1
|
Ren W, Qian C, Ren D, Cai Y, Deng Z, Zhang N, Wang C, Wang Y, Zhu P, Xu L. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea. mBio 2024; 15:e0013324. [PMID: 38814088 PMCID: PMC11253612 DOI: 10.1128/mbio.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Botrytis cinerea is a typical necrotrophic plant pathogenic fungus which can deliberately acidify host tissues and trigger oxidative bursts therein to facilitate its virulence. The white collar complex (WCC), consisting of BcWCL1 and BcWCL2, is recognized as the primary light receptor in B. cinerea. Nevertheless, the specific mechanisms through which the WCC components, particularly BcWCL2 as a GATA transcription factor, control virulence are not yet fully understood. This study demonstrates that deletion of BcWCL2 results in the loss of light-sensitive phenotypic characteristics. Additionally, the Δbcwcl2 strain exhibits reduced secretion of citrate, delayed infection cushion development, weaker hyphal penetration, and decreased virulence. The application of exogenous citric acid was found to restore infection cushion formation, hyphal penetration, and virulence of the Δbcwcl2 strain. Transcriptome analysis at 48 h post-inoculation revealed that two citrate synthases, putative citrate transporters, hydrolytic enzymes, and reactive oxygen species scavenging-related genes were down-regulated in Δbcwcl2, whereas exogenous citric acid application restored the expression of the above genes involved in the early infection process of Δbcwcl2. Moreover, the expression of Bcvel1, a known regulator of citrate secretion, tissue acidification, and secondary metabolism, was down-regulated in Δbcwcl2 but not in Δbcwcl1. ChIP-qPCR and electrophoretic mobility shift assays revealed that BcWCL2 can bind to the promoter sequences of Bcvel1. Overexpressing Bcvel1 in Δbcwcl2 was found to rescue the mutant defects. Collectively, our findings indicate that BcWCL2 regulates the expression of the global regulator Bcvel1 to influence citrate secretion, tissue acidification, redox homeostasis, and virulence of B. cinerea.IMPORTANCEThis study illustrated the significance of the fungal blue light receptor component BcWCL2 protein in regulating citrate secretion in Botrytis cinerea. Unlike BcWCL1, BcWCL2 may contribute to redox homeostasis maintenance during infection cushion formation, ultimately proving to be essential for full virulence. It is also demonstrated that BcWCL2 can regulate the expression of Bcvel1 to influence host tissue acidification, citrate secretion, infection cushion development, and virulence. While the role of organic acids secreted by plant pathogenic fungi in fungus-host interactions has been recognized, this paper revealed the importance, regulatory mechanisms, and key transcription factors that control organic acid secretion. These understanding of the pathogenetic mechanism of plant pathogens can provide valuable insights for developing effective prevention and treatment strategies against fungal diseases.
Collapse
Affiliation(s)
- Weiheng Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chen Qian
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunfei Cai
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhaohui Deng
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ning Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Zhang J, Chen Y, Wang S, Liu Y, Li L, Gao M. Role of histone H3K4 methyltransferase in regulating Monascus pigments production by red light-coupled magnetic field. Photochem Photobiol 2024; 100:75-86. [PMID: 37032633 DOI: 10.1111/php.13809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023]
Abstract
Light, magnetic field, and methylation affected the growth and secondary metabolism of fungi. The regulation effect of the three factors on the growth and Monascus pigments (MPs) synthesis of Monascus purpureus was investigated in this study. 5-azacytidine (5-AzaC), DNA methylation inhibitor, was used to treat M. purpureus (wild-type, WT). Twenty micromolar 5-AzaC significantly promoted the growth, development, and MPs yield. Moreover, 250 lux red light and red light coupled magnetic field (RLCMF) significantly promoted the biomass. For WT, red light, and RLCMF significantly promoted MPs yield. But compared with red light treatment, only 0.2 mT RLCMF promoted the alcohol-soluble MPs yield. For histone H3K4 methyltransferase complex subunit Ash2 gene knockout strain (ΔAsh2), only 0.2 mT RLCMF significantly promoted water-soluble MPs yield. Yet red light, 1.0 and 0.2 mT RLCMF significantly promoted alcohol-soluble MPs yield. This indicated that methylation affected the MPs biosynthesis. Red light and weaker MF had a synergistic effect on the growth and MPs synthesis of ΔAsh2. This result was further confirmed by the expression of related genes. Therefore, histone H3K4 methyltransferase was involved in the regulation of the growth, development, and MPs synthesis of M. purpureus by the RLCMF.
Collapse
Affiliation(s)
- Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yufeng Chen
- College of Life Science, Yangtze University, Jingzhou, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, China
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, China
| |
Collapse
|
3
|
Yu W, Pei R, Zhang Y, Tu Y, He B. Light regulation of secondary metabolism in fungi. J Biol Eng 2023; 17:57. [PMID: 37653453 PMCID: PMC10472637 DOI: 10.1186/s13036-023-00374-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Fungi have evolved unique metabolic regulation mechanisms for adapting to the changing environments. One of the key features of fungal adaptation is the production of secondary metabolites (SMs), which are essential for survival and beneficial to the organism. Many of these SMs are produced in response to the environmental cues, such as light. In all fungal species studied, the Velvet complex transcription factor VeA is a central player of the light regulatory network. In addition to growth and development, the intensity and wavelength of light affects the formation of a broad range of secondary metabolites. Recent studies, mainly on species of the genus Aspergillus, revealed that the dimer of VeA-VelB and LaeA does not only regulate gene expression in response to light, but can also be involved in regulating production of SMs. Furthermore, the complexes have a wide regulatory effect on different types of secondary metabolites. In this review, we discussed the role of light in the regulation of fungal secondary metabolism. In addition, we reviewed the photoreceptors, transcription factors, and signaling pathways that are involved in light-dependent regulation of secondary metabolism. The effects of transcription factors on the production of secondary metabolites, as well as the potential applications of light regulation for the production of pharmaceuticals and other products were discussed. Finally, we provided an overview of the current research in this field and suggested potential areas for future research.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
4
|
Bayram ÖS, Bayram Ö. An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms. J Fungi (Basel) 2023; 9:jof9050591. [PMID: 37233302 DOI: 10.3390/jof9050591] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
5
|
Polyphasic Characterization of Four Aspergillus Species as Potential Biocontrol Agents for White Mold Disease of Bean. J Fungi (Basel) 2022; 8:jof8060626. [PMID: 35736109 PMCID: PMC9224856 DOI: 10.3390/jof8060626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Aspergillus comprises several species that play pivotal roles in agriculture. Herein, we morphologically and physiologically characterized four genetically distinct Aspergillus spp., namely A. japonicus, A. niger, A. flavus, and A. pseudoelegans, and examined their ability to suppress the white mold disease of bean caused by Sclerotinia sclerotiorum in vitro and under greenhouse conditions. Seriation type of Aspergillus spp. correlates with conidiospores discharge as detected on the Petri glass lid. Members of Nigri section cover their conidial heads with hard shells after prolonged incubation. In addition, sporulation of the tested Aspergillus isolates is temperature sensitive as it becomes inhibited at low temperatures and the colonies become white. Examined Aspergillus spp. were neither infectious to legumes nor aflatoxigenic as confirmed by HPLC except for A. flavus and A. pseudoelegans which, secreted 5 and 1 ppm of aflatoxin B1, respectively. Co-inoculations of Sclerotinia’s mycelium or sclerotia with a spore suspension of Aspergillus spp. inhibited their germination on PDA at 18 °C and 28 °C, and halted disease onset on detached common bean and soybean leaves. Similarly, plants treated with A. japonicus and A. niger showed the highest survival rates compared to untreated plants. In conclusion, black Aspergillus spp. are efficient biocides and safe alternatives for the management of plant diseases, particularly in organic farms.
Collapse
|
6
|
Rockwell NC, Moreno MV, Martin SS, Lagarias JC. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochem Photobiol Sci 2022; 21:471-491. [PMID: 35411484 PMCID: PMC9609751 DOI: 10.1007/s43630-022-00213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Fungal morphology: a challenge in bioprocess engineering industries for product development. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Yu Z, Streng C, Seibeld RF, Igbalajobi OA, Leister K, Ingelfinger J, Fischer R. Genome-wide analyses of light-regulated genes in Aspergillus nidulans reveal a complex interplay between different photoreceptors and novel photoreceptor functions. PLoS Genet 2021; 17:e1009845. [PMID: 34679095 PMCID: PMC8535378 DOI: 10.1371/journal.pgen.1009845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Fungi sense light of different wavelengths using blue-, green-, and red-light photoreceptors. Blue light sensing requires the “white-collar” proteins with flavin as chromophore, and red light is sensed through phytochrome. Here we analyzed genome-wide gene expression changes caused by short-term, low-light intensity illumination with blue-, red- or far-red light in Aspergillus nidulans and found that more than 1100 genes were differentially regulated. The largest number of up- and downregulated genes depended on the phytochrome FphA and the attached HOG pathway. FphA and the white-collar orthologue LreA fulfill activating but also repressing functions under all light conditions and both appear to have roles in the dark. Additionally, we found about 100 genes, which are red-light induced in the absence of phytochrome, suggesting alternative red-light sensing systems. We also found blue-light induced genes in the absence of the blue-light receptor LreA. We present evidence that cryptochrome may be part of this regulatory cue, but that phytochrome is essential for the response. In addition to in vivo data showing that FphA is involved in blue-light sensing, we performed spectroscopy of purified phytochrome and show that it responds indeed to blue light. Fungi are microorganisms with important roles in the environment, as symbionts, as pathogens, or as workhorses in biotechnology. They constantly need to adapt to changing environmental conditions, often far away from their optima. One important environmental factor, fungi respond to is ambient light. The presence of light tells them if they are exposed to a surface and thus potentially to heat, harmful irradiation, or desiccation or other stressful conditions, or whether they are growing inside soil or litter with more constant conditions. Interestingly, many fungi harbor photosensors for blue-, green- and red light. We show here that in the model fungus Aspergillus nidulans a large proportion of the genome is under light control, and many genes are regulated through phytochrome and thus by red light. However, phytochrome is also used for blue-light sensing. Many genes are controlled by blue- and by red light signaling systems, but many also respond only to specific wavelengths. The study provides important groundwork for future research to unravel how different genes are regulated at the molecular level and to decipher the biological meaning for the complex light-regulatory systems found in fungi.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
- Nanjing Agricultural University, Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
- * E-mail: (ZY); (RF)
| | - Christian Streng
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Ramon F. Seibeld
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Olumuyiwa A. Igbalajobi
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Kai Leister
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Julian Ingelfinger
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
- * E-mail: (ZY); (RF)
| |
Collapse
|
9
|
Li Y, Sun T, Guo D, Gao J, Zhang J, Cai F, Fischer R, Shen Q, Yu Z. Comprehensive analysis of the regulatory network of blue-light-regulated conidiation and hydrophobin production in Trichoderma guizhouense. Environ Microbiol 2021; 23:6241-6256. [PMID: 34472181 DOI: 10.1111/1462-2920.15748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/27/2022]
Abstract
Conidia of Trichoderma guizhouense (Hypocreales, Ascomycota) are frequently applied to the production of biofertilizers and biocontrol agents. Conidiation of some Trichoderma species depends on blue light and the action of different blue light receptors. However, the interplay between different blue-light receptors in light signalling remained elusive. Here, we studied the functions of the blue light receptors BLR1 and ENV1, and the MAP kinase HOG1 in blue light signalling in T. guizhouense. We found that the BLR1 dominates light responses and ENV1 is responsible for photoadaptation. Genome-wide gene expression analyses revealed that 1615 genes, accounting for ~13.4% of the genes annotated in the genome, are blue-light regulated in T. guizhouense, and remarkably, these differentially expressed genes (DEGs) including 61 transcription factors. BLR1 and HOG1 are the core components of the light signalling network, which control 79.9% and 73.9% of the DEGs respectively. In addition, the strict regulation of hydrophobin production by the blue light signalling network is impressive. Our study unravels the regulatory network based on the blue light receptors and the MAPK HOG pathway for conidiation, hydrophobin production and other processes in T. guizhouense.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Sun
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Degang Guo
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Gao
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Jian Zhang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cai
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Qirong Shen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenzhong Yu
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Streng C, Hartmann J, Leister K, Krauß N, Lamparter T, Frankenberg-Dinkel N, Weth F, Bastmeyer M, Yu Z, Fischer R. Fungal phytochrome chromophore biosynthesis at mitochondria. EMBO J 2021; 40:e108083. [PMID: 34254350 PMCID: PMC8447599 DOI: 10.15252/embj.2021108083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome‐dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme‐derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C‐terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000‐fold higher than the affinity of the holoprotein, suggesting a “kiss‐and‐go” mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.
Collapse
Affiliation(s)
- Christian Streng
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Jana Hartmann
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Kai Leister
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT) - South Campus, Botanical Institute, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT) - South Campus, Botanical Institute, Karlsruhe, Germany
| | | | - Franco Weth
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Karlsruhe, Germany
| | - Martin Bastmeyer
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Karlsruhe, Germany
| | - Zhenzhong Yu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
11
|
Brych A, Haas FB, Parzefall K, Panzer S, Schermuly J, Altmüller J, Engelsdorf T, Terpitz U, Rensing SA, Kiontke S, Batschauer A. Coregulation of gene expression by White collar 1 and phytochrome in Ustilago maydis. Fungal Genet Biol 2021; 152:103570. [PMID: 34004340 DOI: 10.1016/j.fgb.2021.103570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.
Collapse
Affiliation(s)
- Annika Brych
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Fabian B Haas
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Katharina Parzefall
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Jeanette Schermuly
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Timo Engelsdorf
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Stefan A Rensing
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Stephan Kiontke
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Alfred Batschauer
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany.
| |
Collapse
|
12
|
Yu Z, Gao J, Igbalajobi O, Skoneczny M, Sieńko M, Maciejewska AM, Brzywczy J, Fischer R. The sulfur metabolism regulator MetR is a global regulator controlling phytochrome-dependent light responses in Aspergillus nidulans. Sci Bull (Beijing) 2021; 66:592-602. [PMID: 36654429 DOI: 10.1016/j.scib.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 01/20/2023]
Abstract
Phytochrome-dependent light signaling has been studied in several fungi. In Aspergillus nidulans light-stimulated phytochrome activates the high-osmolarity glycerol (HOG) signaling pathway and thereby controls the expression of a large number of genes, many of which are related to stress responses. In a genome-wide expression analysis in A. nidulans we found that phytochrome, fphA, is under strict expression control of the central regulator of the sulfur-starvation response, MetR. This transcriptional regulator is required for the expression of genes involved in inorganic sulfur assimilation. In the presence of organic sulfur, MetR is probably ubiquitinated and possibly degraded and the transcription of sulfur-assimilation genes, e.g., sulfate permease, is turned off. The expression analysis described here revealed, however, that MetR additionally controls the expression of hundreds of genes, many of which are required for secondary metabolite production. We also show that metR mutation phenocopies fphA deletion, and five other histidine-hybrid kinases are down-regulated in the metR1 mutant. Furthermore, we found that light and phytochrome regulate the expression of at least three carbon-sulfur hydrolases. This work is a further step towards understanding the interplay between light sensing and metabolic pathways.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)-South Campus, Karlsruhe D-76131, Germany; Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jia Gao
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)-South Campus, Karlsruhe D-76131, Germany
| | - Olumuyiwa Igbalajobi
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)-South Campus, Karlsruhe D-76131, Germany; Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia VGT 1Z4, Canada
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02-106, Poland
| | - Marzena Sieńko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02-106, Poland
| | - Agnieszka M Maciejewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02-106, Poland
| | - Jerzy Brzywczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02-106, Poland
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)-South Campus, Karlsruhe D-76131, Germany.
| |
Collapse
|
13
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
14
|
Light Signaling Regulates Aspergillus niger Biofilm Formation by Affecting Melanin and Extracellular Polysaccharide Biosynthesis. mBio 2021; 12:mBio.03434-20. [PMID: 33593965 PMCID: PMC8545115 DOI: 10.1128/mbio.03434-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Light is an important signal source in nature, which regulates the physiological cycle, morphogenetic pathways, and secondary metabolites of fungi. As an external pressure on Aspergillus niger, light signaling transmits stress signals into the cell via the mitogen-activated protein kinase (MAPK) signaling pathway. Studying the effect of light on the biofilm of A. niger will provide a theoretical basis for light in the cultivation of filamentous fungi and industrial applications. Here, the characterization of A. niger biofilm under different light intensities confirmed the effects of light signaling. Our results indicated that A. niger intensely accumulated protective mycelial melanin under light illumination. We also discovered that the RlmA transcription factor in the MAPK signaling pathway is activated by light signaling to promote the synthesis of melanin, chitin, and other exopolysaccharides. However, the importance of melanin to A. niger biofilm is rarely reported; therefore, we knocked out key genes of the melanin biosynthetic pathway—Abr1 and Ayg1. Changes in hydrophobicity and electrostatic forces resulted in the decrease of biofilm caused by the decrease of melanin in mutants.
Collapse
|
15
|
Yu Z, Hübner J, Herrero S, Gourain V, Fischer R. On the role of the global regulator RlcA in red-light sensing in Aspergillus nidulans. Fungal Biol 2020; 124:447-457. [PMID: 32389307 DOI: 10.1016/j.funbio.2019.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 02/02/2023]
Abstract
A large proportion of fungal genomes are under the control of light. Most fungi employ complex light sensing systems, consisting of red-, blue-, and in some cases green-light photoreceptors. Here we studied the light response in Aspergillus nidulans. In a genetic screen, followed by whole-genome sequencing we identified a global regulator, which appears to be involved in chromatin structure modification. We therefore named the protein RlcA (regulator of light sensing and chromatin remodeling). The protein comprises a nuclear localization signal, a PHD (plant homeodomain) finger, a TFSII (found in the central region of the transcription elongation factor S-II), and a SPOC domain (Spen paralog and ortholog C-terminal domain). In the mutant, where light-controlled genes were constitutively active, the SPOC domain is missing. RlcA localized to the nucleus and interacted with the phytochrome FphA. The PHD-finger domain probably binds to trimethylated lysine 4 of histone H3, whereas the TFSII domain binds RNA polymerase II. The SPOC domain could mediate interaction with a global repressor protein. In the mutant, repressor recruitment would be hindered, whereas in the wild type repressor release would be induced after light stimulation. Our results add another layer of complexity to light sensing in filamentous fungi.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany; Nanjing Agricultural University, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, College of Resources and Environmental Sciences, 210095, Nanjing, China.
| | - Jennifer Hübner
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Satur Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Toxicology and GeneticsKarlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
16
|
Corrochano LM. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annu Rev Genet 2019; 53:149-170. [DOI: 10.1146/annurev-genet-120417-031415] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi see light of different colors by using photoreceptors such as the White Collar proteins and cryptochromes for blue light, opsins for green light, and phytochromes for red light. Light regulates fungal development, promotes the accumulation of protective pigments and proteins, and regulates tropic growth. The White Collar complex (WCC) is a photoreceptor and a transcription factor that is responsible for regulating transcription after exposure to blue light. In Neurospora crassa, light promotes the interaction of WCCs and their binding to the promoters to activate transcription. In Aspergillus nidulans, the WCC and the phytochrome interact to coordinate gene transcription and other responses, but the contribution of these photoreceptors to fungal photobiology varies across fungal species. Ultimately, the effect of light on fungal biology is the result of the coordinated transcriptional regulation and activation of signal transduction pathways.
Collapse
Affiliation(s)
- Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
17
|
Yu Z, Ali A, Igbalajobi OA, Streng C, Leister K, Krauß N, Lamparter T, Fischer R. Two hybrid histidine kinases, TcsB and the phytochrome FphA, are involved in temperature sensing in
Aspergillus nidulans. Mol Microbiol 2019; 112:1814-1830. [DOI: 10.1111/mmi.14395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Zhenzhong Yu
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
- Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing 210095China
| | - Arin Ali
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Olumuyiwa Ayokunle Igbalajobi
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Christian Streng
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Kai Leister
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Norbert Krauß
- Botanical Institute Karlsruhe Institute of Technology (KIT) ‐ South Campus Karlsruhe D‐76131Germany
| | - Tilman Lamparter
- Botanical Institute Karlsruhe Institute of Technology (KIT) ‐ South Campus Karlsruhe D‐76131Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| |
Collapse
|
18
|
Sánchez-Arreguin JA, Cabrera-Ponce JL, León-Ramírez CG, Camargo-Escalante MO, Ruiz-Herrera J. Analysis of the photoreceptors involved in the light-depending basidiocarp formation in Ustilago maydis. Arch Microbiol 2019; 202:93-103. [DOI: 10.1007/s00203-019-01725-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
|
19
|
Red- and Blue-Light Sensing in the Plant Pathogen Alternaria alternata Depends on Phytochrome and the White-Collar Protein LreA. mBio 2019; 10:mBio.00371-19. [PMID: 30967462 PMCID: PMC6456751 DOI: 10.1128/mbio.00371-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Light controls many processes in filamentous fungi. The study of light regulation in a number of model organisms revealed an unexpected complexity. Although the molecular components for light sensing appear to be widely conserved in fungal genomes, the regulatory circuits and the sensitivity of certain species toward specific wavelengths seem different. In N. crassa, most light responses are triggered by blue light, whereas in A. nidulans, red light plays a dominant role. In Alternaria alternata, both blue and red light appear to be important. In A. alternata, photoreceptors control morphogenetic pathways, the homeostasis of reactive oxygen species, and the production of secondary metabolites. On the other hand, high-osmolarity sensing required FphA and LreA, indicating a sophisticated cross talk between light and stress signaling. The filamentous fungus Alternaria alternata is a common postharvest contaminant of food and feed, and some strains are plant pathogens. Many processes in A. alternata are triggered by light. Interestingly, blue light inhibits sporulation, and red light reverses the effect, suggesting interactions between light-sensing systems. The genome encodes a phytochrome (FphA), a white collar 1 (WC-1) orthologue (LreA), an opsin (NopA), and a cryptochrome (CryA) as putative photoreceptors. Here, we investigated the role of FphA and LreA and the interplay with the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway. We created loss-of function mutations for fphA, lreA, and hogA using CRISPR-Cas9 technology. Sporulation was reduced in all three mutant strains already in the dark, suggesting functions of the photoreceptors FphA and LreA independent of light perception. Germination of conidia was delayed in red, blue, green, and far-red light. We found that light induction of ccgA (clock-controlled gene in Neurospora crassa and light-induced gene in Aspergillus nidulans) and the catalase gene catA depended on FphA, LreA, and HogA. Light induction of ferA (a putative ferrochelatase gene) and bliC (bli-3, light regulated, unknown function) required LreA and HogA but not FphA. Blue- and green-light stimulation of alternariol formation depended on LreA. A lack of FphA or LreA led to enhanced resistance toward oxidative stress due to the upregulation of catalases and superoxide dismutases. Light activation of FphA resulted in increased phosphorylation and nuclear accumulation of HogA. Our results show that germination, sporulation, and secondary metabolism are light regulated in A. alternata with distinct and overlapping roles of blue- and red-light photosensors.
Collapse
|
20
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
21
|
Schumacher DI, Lütkenhaus R, Altegoer F, Teichert I, Kück U, Nowrousian M. The transcription factor PRO44 and the histone chaperone ASF1 regulate distinct aspects of multicellular development in the filamentous fungus Sordaria macrospora. BMC Genet 2018; 19:112. [PMID: 30545291 PMCID: PMC6293562 DOI: 10.1186/s12863-018-0702-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background Fungal fruiting bodies are complex three-dimensional structures that are formed to protect and disperse the sexual spores. Their morphogenesis requires the concerted action of numerous genes; however, at the molecular level, the spatio-temporal sequence of events leading to the mature fruiting body is largely unknown. In previous studies, the transcription factor gene pro44 and the histone chaperone gene asf1 were shown to be essential for fruiting body formation in the ascomycete Sordaria macrospora. Both PRO44 and ASF1 are predicted to act on the regulation of gene expression in the nucleus, and mutants in both genes are blocked at the same stage of development. Thus, we hypothesized that PRO44 and ASF1 might be involved in similar aspects of transcriptional regulation. In this study, we characterized their roles in fruiting body development in more detail. Results The PRO44 protein forms homodimers, localizes to the nucleus, and is strongly expressed in the outer layers of the developing young fruiting body. Analysis of single and double mutants of asf1 and three other chromatin modifier genes, cac2, crc1, and rtt106, showed that only asf1 is essential for fruiting body formation whereas cac2 and rtt106 might have redundant functions in this process. RNA-seq analysis revealed distinct roles for asf1 and pro44 in sexual development, with asf1 acting as a suppressor of weakly expressed genes during morphogenesis. This is most likely not due to global mislocalization of nucleosomes as micrococcal nuclease-sequencing did not reveal differences in nucleosome spacing and positioning around transcriptional start sites between Δasf1 and the wild type. However, bisulfite sequencing revealed a decrease in DNA methylation in Δasf1, which might be a reason for the observed changes in gene expression. Transcriptome analysis of gene expression in young fruiting bodies showed that pro44 is required for correct expression of genes involved in extracellular metabolism. Deletion of the putative transcription factor gene asm2, which is downregulated in young fruiting bodies of Δpro44, results in defects during ascospore maturation. Conclusions In summary, the results indicate distinct roles for the transcription factor PRO44 and the histone chaperone ASF1 in the regulation of sexual development in fungi. Electronic supplementary material The online version of this article (10.1186/s12863-018-0702-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ramona Lütkenhaus
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Florian Altegoer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.,LOEWE-Zentrum für Synthetische Mikrobiologie & Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
22
|
|
23
|
Beattie GA, Hatfield BM, Dong H, McGrane RS. Seeing the Light: The Roles of Red- and Blue-Light Sensing in Plant Microbes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:41-66. [PMID: 29768135 DOI: 10.1146/annurev-phyto-080417-045931] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Bridget M Hatfield
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Haili Dong
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Regina S McGrane
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, USA
| |
Collapse
|
24
|
Nie X, Li B, Wang S. Epigenetic and Posttranslational Modifications in Regulating the Biology of Aspergillus Species. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:191-226. [PMID: 30342722 DOI: 10.1016/bs.aambs.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetic and posttranslational modifications have been proved to participate in multiple cellular processes and suggested to be an important regulatory mechanism on transcription of genes in eukaryotes. However, our knowledge about epigenetic and posttranslational modifications mainly comes from the studies of yeasts, plants, and animals. Recently, epigenetic and posttranslational modifications have also raised concern for the relevance of regulating fungal biology in Aspergillus. Emerging evidence indicates that these modifications could be a connection between genetic elements and environmental factors, and their combined effects may finally lead to fungal phenotypical changes. This article describes the advances in typical DNA and protein modifications in the genus Aspergillus, focusing on methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and neddylation.
Collapse
Affiliation(s)
- Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bowen Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Cai Q, Wang JJ, Fu B, Ying SH, Feng MG. Gcn5-dependent histone H3 acetylation and gene activity is required for the asexual development and virulence of Beauveria bassiana. Environ Microbiol 2018; 20:1484-1497. [PMID: 29417710 DOI: 10.1111/1462-2920.14066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Gcn5 is a core histone acetyltransferase that catalyzes histone H3 acetylation on N-terminal lysine residues in yeasts and was reported to catalyze H3K9/K14 acetylation required for activating asexual development in Aspergillus. Here, we report a localization of Gcn5 ortholog in the nucleus and cytoplasm of Beauveria bassiana, a fungal insect pathogen. Deletion of gcn5 led to hypoacetylated H3 at K9/14/18/27 and 97% reduction in conidiation capacity as well as severe defects in colony growth and conidial thermotolerance. Two master conidiation genes, namely brlA and abaA, were transcriptionally repressed to undetectable level in Δgcn5, but sharply upregulated in wild-type, at the beginning time of conidiation. Based on chromatin immunoprecipitation, both DNA and acetylation levels of the distal and proximal fragments of the brlA promoter bound by acetylated H3K14 alone were upregulated in wild-type, but not in Δgcn5, at the mentioned time. In Δgcn5, normal cuticle infection was abolished while virulence through cuticle-bypassing infection was greatly attenuated, accompanied by drastically reduced activities of putative cuticle-degrading enzymes, retarded dimorphic transition and transcriptional repression of associated genes. These findings unveil a novel mechanism by which Gcn5 activates asexual development pathway by acetylating H3K14 and regulates the virulence-related cellular events in B. bassiana.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Juan-Juan Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.,School of Biological Science and Biotechnology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Bo Fu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| |
Collapse
|
26
|
Fuller KK, Dunlap JC, Loros JJ. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Appl Microbiol Biotechnol 2018; 102:3849-3863. [PMID: 29569180 DOI: 10.1007/s00253-018-8887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA.
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA. .,Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
27
|
Liversage J, Coetzee MP, Bluhm BH, Berger DK, Crampton BG. LOVe across kingdoms: Blue light perception vital for growth and development in plant–fungal interactions. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Light-Irradiation Wavelength and Intensity Changes Influence Aflatoxin Synthesis in Fungi. Toxins (Basel) 2018; 10:toxins10010031. [PMID: 29304012 PMCID: PMC5793118 DOI: 10.3390/toxins10010031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 01/10/2023] Open
Abstract
Fungi respond to light irradiation by forming conidia and occasionally synthesizing mycotoxins. Several light wavelengths, such as blue and red, affect the latter. However, the relationship between light irradiation and mycotoxin synthesis varies depending on the fungal species or strain. This study focused on aflatoxin (AF), which is a mycotoxin, and the types of light irradiation that increase AF synthesis. Light-irradiation tests using the visible region indicated that blue wavelengths in the lower 500 nm region promoted AF synthesis. In contrast, red wavelengths of 660 nm resulted in limited significant changes compared with dark conditions. Irradiation tests with different intensity levels indicated that a low light intensity increased AF synthesis. For one fungal strain, light irradiation decreased the AF synthesis under all wavelength conditions. However, the decrease was mitigated by 525 nm low intensity irradiation. Thus, blue-green low intensity irradiation may increase AF synthesis in fungi.
Collapse
|
29
|
|
30
|
Röhrig J, Yu Z, Chae KS, Kim JH, Han KH, Fischer R. TheAspergillus nidulansVelvet-interacting protein, VipA, is involved in light-stimulated heme biosynthesis. Mol Microbiol 2017; 105:825-838. [DOI: 10.1111/mmi.13739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Julian Röhrig
- Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus; Fritz-Haber-Weg 4 Karlsruhe D-76131 Germany
| | - Zhenzhong Yu
- Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus; Fritz-Haber-Weg 4 Karlsruhe D-76131 Germany
| | - Keon-Sang Chae
- Department of Molecular Biology; Chonbuk National University; Jeonju South Korea
| | - Jong-Hwa Kim
- Department of Pharmaceutical Engineering; Woosuk University; Wanju Jeonbuk 565-701 South Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering; Woosuk University; Wanju Jeonbuk 565-701 South Korea
| | - Reinhard Fischer
- Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus; Fritz-Haber-Weg 4 Karlsruhe D-76131 Germany
| |
Collapse
|
31
|
Lv Y. Proteome-wide profiling of protein lysine acetylation in Aspergillus flavus. PLoS One 2017; 12:e0178603. [PMID: 28582408 PMCID: PMC5459447 DOI: 10.1371/journal.pone.0178603] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/16/2017] [Indexed: 01/18/2023] Open
Abstract
Protein lysine acetylation is a prevalent post-translational modification that plays pivotal roles in various biological processes in both prokaryotes and eukaryotes. Aspergillus flavus, as an aflatoxin-producing fungus, has attracted tremendous attention due to its health impact on agricultural commodities. Here, we performed the first lysine-acetylome mapping in this filamentous fungus using immune-affinity-based purification integrated with high-resolution mass spectrometry. Overall, we identified 1383 lysine-acetylation sites in 652 acetylated proteins, which account for 5.18% of the total proteins in A. flavus. According to bioinformatics analysis, the acetylated proteins are involved in various cellular processes involving the ribosome, carbon metabolism, antibiotic biosynthesis, secondary metabolites, and the citrate cycle and are distributed in diverse subcellular locations. Additionally, we demonstrated for the first time the acetylation of fatty acid synthase α and β encoded by aflA and aflB involved in the aflatoxin-biosynthesis pathway (cluster 54), as well as backbone enzymes from secondary metabolite clusters 20 and 21 encoded by AFLA_062860 and AFLA_064240, suggesting important roles for acetylation associated with these processes. Our findings illustrating abundant lysine acetylation in A. flavus expand our understanding of the fungal acetylome and provided insight into the regulatory roles of acetylation in secondary metabolism.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- * E-mail:
| |
Collapse
|
32
|
Abstract
ABSTRACT
Life, as we know it, would not be possible without light. Light is not only a primary source of energy, but also an important source of information for many organisms. To sense light, only a few photoreceptor systems have developed during evolution. They are all based on an organic molecule with conjugated double bonds that allows energy transfer from visible (or UV) light to its cognate protein to translate the primary physical photoresponse to cell-biological actions. The three main classes of receptors are flavin-based blue-light, retinal-based green-light (such as rhodopsin), and linear tetrapyrrole-based red-light sensors. Light not only controls the behavior of motile organisms, but is also important for many sessile microorganisms including fungi. In fungi, light controls developmental decisions and physiological adaptations as well as the circadian clock. Although all major classes of photoreceptors are found in fungi, a good level of understanding of the signaling processes at the molecular level is limited to some model fungi. However, current knowledge suggests a complex interplay between light perception systems, which goes far beyond the simple sensing of light and dark. In this article we focus on recent results in several fungi, which suggest a strong link between light-sensing and stress-activated mitogen-activated protein kinases.
Collapse
|
33
|
Fuller KK, Cramer RA, Zegans ME, Dunlap JC, Loros JJ. Aspergillus fumigatus Photobiology Illuminates the Marked Heterogeneity between Isolates. mBio 2016; 7:e01517-16. [PMID: 27651362 PMCID: PMC5030361 DOI: 10.1128/mbio.01517-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED The given strain of Aspergillus fumigatus under study varies across laboratories, ranging from a few widely used "standards," e.g., Af293 or CEA10, to locally acquired isolates that may be unique to one investigator. Since experiments concerning physiology or gene function are seldom replicated by others, i.e., in a different A. fumigatus background, the extent to which behavioral heterogeneity exists within the species is poorly understood. As a proxy for assessing such intraspecies variability, we analyzed the light response of 15 A. fumigatus isolates and observed striking quantitative and qualitative heterogeneity among them. The majority of the isolates fell into one of two seemingly mutually exclusive groups: (i) "photopigmenters" that robustly accumulate hyphal melanin in the light and (ii) "photoconidiators" that induce sporulation in the light. These two distinct responses were both governed by the same upstream blue light receptor, LreA, indicating that a specific protein's contribution can vary in a strain-dependent manner. Indeed, while LreA played no apparent role in regulating cell wall homeostasis in strain Af293, it was essential in that regard in strain CEA10. The manifest heterogeneity in the photoresponses led us to compare the virulence levels of selected isolates in a murine model; remarkably, the virulence did vary greatly, although not in a manner that correlated with their overt light response. Taken together, these data highlight the extent to which isolates of A. fumigatus can vary, with respect to both broad physiological characteristics (e.g., virulence and photoresponse) and specific protein functionality (e.g., LreA-dependent phenotypes). IMPORTANCE The current picture of Aspergillus fumigatus biology is akin to a collage, patched together from data obtained from disparate "wild-type" strains. In a systematic assessment of 15 A. fumigatus isolates, we show that the species is highly heterogeneous with respect to its light response and virulence. Whereas some isolates accumulate pigments in light as previously reported with strain Af293, most induce sporulation which had not been previously observed. Other photoresponsive behaviors are also nonuniform, and phenotypes of identical gene deletants vary in a background-dependent manner. Moreover, the virulence of several selected isolates is highly variable in a mouse model and apparently does not track with any observed light response. Cumulatively, this work illuminates the fact that data obtained with a single A. fumigatus isolate are not necessarily predictive of the species as whole. Accordingly, researchers should be vigilant when making conclusions about their own work or when interpreting data from the literature.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Michael E Zegans
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA Department of Surgery (Ophthalmology), Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
34
|
Becker K, Ziemons S, Lentz K, Freitag M, Kück U. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis of the Penicillium chrysogenum Velvet Protein PcVelA Identifies Methyltransferase PcLlmA as a Novel Downstream Regulator of Fungal Development. mSphere 2016; 1:e00149-16. [PMID: 27570838 PMCID: PMC4999599 DOI: 10.1128/msphere.00149-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022] Open
Abstract
Penicillium chrysogenum is the sole industrial producer of the β-lactam antibiotic penicillin, which is the most commonly used drug for treating bacterial infections. In P. chrysogenum and other filamentous fungi, secondary metabolism and morphogenesis are controlled by the highly conserved multisubunit velvet complex. Here we present the first chromatin immunoprecipitation next-generation sequencing (ChIP-seq) analysis of a fungal velvet protein, providing experimental evidence that a velvet homologue in P. chrysogenum (PcVelA) acts as a direct transcriptional regulator at the DNA level in addition to functioning as a regulator at the protein level in P. chrysogenum, which was previously described. We identified many target genes that are related to processes known to be dependent on PcVelA, e.g., secondary metabolism as well as asexual and sexual development. We also identified seven PcVelA target genes that encode putative methyltransferases. Yeast two-hybrid and bimolecular fluorescence complementation analyses showed that one of the putative methyltransferases, PcLlmA, directly interacts with PcVelA. Furthermore, functional characterization of PcLlmA demonstrated that this protein is involved in the regulation of conidiosporogenesis, pellet formation, and hyphal morphology, all traits with major biotechnological relevance. IMPORTANCE Filamentous fungi are of major interest for biotechnological and pharmaceutical applications. This is due mainly to their ability to produce a wide variety of secondary metabolites, many of which are relevant as antibiotics. One of the most prominent examples is penicillin, a β-lactam antibiotic that is produced on the industrial scale by fermentation of P. chrysogenum. In recent years, the multisubunit protein complex velvet has been identified as one of the key regulators of fungal secondary metabolism and development. However, until recently, only a little has been known about how velvet mediates regulation at the molecular level. To address this issue, we performed ChIP-seq (chromatin immunoprecipitation in combination with next-generation sequencing) on and follow-up analysis of PcVelA, the core component of the velvet complex in P. chrysogenum. We demonstrate direct involvement of velvet in transcriptional control and present the putative methyltransferase PcLlmA as a new downstream factor and interaction partner of PcVelA.
Collapse
Affiliation(s)
- Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Ziemons
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Katharina Lentz
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
35
|
Alvarez AF, Barba-Ostria C, Silva-Jiménez H, Georgellis D. Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ Microbiol 2016; 18:3210-3226. [DOI: 10.1111/1462-2920.13397] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Adrian F. Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Carlos Barba-Ostria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Hortencia Silva-Jiménez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| |
Collapse
|
36
|
The Fast-Evolving phy-2 Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa. mBio 2016; 7:e02148. [PMID: 26956589 PMCID: PMC4810495 DOI: 10.1128/mbio.02148-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rapid responses to changes in incident light are critical to the guidance of behavior and development in most species. Phytochrome light receptors in particular play key roles in bacterial physiology and plant development, but their functions and regulation are less well understood in fungi. Nevertheless, genome-wide expression measurements provide key information that can guide experiments that reveal how genes respond to environmental signals and clarify their role in development. We performed functional genomic and phenotypic analyses of the two phytochromes in Neurospora crassa, a fungal model adapted to a postfire environment that experiences dramatically variable light conditions. Expression of phy-1 and phy-2 was low in early sexual development and in the case of phy-2 increased in late sexual development. Under light stimulation, strains with the phytochromes deleted exhibited increased expression of sexual development-related genes. Moreover, under red light, the phy-2 knockout strain commenced sexual development early. In the evolution of phytochromes within ascomycetes, at least two duplications have occurred, and the faster-evolving phy-2 gene has frequently been lost. Additionally, the three key cysteine sites that are critical for bacterial and plant phytochrome function are not conserved within fungal phy-2 homologs. Through the action of phytochromes, transitions between asexual and sexual reproduction are modulated by light level and light quality, presumably as an adaptation for fast asexual growth and initiation of sexual reproduction of N. crassa in exposed postfire ecosystems. Environmental signals, including light, play critical roles in regulating fungal growth and pathogenicity, and balance of asexual and sexual reproduction is critical in fungal pathogens’ incidence, virulence, and distribution. Red light sensing by phytochromes is well known to play critical roles in bacterial physiology and plant development. Homologs of phytochromes were first discovered in the fungal model Neurospora crassa and then subsequently in diverse other fungi, including many plant pathogens. Our study investigated the evolution of red light sensors in ascomycetes and confirmed—using the model fungus Neurospora crassa—their roles in modulating the asexual-sexual reproduction balance in fungi. Our findings also provide a key insight into one of the most poorly understood aspects of fungal biology, suggesting that further study of the function of phytochromes in fungi is critical to reveal the genetic basis of the asexual-sexual switch responsible for fungal growth and distribution, including diverse and destructive plant pathogens.
Collapse
|
37
|
Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 2016; 1:16019. [PMID: 27572639 DOI: 10.1038/nmicrobiol.2016.19] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/29/2016] [Indexed: 02/02/2023]
Abstract
Stress-sensing in fungi depends on a signalling cascade comprised of a two-component phosphorylation relay plus a subsequent MAP kinase cascade to trigger gene expression. Besides osmotic or oxidative stress, fungi sense many other environmental factors, one of which is light(1,2). Light controls morphogenetic pathways but also the production of secondary metabolites such as penicillin. Here we show that phytochrome-dependent light signalling in Aspergillus nidulans involves the stress-sensing and osmosensing signalling pathway. In a screening for 'blind' mutants, the MAP kinase SakA (also known as HogA) was identified by whole-genome sequencing. The phytochrome FphA physically interacted with the histidine-containing phosphotransfer protein YpdA and caused light-dependent phosphorylation of the MAP kinase SakA and its shuttling into nuclei. In the absence of phytochrome, SakA still responded to osmotic stress but not to light. The SakA pathway thus integrates several stress factors and can be considered to be a hub for environmental signals.
Collapse
|
38
|
García-Esquivel M, Esquivel-Naranjo EU, Hernández-Oñate MA, Ibarra-Laclette E, Herrera-Estrella A. The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light. Fungal Biol 2016; 120:500-512. [PMID: 27020152 DOI: 10.1016/j.funbio.2016.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/10/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022]
Abstract
Quantitative transcriptome analysis led to the identification of 331 transcripts regulated by white light. Evaluation of the response to white light in mutants affected in the previously characterized blue-light receptor Blr1, demonstrated the existence of both Blr1-dependent and independent responses. Functional categorization of the light responsive genes indicated the effect of light on regulation of various transcription factors, regulators of chromatin structure, signaling pathways, genes related to different kinds of stress, metabolism, redox adjustment, and cell cycle among others. In order to establish the participation of other photoreceptors, gene expression was validated in response to different wavelengths. Gene regulation by blue and red light suggests the involvement of several photoreceptors in integrating light signals of different wavelengths in Trichoderma atroviride. Functional analysis of potential blue light photoreceptors suggests that several perception systems for different wavelengths are involved in the response to light. Deletion of cry1, one of the potential photoreceptors, resulted in severe reduction in the photoreactivation capacity of the fungus, as well as a change in gene expression under blue and red light.
Collapse
Affiliation(s)
- Mónica García-Esquivel
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico
| | - Edgardo U Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico
| | - Miguel A Hernández-Oñate
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico; Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa 91070, Ver., Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico.
| |
Collapse
|
39
|
Fuller K, Dunlap J, Loros J. Fungal Light Sensing at the Bench and Beyond. ADVANCES IN GENETICS 2016; 96:1-51. [DOI: 10.1016/bs.adgen.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Rauscher S, Pacher S, Hedtke M, Kniemeyer O, Fischer R. A phosphorylation code of theAspergillus nidulansglobal regulator VelvetA (VeA) determines specific functions. Mol Microbiol 2015; 99:909-24. [DOI: 10.1111/mmi.13275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Rauscher
- Institute for Applied Biosciences; Department of Microbiology; Karlsruhe Institute of Technology; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Sylvia Pacher
- Institute for Applied Biosciences; Department of Microbiology; Karlsruhe Institute of Technology; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Maren Hedtke
- Institute for Applied Biosciences; Department of Microbiology; Karlsruhe Institute of Technology; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology; Hans-Knöll-Institute (HKI); Adolf-Reichwein-Str. 23 07745 Jena Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences; Department of Microbiology; Karlsruhe Institute of Technology; Hertzstrasse 16 D-76187 Karlsruhe Germany
| |
Collapse
|
41
|
Dasgupta A, Fuller KK, Dunlap JC, Loros JJ. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 2015; 18:5-20. [PMID: 26373782 DOI: 10.1111/1462-2920.13055] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
Light plays an important role for most organisms on this planet, serving either as a source of energy or information for the adaptation of biological processes to specific times of day. The fungal kingdom is estimated to contain well over a million species, possibly 10-fold more, and it is estimated that a majority of the fungi respond to light, eliciting changes in several physiological characteristics including pathogenesis, development and secondary metabolism. Two model organisms for photobiological studies have taken centre-stage over the last few decades--Neurospora crassa and Aspergillus nidulans. In this review, we will first discuss our understanding of the light response in N. crassa, about which the most is known, and will then juxtapose N. crassa with A. nidulans, which, as will be described below, provides an excellent template for understanding photosensory cross-talk. Finally, we will end with a commentary on the variability of the light response among other relevant fungi, and how our molecular understanding in the aforementioned model organisms still provides a strong base for dissecting light responses in such species.
Collapse
Affiliation(s)
- Arko Dasgupta
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|