1
|
When bacteria are phage playgrounds: interactions between viruses, cells, and mobile genetic elements. Curr Opin Microbiol 2022; 70:102230. [PMID: 36335712 DOI: 10.1016/j.mib.2022.102230] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Studies of viral adaptation have focused on the selective pressures imposed by hosts. However, there is increasing evidence that interactions between viruses, cells, and other mobile genetic elements are determinant to the success of infections. These interactions are often associated with antagonism and competition, but sometimes involve cooperation or parasitism. We describe two key types of interactions - defense systems and genetic regulation - that allow the partners of the interaction to destroy or control the others. These interactions evolve rapidly by genetic exchanges, including among competing partners. They are sometimes followed by functional diversification. Gene exchanges also facilitate the emergence of cross-talk between elements in the same bacterium. In the end, these processes produce multilayered networks of interactions that shape the outcome of viral infections.
Collapse
|
2
|
Scherr T, Seiffarth J, Wollenhaupt B, Neumann O, Schilling MP, Kohlheyer D, Scharr H, Nöh K, Mikut R. microbeSEG: A deep learning software tool with OMERO data management for efficient and accurate cell segmentation. PLoS One 2022; 17:e0277601. [PMID: 36445903 PMCID: PMC9707790 DOI: 10.1371/journal.pone.0277601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
In biotechnology, cell growth is one of the most important properties for the characterization and optimization of microbial cultures. Novel live-cell imaging methods are leading to an ever better understanding of cell cultures and their development. The key to analyzing acquired data is accurate and automated cell segmentation at the single-cell level. Therefore, we present microbeSEG, a user-friendly Python-based cell segmentation tool with a graphical user interface and OMERO data management. microbeSEG utilizes a state-of-the-art deep learning-based segmentation method and can be used for instance segmentation of a wide range of cell morphologies and imaging techniques, e.g., phase contrast or fluorescence microscopy. The main focus of microbeSEG is a comprehensible, easy, efficient, and complete workflow from the creation of training data to the final application of the trained segmentation model. We demonstrate that accurate cell segmentation results can be obtained within 45 minutes of user time. Utilizing public segmentation datasets or pre-labeling further accelerates the microbeSEG workflow. This opens the door for accurate and efficient data analysis of microbial cultures.
Collapse
Affiliation(s)
- Tim Scherr
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- * E-mail: (TS); (KN); (RM)
| | - Johannes Seiffarth
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Bastian Wollenhaupt
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Oliver Neumann
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marcel P. Schilling
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hanno Scharr
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute for Advanced Simulation, IAS-8: Data Analytics and Machine Learning, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail: (TS); (KN); (RM)
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- * E-mail: (TS); (KN); (RM)
| |
Collapse
|
3
|
Abstract
In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.
Collapse
|
4
|
Molecular Insight into Gene Response of Diorcinol- and Rubrolide-Treated Biofilms of the Emerging Pathogen Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0258221. [PMID: 35471093 PMCID: PMC9241881 DOI: 10.1128/spectrum.02582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant human opportunistic pathogen. S. maltophilia contributes to disease progression in cystic fibrosis patients and is found in wounds and infected tissues and on catheter surfaces. Due to its well-known multidrug resistance, it is difficult to treat S. maltophilia infections. Strain-specific susceptibility to antimicrobials has also been reported in several studies. Recently, three fungal diorcinols and 14 rubrolides were shown to reduce S. maltophilia K279a biofilm formation. Based on these initial findings, we were interested to extend this approach by testing a larger number of diorcinols and rubrolides and to understand the molecular mechanisms behind the observed antibiofilm effects. Of 52 tested compounds, 30 were able to significantly reduce the biofilm thickness by up to 85% ± 15% and had strong effects on mature biofilms. All compounds with antibiofilm activity also significantly affected the biofilm architecture. Additional RNA-sequencing data of diorcinol- and rubrolide-treated biofilm cells of two clinical isolates (454 and K279) identified a small set of shared genes that were affected by these potent antibiofilm compounds. Among these, genes for iron transport, general metabolism, and membrane biosynthesis were most strongly and differentially regulated. A further hierarchical clustering and detailed structural inspection of the diorcinols and rubrolides implied that a prenyl group as side chain of one of the phenyl groups of the diorcinols and an increasing degree of bromination of chlorinated rubrolides were possibly the cause of the strong antibiofilm effects. This study gives a deep insight into the effects of rubrolides and diorcinols on biofilms formed by the important global pathogen S. maltophilia. IMPORTANCE Combating Stenotrophomonasmaltophilia biofilms in clinical and industrial settings has proven to be challenging. S. maltophilia is multidrug resistant, and occurrence of resistance to commonly used drugs as well as to antibiotic combinations, such as trimethoprim-sulfamethoxazole, is now frequently reported. It is therefore now necessary to look beyond conventional and already existing antimicrobial drugs when battling S. maltophilia biofilms. Our study contains comprehensive and detailed data sets for diorcinol and rubrolide-treated S. maltophilia biofilms. The study defines genes and pathways affected by treatment with these different compounds. These results, together with the identified structural elements that may be crucial for their antibiofilm activity, build a strong backbone for further research on diorcinols and rubrolides as novel and potent antibiofilm compounds.
Collapse
|
5
|
Abstract
Mobile genetic elements (MGEs) drive bacterial evolution, alter gene availability within microbial communities, and facilitate adaptation to ecological niches. In natural systems, bacteria simultaneously possess or encounter multiple MGEs, yet their combined influences on microbial communities are poorly understood. Here, we investigate interactions among MGEs in the marine bacterium Sulfitobacter pontiacus. Two related strains, CB-D and CB-A, each harbor a single prophage. These prophages share high sequence identity with one another and an integration site within the host genome, yet these strains exhibit differences in “spontaneous” prophage induction (SPI) and consequent fitness. To better understand mechanisms underlying variation in SPI between these lysogens, we closed their genomes, which revealed that in addition to harboring different prophage genotypes, CB-A lacks two of the four large, low-copy-number plasmids possessed by CB-D. To assess the relative roles of plasmid content versus prophage genotype on host physiology, a panel of derivative strains varying in MGE content were generated. Characterization of these derivatives revealed a robust link between plasmid content and SPI, regardless of prophage genotype. Strains possessing all four plasmids had undetectable phage in cell-free lysates, while strains lacking either one plasmid (pSpoCB-1) or a combination of two plasmids (pSpoCB-2 and pSpoCB-4) produced high (>105 PFU/mL) phage titers. Homologous plasmid sequences were identified in related bacteria, and plasmid and phage genes were found to be widespread in Tara Oceans metagenomic data sets. This suggests that plasmid-dependent stabilization of prophages may be commonplace throughout the oceans. IMPORTANCE The consequences of prophage induction on the physiology of microbial populations are varied and include enhanced biofilm formation, conferral of virulence, and increased opportunity for horizontal gene transfer. These traits lead to competitive advantages for lysogenized bacteria and influence bacterial lifestyles in a variety of niches. However, biological controls of “spontaneous” prophage induction, the initiation of phage replication and phage-mediated cell lysis without an overt stressor, are not well understood. In this study, we observed a novel interaction between plasmids and prophages in the marine bacterium Sulfitobacter pontiacus. We found that loss of one or more distinct plasmids—which we show carry genes ubiquitous in the world’s oceans—resulted in a marked increase in prophage induction within lysogenized strains. These results demonstrate cross talk between different mobile genetic elements and have implications for our understanding of the lysogenic-lytic switches of prophages found not only in marine environments, but throughout all ecosystems.
Collapse
|
6
|
Regulation of Heterogenous LexA Expression in Staphylococcus aureus by an Antisense RNA Originating from Transcriptional Read-Through upon Natural Mispairings in the sbrB Intrinsic Terminator. Int J Mol Sci 2022; 23:ijms23010576. [PMID: 35009002 PMCID: PMC8745188 DOI: 10.3390/ijms23010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial genomes are pervasively transcribed, generating a wide variety of antisense RNAs (asRNAs). Many of them originate from transcriptional read-through events (TREs) during the transcription termination process. Previous transcriptome analyses revealed that the lexA gene from Staphylococcus aureus, which encodes the main SOS response regulator, is affected by the presence of an asRNA. Here, we show that the lexA antisense RNA (lexA-asRNA) is generated by a TRE on the intrinsic terminator (TTsbrB) of the sbrB gene, which is located downstream of lexA, in the opposite strand. Transcriptional read-through occurs by a natural mutation that destabilizes the TTsbrB structure and modifies the efficiency of the intrinsic terminator. Restoring the mispairing mutation in the hairpin of TTsbrB prevented lexA-asRNA transcription. The level of lexA-asRNA directly correlated with cellular stress since the expressions of sbrB and lexA-asRNA depend on the stress transcription factor SigB. Comparative analyses revealed strain-specific nucleotide polymorphisms within TTsbrB, suggesting that this TT could be prone to accumulating natural mutations. A genome-wide analysis of TREs suggested that mispairings in TT hairpins might provide wider transcriptional connections with downstream genes and, ultimately, transcriptomic variability among S. aureus strains.
Collapse
|
7
|
Kever L, Hünnefeld M, Brehm J, Heermann R, Frunzke J. Identification of Gip as a novel phage-encoded gyrase inhibitor protein of Corynebacterium glutamicum. Mol Microbiol 2021; 116:1268-1280. [PMID: 34536319 DOI: 10.1111/mmi.14813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
By targeting key regulatory hubs of their host, bacteriophages represent a powerful source for the identification of novel antimicrobial proteins. Here, a screening of small cytoplasmic proteins encoded by the CGP3 prophage of Corynebacterium glutamicum resulted in the identification of the gyrase-inhibiting protein Cg1978, termed Gip. Pull-down assays and surface plasmon resonance revealed a direct interaction of Gip with the gyrase subunit A (GyrA). The inhibitory activity of Gip was shown to be specific to the DNA gyrase of its bacterial host C. glutamicum. Overproduction of Gip in C. glutamicum resulted in a severe growth defect as well as an induction of the SOS response. Furthermore, reporter assays revealed an RecA-independent induction of the cryptic CGP3 prophage, most likely caused by topological alterations. Overexpression of gip was counteracted by an increased expression of gyrAB and a reduction of topA expression at the same time, reflecting the homeostatic control of DNA topology. We postulate that the prophage-encoded Gip protein plays a role in modulating gyrase activity to enable efficient phage DNA replication. A detailed elucidation of the mechanism of action will provide novel directions for the design of drugs targeting DNA gyrase.
Collapse
Affiliation(s)
- Larissa Kever
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Max Hünnefeld
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jannis Brehm
- Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Ralf Heermann
- Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
8
|
Jones EC, Uphoff S. Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response. Nat Microbiol 2021; 6:981-990. [PMID: 34183814 PMCID: PMC7611437 DOI: 10.1038/s41564-021-00930-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/27/2021] [Indexed: 12/20/2022]
Abstract
The bacterial SOS response stands as a paradigm of gene networks controlled by a master transcriptional regulator. Self-cleavage of the SOS repressor, LexA, induces a wide range of cell functions that are critical for survival and adaptation when bacteria experience stress conditions1, including DNA repair2, mutagenesis3,4, horizontal gene transfer5–7, filamentous growth, and the induction of bacterial toxins8–12, toxin-antitoxin systems13, virulence factors6,14, and prophages15–17. SOS induction is also implicated in biofilm formation and antibiotic persistence11,18–20. Considering the fitness burden of these functions, it is surprising that the expression of LexA-regulated genes is highly variable across cells10,21–23 and that cell subpopulations induce the SOS response spontaneously even in the absence of stress exposure9,11,12,16,24,25. Whether this reflects a population survival strategy or a regulatory inaccuracy is unclear, as are the mechanisms underlying SOS heterogeneity. Here, we developed a single-molecule imaging approach based on a HaloTag fusion to directly monitor LexA inside live Escherichia coli cells, demonstrating the existence of 3 main states of LexA: DNA-bound stationary molecules, free LexA and degraded LexA species. These analyses elucidate the mechanisms by which DNA-binding and degradation of LexA regulate the SOS response in vivo. We show that self-cleavage of LexA occurs frequently throughout the population during unperturbed growth, rather than being restricted to a subpopulation of cells, which causes substantial cell-to-cell variation in LexA abundances. LexA variability underlies SOS gene expression heterogeneity and triggers spontaneous SOS pulses, which enhance bacterial survival in anticipation of stress.
Collapse
Affiliation(s)
- Emma C Jones
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
9
|
Tuttle MJ, Buchan A. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol 2020; 22:4919-4933. [PMID: 32935433 DOI: 10.1111/1462-2920.15233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage-host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage-host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage-host interactions in the oceans.
Collapse
Affiliation(s)
- Matthew J Tuttle
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
10
|
Wiechert J, Gätgens C, Wirtz A, Frunzke J. Inducible Expression Systems Based on Xenogeneic Silencing and Counter-Silencing and Design of a Metabolic Toggle Switch. ACS Synth Biol 2020; 9:2023-2038. [PMID: 32649183 DOI: 10.1021/acssynbio.0c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inducible expression systems represent key modules in regulatory circuit design and metabolic engineering approaches. However, established systems are often limited in terms of applications due to high background expression levels and inducer toxicity. In bacteria, xenogeneic silencing (XS) proteins are involved in the tight control of horizontally acquired, AT-rich DNA. The action of XS proteins may be opposed by interference with a specific transcription factor, resulting in the phenomenon of counter-silencing, thereby activating gene expression. In this study, we harnessed this principle for the construction of a synthetic promoter library consisting of phage promoters targeted by the Lsr2-like XS protein CgpS of Corynebacterium glutamicum. Counter-silencing was achieved by inserting the operator sequence of the gluconate-responsive transcription factor GntR. The GntR-dependent promoter library is comprised of 28 activated and 16 repressed regulatory elements featuring effector-dependent tunability. For selected candidates, background expression levels were confirmed to be significantly reduced in comparison to established heterologous expression systems. Finally, a GntR-dependent metabolic toggle switch was implemented in a C. glutamicum l-valine production strain allowing the dynamic redirection of carbon flux between biomass and product formation.
Collapse
Affiliation(s)
- Johanna Wiechert
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Cornelia Gätgens
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Astrid Wirtz
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
11
|
Evolutionary Stabilization of Cooperative Toxin Production through a Bacterium-Plasmid-Phage Interplay. mBio 2020; 11:mBio.00912-20. [PMID: 32694140 PMCID: PMC7374059 DOI: 10.1128/mbio.00912-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Colicins are toxins produced and released by Enterobacteriaceae to kill competitors in the gut. While group A colicins employ a division of labor strategy to liberate the toxin into the environment via colicin-specific lysis, group B colicin systems lack cognate lysis genes. In Salmonella enterica serovar Typhimurium (S. Tm), the group B colicin Ib (ColIb) is released by temperate phage-mediated bacteriolysis. Phage-mediated ColIb release promotes S. Tm fitness against competing Escherichia coli It remained unclear how prophage-mediated lysis is realized in a clonal population of ColIb producers and if prophages contribute to evolutionary stability of toxin release in S. Tm. Here, we show that prophage-mediated lysis occurs in an S. Tm subpopulation only, thereby introducing phenotypic heterogeneity to the system. We established a mathematical model to study the dynamic interplay of S. Tm, ColIb, and a temperate phage in the presence of a competing species. Using this model, we studied long-term evolution of phage lysis rates in a fluctuating infection scenario. This revealed that phage lysis evolves as bet-hedging strategy that maximizes phage spread, regardless of whether colicin is present or not. We conclude that the ColIb system, lacking its own lysis gene, is making use of the evolutionary stable phage strategy to be released. Prophage lysis genes are highly prevalent in nontyphoidal Salmonella genomes. This suggests that the release of ColIb by temperate phages is widespread. In conclusion, our findings shed new light on the evolution and ecology of group B colicin systems.IMPORTANCE Bacteria are excellent model organisms to study mechanisms of social evolution. The production of public goods, e.g., toxin release by cell lysis in clonal bacterial populations, is a frequently studied example of cooperative behavior. Here, we analyze evolutionary stabilization of toxin release by the enteric pathogen Salmonella The release of colicin Ib (ColIb), which is used by Salmonella to gain an edge against competing microbiota following infection, is coupled to bacterial lysis mediated by temperate phages. Here, we show that phage-dependent lysis and subsequent release of colicin and phage particles occurs only in part of the ColIb-expressing Salmonella population. This phenotypic heterogeneity in lysis, which represents an essential step in the temperate phage life cycle, has evolved as a bet-hedging strategy under fluctuating environments such as the gastrointestinal tract. Our findings suggest that prophages can thereby evolutionarily stabilize costly toxin release in bacterial populations.
Collapse
|
12
|
Basso JTR, Ankrah NYD, Tuttle MJ, Grossman AS, Sandaa RA, Buchan A. Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects. THE ISME JOURNAL 2020; 14:1688-1700. [PMID: 32242083 PMCID: PMC7305329 DOI: 10.1038/s41396-020-0637-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023]
Abstract
Temperate phages engage in long-term associations with their hosts that may lead to mutually beneficial interactions, of which the full extent is presently unknown. Here, we describe an environmentally relevant model system with a single host, a species of the Roseobacter clade of marine bacteria, and two genetically similar phages (ɸ-A and ɸ-D). Superinfection of a ɸ-D lysogenized strain (CB-D) with ɸ-A particles resulted in a lytic infection, prophage induction, and conversion of a subset of the host population, leading to isolation of a newly ɸ-A lysogenized strain (CB-A). Phenotypic differences, predicted to result from divergent lysogenic-lytic switch mechanisms, are evident between these lysogens, with CB-A displaying a higher incidence of spontaneous induction. Doubling times of CB-D and CB-A in liquid culture are 75 and 100 min, respectively. As cell cultures enter stationary phase, CB-A viable counts are half of CB-D. Consistent with prior evidence that cell lysis enhances biofilm formation, CB-A produces twice as much biofilm biomass as CB-D. As strains are susceptible to infection by the opposing phage type, co-culture competitions were performed to test fitness effects. When grown planktonically, CB-A outcompeted CB-D three to one. Yet, during biofilm growth, CB-D outcompeted CB-A three to one. These results suggest that genetically similar phages can have divergent influence on the competitiveness of their shared hosts in distinct environmental niches, possibly due to a complex form of phage-mediated allelopathy. These findings have implications for enhanced understanding of the eco-evolutionary dynamics of host-phage interactions that are pervasive in all ecosystems.
Collapse
Affiliation(s)
- Jonelle T R Basso
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Nana Y D Ankrah
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
- Department of Entomology, Cornell University, 5136 Comstock Hall, Ithaca, NY, 14853, USA
| | - Matthew J Tuttle
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Alex S Grossman
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, PO 7803, N-5020, Bergen, Norway
| | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA.
| |
Collapse
|
13
|
Leygeber M, Lindemann D, Sachs CC, Kaganovitch E, Wiechert W, Nöh K, Kohlheyer D. Analyzing Microbial Population Heterogeneity—Expanding the Toolbox of Microfluidic Single-Cell Cultivations. J Mol Biol 2019; 431:4569-4588. [DOI: 10.1016/j.jmb.2019.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023]
|
14
|
Generation of a Prophage-Free Variant of the Fast-Growing Bacterium Vibrio natriegens. Appl Environ Microbiol 2019; 85:AEM.00853-19. [PMID: 31253674 PMCID: PMC6696956 DOI: 10.1128/aem.00853-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
The fast-growing marine bacterium Vibrio natriegens represents an emerging strain for molecular biology and biotechnology. Genome sequencing and quantitative PCR analysis revealed that the first chromosome of V. natriegens ATCC 14048 contains two prophage regions (VNP1 and VNP2) that are both inducible by the DNA-damaging agent mitomycin C and exhibit spontaneous activation under standard cultivation conditions. Their activation was also confirmed by live cell imaging of an mCherry fusion to the major capsid proteins of VNP1 and VNP2. Transmission electron microscopy visualized the release of phage particles belonging to the Siphoviridae family into the culture supernatant. Freeing V. natriegens from its proviral load, followed by phenotypic characterization, revealed an improved robustness of the prophage-free variant toward DNA-damaging conditions, reduced cell lysis under hypo-osmotic conditions, and an increased pyruvate production compared to wild-type levels. Remarkably, the prophage-free strain outcompeted the wild type in a competitive growth experiment, emphasizing that this strain is a promising platform for future metabolic engineering approaches.IMPORTANCE The fast-growing marine bacterium Vibrio natriegens represents an emerging model host for molecular biology and biotechnology, featuring a reported doubling time of less than 10 minutes. In many bacterial species, viral DNA (prophage elements) may constitute a considerable fraction of the whole genome and may have detrimental effects on the growth and fitness of industrial strains. Genome analysis revealed the presence of two prophage regions in the V. natriegens genome that were shown to undergo spontaneous induction under standard cultivation conditions. In this study, we generated a prophage-free variant of V. natriegens Remarkably, the prophage-free strain exhibited a higher tolerance toward DNA damage and hypo-osmotic stress. Moreover, it was shown to outcompete the wild-type strain in a competitive growth experiment. In conclusion, our study presents the prophage-free variant of V. natriegens as a promising platform strain for future biotechnological applications.
Collapse
|
15
|
Müller J, Spriewald S, Stecher B, Stadler E, Fuchs TM. Evolutionary Stability of Salmonella Competition with the Gut Microbiota: How the Environment Fosters Heterogeneity in Exploitative and Interference Competition. J Mol Biol 2019; 431:4732-4748. [PMID: 31260689 DOI: 10.1016/j.jmb.2019.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
Abstract
Following ingestion, gastrointestinal pathogens compete against the gastrointestinal microbiota and overcome host immune defenses in order to cause infections. Besides employing direct killing mechanisms, the commensal microbiota occupies metabolic niches to outcompete invading pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) uses several strategies to successfully colonize the gut and establish infection, of which an increasing number is based on phenotypic heterogeneity within the S. Typhimurium population. The utilization of myo-inositol (MI) and the production of colicin confer a selective advantage over the microbiota in terms of exploitative and interference competition, respectively. In this review, we summarize the genetic basis underlying bistability of MI catabolism and colicin production. As demonstrated by single-cell analyses, a stochastic switch in the expression of the genes responsible for colicin production and MI degradation constitutes the heterogeneity of the two phenotypes. Both genetic systems are tightly regulated to avoid their expression under non-appropriate conditions and possible detrimental effects on bacterial fitness. Moreover, evolutionary mechanisms underlying formation and stability of these phenotypes in S. Typhimurium are discussed. We propose that both MI catabolism and colicin production create a bet-hedging strategy, which provides an adaptive benefit for S. Typhimurium in the fluctuating environment of the mammalian gut.
Collapse
Affiliation(s)
- Johannes Müller
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany; Institute for Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Stefanie Spriewald
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Eva Stadler
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany
| | - Thilo M Fuchs
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
16
|
Hünnefeld M, Persicke M, Kalinowski J, Frunzke J. The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum. Front Microbiol 2019; 10:1039. [PMID: 31164873 PMCID: PMC6536590 DOI: 10.3389/fmicb.2019.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 12/03/2022] Open
Abstract
It is the enormous adaptive capacity of microorganisms, which is key to their competitive success in nature, but also challenges antibiotic treatment of human diseases. To deal with a diverse set of stresses, bacteria are able to reprogram gene expression using a wide variety of transcription factors. Here, we focused on the MarR-type regulator MalR conserved in the Corynebacterineae, including the prominent pathogens Corynebacterium diphtheriae and Mycobacterium tuberculosis. In several corynebacterial species, the malR gene forms an operon with a gene encoding a universal stress protein (uspA). Chromatin affinity purification and sequencing (ChAP-Seq) analysis revealed that MalR binds more than 60 target promoters in the C. glutamicum genome as well as in the large cryptic prophage CGP3. Overproduction of MalR caused severe growth defects and an elongated cell morphology. ChAP-Seq data combined with a global transcriptome analysis of the malR overexpression strain emphasized a central role of MalR in cell envelope remodeling in response to environmental stresses. For example, prominent MalR targets are involved in peptidoglycan biosynthesis and synthesis of branched-chain fatty acids. Phenotypic microarrays suggested an altered sensitivity of a ΔmalR mutant toward several β-lactam antibiotics. Furthermore, we revealed MalR as a repressor of several prophage genes, suggesting that MalR may be involved in the control of stress-responsive induction of the large CGP3 element. In conclusion, our results emphasize MalR as a regulator involved in stress-responsive remodeling of the cell envelope of C. glutamicum and suggest a link between cell envelope stress and the control of phage gene expression.
Collapse
Affiliation(s)
- Max Hünnefeld
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Marcus Persicke
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
17
|
Freiherr von Boeselager R, Pfeifer E, Frunzke J. Cytometry meets next-generation sequencing - RNA-Seq of sorted subpopulations reveals regional replication and iron-triggered prophage induction in Corynebacterium glutamicum. Sci Rep 2018; 8:14856. [PMID: 30291266 PMCID: PMC6173762 DOI: 10.1038/s41598-018-32997-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022] Open
Abstract
Phenotypic diversification is key to microbial adaptation. Currently, advanced technological approaches offer insights into cell-to-cell variation of bacterial populations at a spatiotemporal resolution. However, the underlying molecular causes or consequences often remain obscure. In this study, we developed a workflow combining fluorescence-activated cell sorting and RNA-sequencing, thereby allowing transcriptomic analysis of 106 bacterial cells. As a proof of concept, the workflow was applied to study prophage induction in a subpopulation of Corynebacterium glutamicum. Remarkably, both the phage genes and flanking genomic regions of the CGP3 prophage revealed significantly increased coverage upon prophage induction - a phenomenon that to date has been obscured by bulk approaches. Genome sequencing of prophage-induced populations suggested regional replication at the CGP3 locus in C. glutamicum. Finally, the workflow was applied to unravel iron-triggered prophage induction in early exponential cultures. Here, an up-shift in iron levels resulted in a heterogeneous response of an SOS (PdivS) reporter. RNA-sequencing of the induced subpopulation confirmed induction of the SOS response triggering also activation of the CGP3 prophage. The fraction of CGP3-induced cells was enhanced in a mutant lacking the iron regulator DtxR suffering from enhanced iron uptake. Altogether, these findings demonstrate the potential of the established workflow to gain insights into the phenotypic dynamics of bacterial populations.
Collapse
Affiliation(s)
| | - Eugen Pfeifer
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
18
|
Huber I, Potapova K, Kuhn A, Schmidt H, Hinrichs J, Rohde C, Beyer W. 1st German Phage Symposium-Conference Report. Viruses 2018; 10:v10040158. [PMID: 29596346 PMCID: PMC5923452 DOI: 10.3390/v10040158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
In Germany, phage research and application can be traced back to the beginning of the 20th century. However, with the triumphal march of antibiotics around the world, the significance of bacteriophages faded in most countries, and respective research mainly focused on fundamental questions and niche applications. After a century, we pay tribute to the overuse of antibiotics that led to multidrug resistance and calls for new strategies to combat pathogenic microbes. Against this background, bacteriophages came into the spotlight of researchers and practitioners again resulting in a fast growing “phage community”. In October 2017, part of this community met at the 1st German Phage Symposium to share their knowledge and experiences. The participants discussed open questions and challenges related to phage therapy and the application of phages in general. This report summarizes the presentations given, highlights the main points of the round table discussion and concludes with an outlook for the different aspects of phage application.
Collapse
Affiliation(s)
- Irene Huber
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Katerina Potapova
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Andreas Kuhn
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Herbert Schmidt
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Jörg Hinrichs
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Christine Rohde
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany.
| | - Wolfgang Beyer
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Animal Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
19
|
Hattab G, Wiesmann V, Becker A, Munzner T, Nattkemper TW. A Novel Methodology for Characterizing Cell Subpopulations in Automated Time-lapse Microscopy. Front Bioeng Biotechnol 2018; 6:17. [PMID: 29541635 PMCID: PMC5835524 DOI: 10.3389/fbioe.2018.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Time-lapse imaging of cell colonies in microfluidic chambers provides time series of bioimages, i.e., biomovies. They show the behavior of cells over time under controlled conditions. One of the main remaining bottlenecks in this area of research is the analysis of experimental data and the extraction of cell growth characteristics, such as lineage information. The extraction of the cell line by human observers is time-consuming and error-prone. Previously proposed methods often fail because of their reliance on the accurate detection of a single cell, which is not possible for high density, high diversity of cell shapes and numbers, and high-resolution images with high noise. Our task is to characterize subpopulations in biomovies. In order to shift the analysis of the data from individual cell level to cellular groups with similar fluorescence or even subpopulations, we propose to represent the cells by two new abstractions: the particle and the patch. We use a three-step framework: preprocessing, particle tracking, and construction of the patch lineage. First, preprocessing improves the signal-to-noise ratio and spatially aligns the biomovie frames. Second, cell sampling is performed by assuming particles, which represent a part of a cell, cell or group of contiguous cells in space. Particle analysis includes the following: particle tracking, trajectory linking, filtering, and color information, respectively. Particle tracking consists of following the spatiotemporal position of a particle and gives rise to coherent particle trajectories over time. Typical tracking problems may occur (e.g., appearance or disappearance of cells, spurious artifacts). They are effectively processed using trajectory linking and filtering. Third, the construction of the patch lineage consists in joining particle trajectories that share common attributes (i.e., proximity and fluorescence intensity) and feature common ancestry. This step is based on patch finding, patching trajectory propagation, patch splitting, and patch merging. The main idea is to group together the trajectories of particles in order to gain spatial coherence. The final result of CYCASP is the complete graph of the patch lineage. Finally, the graph encodes the temporal and spatial coherence of the development of cellular colonies. We present results showing a computation time of less than 5 min for biomovies and simulated films. The method, presented here, allowed for the separation of colonies into subpopulations and allowed us to interpret the growth of colonies in a timely manner.
Collapse
Affiliation(s)
- Georges Hattab
- Faculty of Technology, Int. Research Training Group 1906, Computational Methods for the Analysis of the Diversity and Dynamics of Genomes (DiDy), Bielefeld University, Bielefeld, Germany
- Faculty of Technology, Biodata Mining Group, Bielefeld University, Bielefeld, Germany
| | - Veit Wiesmann
- Department of Image Processing and Medical Engineering, Fraunhofer-Institut für Integrierte Schaltungen (IIS), Erlangen, Germany
| | - Anke Becker
- SYNMIKRO, Phillips-Universität Marburg, LOEWE-Centre for Synthetic Microbiology, Marburg, Germany
| | - Tamara Munzner
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Tim W. Nattkemper
- Faculty of Technology, Biodata Mining Group, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
20
|
Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci Rep 2017; 7:16780. [PMID: 29196644 PMCID: PMC5711897 DOI: 10.1038/s41598-017-17014-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/17/2017] [Indexed: 12/18/2022] Open
Abstract
In this work, we performed a comparative adaptive laboratory evolution experiment of the important biotechnological platform strain Corynebacterium glutamicum ATCC 13032 and its prophage-free variant MB001 towards improved growth rates on glucose minimal medium. Both strains displayed a comparable adaptation behavior and no significant differences in genomic rearrangements and mutation frequencies. Remarkably, a significant fitness leap by about 20% was observed for both strains already after 100 generations. Isolated top clones (UBw and UBm) showed an about 26% increased growth rate on glucose minimal medium. Genome sequencing of evolved clones and populations resulted in the identification of key mutations in pyk (pyruvate kinase), fruK (1-phosphofructokinase) and corA encoding a Mg2+ importer. The reintegration of selected pyk and fruK mutations resulted in an increased glucose consumption rate and ptsG expression causative for the accelerated growth on glucose minimal medium, whereas corA mutations improved growth under Mg2+ limiting conditions. Overall, this study resulted in the identification of causative key mutations improving the growth of C. glutamicum on glucose. These identified mutational hot spots as well as the two evolved top strains, UBw and UBm, represent promising targets for future metabolic engineering approaches.
Collapse
|
21
|
Forde AJ, Albrecht N, Klingl A, Donovan C, Bramkamp M. Polymerization Dynamics of the Prophage-Encoded Actin-Like Protein AlpC Is Influenced by the DNA-Binding Adapter AlpA. Front Microbiol 2017; 8:1429. [PMID: 28824563 PMCID: PMC5539076 DOI: 10.3389/fmicb.2017.01429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
The Corynebacterium glutamicum ATCC 13032 prophage CGP3 encodes an actin-like protein, AlpC that was shown to be involved in viral DNA transport and efficient viral DNA replication. AlpC binds to an adapter, AlpA that in turn binds to specific DNA sequences, termed alpS sites. Thus, the AlpAC system is similar to the known plasmid segregation system ParMRS. So far it is unclear how the AlpACS system mediates DNA transport and, whether AlpA and AlpC functionally interact. We show here that AlpA modulates AlpC filamentation dynamics in a dual way. Unbound AlpA stimulates AlpC filament disassembly, while AlpA bound to alpS sites allows for AlpC filament formation. Based on these results we propose a simple search and capture model that explains DNA segregation by viral AlpACS DNA segregation system.
Collapse
|
22
|
Westerwalbesloh C, Grünberger A, Wiechert W, Kohlheyer D, von Lieres E. Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level. Microb Biotechnol 2017; 10:845-857. [PMID: 28371389 PMCID: PMC5481542 DOI: 10.1111/1751-7915.12708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/18/2023] Open
Abstract
Microfluidic single‐cell bioreactors have found widespread application to investigate growth and gene expression of microbial model organisms, but yet there are few attempts to systematically characterize different design and cultivation concepts. Quantitative measurements of critical solute concentrations, e.g. limiting nutrients, are not yet feasible within the typical volumes in the range of picolitres. A way to gain new insights about the mass transport within those volumes is by simulation, but the complex geometry resulting from the multitude of cells within a colony leads to time and resource consuming computational challenges. In this work, six different concepts for the model representation of cellular microcolonies within microfluidic monolayer growth chamber devices are compared. The Gini coefficient is proposed as new measure for inhomogeneity within cellular colonies. An example cell colony is represented by a single point source, a cylindrical volume with homogeneous reaction rates with and without adjusted diffusion coefficient, as point sources for each single cell and as rod‐shaped, diffusion blocking, three‐dimensional cells with varying shapes. Simulated concentration profiles across the chambers depended strongly on the chosen cell representation. The representation with the lowest degree of abstraction, three‐dimensional cells, leads to complex geometries and high computational effort, but also gives a conservative and therefore preferable estimate for the cultivation conditions within a given cultivation chamber geometry. Interestingly, the cylindrical volume with adjusted diffusion coefficient gives similar results but requires far less computational effort. Therefore, it is proposed to use the three‐dimensional cells for detailed studies and to determine parameters for the cylindrical volume with adjusted diffusion coefficient, which can then be used for experimental design, screening of parameter spaces, and similar applications.
Collapse
Affiliation(s)
- Christoph Westerwalbesloh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Alexander Grünberger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
23
|
Gillings MR. Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Ann N Y Acad Sci 2016; 1389:20-36. [DOI: 10.1111/nyas.13213] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Gillings
- Genes to Geoscience Research Centre, Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
24
|
Sachs CC, Grünberger A, Helfrich S, Probst C, Wiechert W, Kohlheyer D, Nöh K. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments. PLoS One 2016; 11:e0163453. [PMID: 27661996 PMCID: PMC5035088 DOI: 10.1371/journal.pone.0163453] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/07/2016] [Indexed: 11/18/2022] Open
Abstract
Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso.
Collapse
Affiliation(s)
- Christian Carsten Sachs
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexander Grünberger
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan Helfrich
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christopher Probst
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
25
|
Pfeifer E, Hünnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, Frunzke J. Silencing of cryptic prophages in Corynebacterium glutamicum. Nucleic Acids Res 2016; 44:10117-10131. [PMID: 27492287 PMCID: PMC5137423 DOI: 10.1093/nar/gkw692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022] Open
Abstract
DNA of viral origin represents a ubiquitous element of bacterial genomes. Its integration into host regulatory circuits is a pivotal driver of microbial evolution but requires the stringent regulation of phage gene activity. In this study, we describe the nucleoid-associated protein CgpS, which represents an essential protein functioning as a xenogeneic silencer in the Gram-positive Corynebacterium glutamicum. CgpS is encoded by the cryptic prophage CGP3 of the C. glutamicum strain ATCC 13032 and was first identified by DNA affinity chromatography using an early phage promoter of CGP3. Genome-wide profiling of CgpS binding using chromatin affinity purification and sequencing (ChAP-Seq) revealed its association with AT-rich DNA elements, including the entire CGP3 prophage region (187 kbp), as well as several other elements acquired by horizontal gene transfer. Countersilencing of CgpS resulted in a significantly increased induction frequency of the CGP3 prophage. In contrast, a strain lacking the CGP3 prophage was not affected and displayed stable growth. In a bioinformatics approach, cgpS orthologs were identified primarily in actinobacterial genomes as well as several phage and prophage genomes. Sequence analysis of 618 orthologous proteins revealed a strong conservation of the secondary structure, supporting an ancient function of these xenogeneic silencers in phage-host interaction.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Max Hünnefeld
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ovidiu Popa
- Quantitative and Theoretical Biology, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Tino Polen
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Meike Baumgart
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
26
|
The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin. Proc Natl Acad Sci U S A 2016; 113:4806-11. [PMID: 27078093 DOI: 10.1073/pnas.1514529113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.
Collapse
|