNAi pathway. Our results expand the role of RdRPs in gene silencing and reveal the involvement of these proteins in a new RNA degradation process that could represent the first step in the evolution of RNAi.
Collapse
Affiliation(s)
- Trung Anh Trieu
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Silvia Calo
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | | | - Ana Vila
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Simon Moxon
- The Genome Analysis Centre, University of East Anglia, Norwich, United Kingdom
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - Victoriano Garre
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Rosa M. Ruiz-Vázquez
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
18
|
Ruiz-Vázquez RM, Nicolás FE, Torres-Martínez S, Garre V. Distinct RNAi Pathways in the Regulation of Physiology and Development in the Fungus Mucor circinelloides. ADVANCES IN GENETICS 2015; 91:55-102. [DOI: 10.1016/bs.adgen.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Genetic engineering activates biosynthesis of aromatic fumaric acid amides in the human pathogen Aspergillus fumigatus. Appl Environ Microbiol 2014; 81:1594-600. [PMID: 25527545 DOI: 10.1128/aem.03268-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Aspergillus fumigatus nonribosomal peptide synthetase FtpA is among the few of this species whose natural product has remained unknown. Both FtpA adenylation domains were characterized in vitro. Fumaric acid was identified as preferred substrate of the first and both l-tyrosine and l-phenylalanine as preferred substrates of the second adenylation domain. Genetically engineered A. fumigatus strains expressed either ftpA or the regulator gene ftpR, encoded in the same cluster of genes, under the control of the doxycycline-inducible tetracycline-induced transcriptional activation (tet-on) cassette. These strains produced fumaryl-l-tyrosine and fumaryl-l-phenylalanine which were identified by liquid chromatography and high-resolution mass spectrometry. Modeling of the first adenylation domain in silico provided insight into the structural requirements to bind fumaric acid as peptide synthetase substrate. This work adds aromatic fumaric acid amides to the secondary metabolome of the important human pathogen A. fumigatus which was previously not known as a producer of these compounds.
Collapse
|