1
|
Jallet D, Soldan V, Shayan R, Stella A, Ismail N, Zenati R, Cahoreau E, Burlet-Schiltz O, Balor S, Millard P, Heux S. Integrative in vivo analysis of the ethanolamine utilization bacterial microcompartment in Escherichia coli. mSystems 2024; 9:e0075024. [PMID: 39023255 PMCID: PMC11334477 DOI: 10.1128/msystems.00750-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Bacterial microcompartments (BMCs) are self-assembling protein megacomplexes that encapsulate metabolic pathways. Although approximately 20% of sequenced bacterial genomes contain operons encoding putative BMCs, few have been thoroughly characterized, nor any in the most studied Escherichia coli strains. We used an interdisciplinary approach to gain deep molecular and functional insights into the ethanolamine utilization (Eut) BMC system encoded by the eut operon in E. coli K-12. The eut genotype was linked with the ethanolamine utilization phenotype using deletion and overexpression mutants. The subcellular dynamics and morphology of the E. coli Eut BMCs were characterized in cellula by fluorescence microscopy and electron (cryo)microscopy. The minimal proteome reorganization required for ethanolamine utilization and the in vivo stoichiometric composition of the Eut BMC were determined by quantitative proteomics. Finally, the first flux map connecting the Eut BMC with central metabolism in cellula was obtained by genome-scale modeling and 13C-fluxomics. Our results reveal that contrary to previous suggestions, ethanolamine serves both as a nitrogen and a carbon source in E. coli K-12, while also contributing to significant metabolic overflow. Overall, this study provides a quantitative molecular and functional understanding of the BMCs involved in ethanolamine assimilation by E. coli.IMPORTANCEThe properties of bacterial microcompartments make them an ideal tool for building orthogonal network structures with minimal interactions with native metabolic and regulatory networks. However, this requires an understanding of how BMCs work natively. In this study, we combined genetic manipulation, multi-omics, modeling, and microscopy to address this issue for Eut BMCs. We show that the Eut BMC in Escherichia coli turns ethanolamine into usable carbon and nitrogen substrates to sustain growth. These results improve our understanding of compartmentalization in a widely used bacterial chassis.
Collapse
Affiliation(s)
- Denis Jallet
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Vanessa Soldan
- Plateforme de Microscopie Electronique Intégrative, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France
| | - Ramteen Shayan
- Plateforme de Microscopie Electronique Intégrative, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, Toulouse, France
| | - Nour Ismail
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Rania Zenati
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- MetaToul-MetaboHUB, National infrastructure of metabolomics and fluxomics, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, Toulouse, France
| | - Stéphanie Balor
- Plateforme de Microscopie Electronique Intégrative, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France
| | - Pierre Millard
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- MetaToul-MetaboHUB, National infrastructure of metabolomics and fluxomics, Toulouse, France
| | - Stéphanie Heux
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
2
|
Kaur J, Verma H, Kaur J, Lata P, Dhingra GG, Lal R. In Silico Analysis of the Phylogenetic and Physiological Characteristics of Sphingobium indicum B90A: A Hexachlorocyclohexane-Degrading Bacterium. Curr Microbiol 2024; 81:233. [PMID: 38904756 DOI: 10.1007/s00284-024-03762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
The study focuses on the in silico genomic characterization of Sphingobium indicum B90A, revealing a wealth of genes involved in stress response, carbon monoxide oxidation, β-carotene biosynthesis, heavy metal resistance, and aromatic compound degradation, suggesting its potential as a bioremediation agent. Furthermore, genomic adaptations among nine Sphingomonad strains were explored, highlighting shared core genes via pangenome analysis, including those related to the shikimate pathway and heavy metal resistance. The majority of genes associated with aromatic compound degradation, heavy metal resistance, and stress response were found within genomic islands across all strains. Sphingobium indicum UT26S exhibited the highest number of genomic islands, while Sphingopyxis alaskensis RB2256 had the maximum fraction of its genome covered by genomic islands. The distribution of lin genes varied among the strains, indicating diverse genetic responses to environmental pressures. Additionally, in silico evidence of horizontal gene transfer (HGT) between plasmids pSRL3 and pISP3 of the Sphingobium and Sphingomonas genera, respectively, has been provided. The manuscript offers novel insights into strain B90A, highlighting its role in horizontal gene transfer and refining evolutionary relationships among Sphingomonad strains. The discovery of stress response genes and the czcABCD operon emphasizes the potential of Sphingomonads in consortia development, supported by genomic island analysis.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Department of Zoology, Gargi College, Siri Fort Road, New Delhi, 110049, India.
| | - Helianthous Verma
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, 110007, India
| | - Jaspreet Kaur
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, 110021, India
| | - Pushp Lata
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Gauri Garg Dhingra
- Department of Zoology, Kirori Mal College, University of Delhi, New Delhi, 110007, India
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi, 110019, India.
| |
Collapse
|
3
|
Barnes AJ, Bennett EF, Vezina B, Hudson AW, Hernandez GE, Nutter NA, Bray AS, Nagpal R, Wyres KL, Zafar MA. Ethanolamine metabolism through two genetically distinct loci enables Klebsiella pneumoniae to bypass nutritional competition in the gut. PLoS Pathog 2024; 20:e1012189. [PMID: 38713723 PMCID: PMC11101070 DOI: 10.1371/journal.ppat.1012189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/17/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
Successful microbial colonization of the gastrointestinal (GI) tract hinges on an organism's ability to overcome the intense competition for nutrients in the gut between the host and the resident gut microbiome. Enteric pathogens can exploit ethanolamine (EA) in the gut to bypass nutrient competition. However, Klebsiella pneumoniae (K. pneumoniae) is an asymptomatic gut colonizer and, unlike well-studied enteric pathogens, harbors two genetically distinct ethanolamine utilization (eut) loci. Our investigation uncovered unique roles for each eut locus depending on EA utilization as a carbon or nitrogen source. Murine gut colonization studies demonstrated the necessity of both eut loci in the presence of intact gut microbiota for robust GI colonization by K. pneumoniae. Additionally, while some Escherichia coli gut isolates could metabolize EA, other commensals were incapable, suggesting that EA metabolism likely provides K. pneumoniae a selective advantage in gut colonization. Molecular and bioinformatic analyses unveiled the conservation of two eut loci among K. pneumoniae and a subset of the related taxa in the K. pneumoniae species complex, with the NtrC-RpoN regulatory cascade playing a pivotal role in regulation. These findings identify EA metabolism as a critical driver of K. pneumoniae niche establishment in the gut and propose microbial metabolism as a potential therapeutic avenue to combat K. pneumoniae infections.
Collapse
Affiliation(s)
- Andrew J. Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Emma F. Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Giovanna E. Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Noah A. Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States of America
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
4
|
Boltyanskaya Y, Zhilina T, Grouzdev D, Detkova E, Pimenov N, Kevbrin V. Halanaerobium polyolivorans sp. nov.-A Novel Halophilic Alkalitolerant Bacterium Capable of Polyol Degradation: Physiological Properties and Genomic Insights. Microorganisms 2023; 11:2325. [PMID: 37764169 PMCID: PMC10536098 DOI: 10.3390/microorganisms11092325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
A search for the microorganisms responsible for the anaerobic degradation of osmoprotectants in soda lakes resulted in the isolation of a novel halophilic and alkalitolerant strain, designated Z-7514T. The cells were Gram-stain-negative and non-endospore-forming rods. Optimal growth occurs at 1.6-2.1 M Na+, pH 8.0-8.5, and 31-35 °C. The strain utilized mainly sugars, low molecular polyols, and ethanolamine as well. The G+C content of the genomic DNA of strain Z-7514T was 33.3 mol%. Phylogenetic and phylogenomic analyses revealed that strain Z-7514T belongs to the genus Halanaerobium. On the basis of phenotypic properties and the dDDH and ANI values with close validly published species, it was proposed to evolve strain Z-7514T within the genus Halanaerobium into novel species, for which the name Halanaerobium polyolivorans sp. nov. was proposed. The type strain was Z-7514T (=KCTC 25405T = VKM B-3577T). For species of the genus Halanaerobium, the utilization of ethylene glycol, propylene glycol, and ethanolamine were shown for the first time. The anaerobic degradation of glycols and ethanolamine by strain Z-7514T may represent a novel metabiotic pathway within the alkaliphilic microbial community. Based on a detailed genomic analysis, the main pathways of catabolism of most of the used substrates have been identified.
Collapse
Affiliation(s)
- Yulia Boltyanskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | - Tatjana Zhilina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | | | - Ekaterina Detkova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | - Nikolay Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | - Vadim Kevbrin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| |
Collapse
|
5
|
Costa FG, Escalante-Semerena JC. Localization and interaction studies of the Salmonella enterica ethanolamine ammonia-lyase (EutBC), its reactivase (EutA), and the EutT corrinoid adenosyltransferase. Mol Microbiol 2022; 118:191-207. [PMID: 35785499 PMCID: PMC9481676 DOI: 10.1111/mmi.14962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Some prokaryotes compartmentalize select metabolic capabilities. Salmonella enterica subspecies enterica serovar Typhimurium LT2 (hereafter S. Typhimurium) catabolizes ethanolamine (EA) within a proteinaceous compartment that we refer to as the ethanolamine utilization (Eut) metabolosome. EA catabolism is initiated by the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL), which deaminates EA via an adenosyl radical mechanism to yield acetaldehyde plus ammonia. This adenosyl radical can be quenched, requiring the replacement of AdoCbl by the ATP-dependent EutA reactivase. During growth on ethanolamine, S. Typhimurium synthesizes AdoCbl from cobalamin (Cbl) using the ATP:Co(I)rrinoid adenosyltransferase (ACAT) EutT. It is known that EAL localizes to the metabolosome, however, prior to this work, it was unclear where EutA and EutT localized, and whether they interacted with EAL. Here, we provide evidence that EAL, EutA, and EutT localize to the Eut metabolosome, and that EutA interacts directly with EAL. We did not observe interactions between EutT and EAL nor between EutT and the EutA/EAL complex. However, growth phenotypes of a ΔeutT mutant strain show that EutT is critical for efficient ethanolamine catabolism. This work provides a preliminary understanding of the dynamics of AdoCbl synthesis and its uses within the Eut metabolosome.
Collapse
Affiliation(s)
- Flavia G. Costa
- Department of Microbiology, University of Georgia, Athens, GA, USA 30602
| | | |
Collapse
|
6
|
Burrichter AG, Dörr S, Bergmann P, Haiß S, Keller A, Fournier C, Franchini P, Isono E, Schleheck D. Bacterial microcompartments for isethionate desulfonation in the taurine-degrading human-gut bacterium Bilophila wadsworthia. BMC Microbiol 2021; 21:340. [PMID: 34903181 PMCID: PMC8667426 DOI: 10.1186/s12866-021-02386-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Bilophila wadsworthia, a strictly anaerobic, sulfite-reducing bacterium and common member of the human gut microbiota, has been associated with diseases such as appendicitis and colitis. It is specialized on organosulfonate respiration for energy conservation, i.e., utilization of dietary and host-derived organosulfonates, such as taurine (2-aminoethansulfonate), as sulfite donors for sulfite respiration, producing hydrogen sulfide (H2S), an important intestinal metabolite that may have beneficial as well as detrimental effects on the colonic environment. Its taurine desulfonation pathway involves the glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslAB), which cleaves isethionate (2-hydroxyethanesulfonate) into acetaldehyde and sulfite. Results We demonstrate that taurine metabolism in B. wadsworthia 3.1.6 involves bacterial microcompartments (BMCs). First, we confirmed taurine-inducible production of BMCs by proteomic, transcriptomic and ultra-thin sectioning and electron-microscopical analyses. Then, we isolated BMCs from taurine-grown cells by density-gradient ultracentrifugation and analyzed their composition by proteomics as well as by enzyme assays, which suggested that the GRE IslAB and acetaldehyde dehydrogenase are located inside of the BMCs. Finally, we are discussing the recycling of cofactors in the IslAB-BMCs and a potential shuttling of electrons across the BMC shell by a potential iron-sulfur (FeS) cluster-containing shell protein identified by sequence analysis. Conclusions We characterized a novel subclass of BMCs and broadened the spectrum of reactions known to take place enclosed in BMCs, which is of biotechnological interest. We also provided more details on the energy metabolism of the opportunistic pathobiont B. wadsworthia and on microbial H2S production in the human gut. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02386-w.
Collapse
Affiliation(s)
- Anna G Burrichter
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany. .,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - Stefanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paavo Bergmann
- Electron Microscopy Centre, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sebastian Haiß
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anja Keller
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
7
|
Pokhrel A, Kang SY, Schmidt-Dannert C. Ethanolamine bacterial microcompartments: from structure, function studies to bioengineering applications. Curr Opin Microbiol 2021; 62:28-37. [PMID: 34034083 DOI: 10.1016/j.mib.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Two decades of structural and functional studies have revealed functions, structures and diversity of bacterial microcompartments. The protein-based organelles encapsulate diverse metabolic pathways in semipermeable, icosahedral or pseudo-icosahedral shells. One of the first discovered and characterized microcompartments are those involved in ethanolamine degradation. This review will summarize their function and assembly along with shared and unique characteristics with other microcompartment types. The modularity and self-assembling properties of their shell proteins make them valuable targets for bioengineering. Advances and prospects for shell protein engineering in vivo and in vitro for synthetic biology and biotechnology applications will be discussed.
Collapse
Affiliation(s)
- Anaya Pokhrel
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Sun-Young Kang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA.
| |
Collapse
|
8
|
Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes. mSystems 2021; 6:6/2/e01349-20. [PMID: 33850044 PMCID: PMC8547011 DOI: 10.1128/msystems.01349-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ethanolamine (EA) is a valuable microbial carbon and nitrogen source derived from cell membranes. EA catabolism is suggested to occur in a cellular metabolic subsystem called a bacterial microcompartment (BMC), and the activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that the activation of eut is regulated by a vitamin B12-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent in Listeria monocytogenes Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics, and electron microscopy. First, we show vitamin B12-induced activation of the eut operon in L. monocytogenes coupled to the utilization of EA, thereby enabling growth. Next, we demonstrate BMC formation connected with EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP-generating acetate branch causes an apparent redox imbalance due to the reduced regeneration of NAD+ in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMCs to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild-type, BMC mutant, and EET mutant strains, we demonstrate an interaction between BMCs and EET and provide evidence for a role of Fe3+ as an electron acceptor. Taken together, our results suggest an important role of BMC-dependent EA catabolism in L. monocytogenes growth in anaerobic environments like the human gastrointestinal tract, with a crucial role for the flavin-based EET system in redox balancing.IMPORTANCE Listeria monocytogenes is a foodborne pathogen causing severe illness, and as such, it is crucial to understand the molecular mechanisms contributing to pathogenicity. One carbon source that allows L. monocytogenes to grow in humans is ethanolamine (EA), which is derived from phospholipids present in eukaryotic cell membranes. It is hypothesized that EA utilization occurs in bacterial microcompartments (BMCs), self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we demonstrate that BMC-driven utilization of EA in L. monocytogenes results in increased energy production essential for anaerobic growth. However, exploiting BMCs and the encapsulated metabolic pathways also requires the balancing of oxidative and reductive pathways. We now provide evidence that L. monocytogenes copes with this by linking BMC activity to flavin-based extracellular electron transfer (EET) using iron as an electron acceptor. Our results shed new light on an important molecular mechanism that enables L. monocytogenes to grow using host-derived phospholipid degradation products.
Collapse
|
9
|
Chowdhury NP, Alberti L, Linder M, Müller V. Exploring Bacterial Microcompartments in the Acetogenic Bacterium Acetobacterium woodii. Front Microbiol 2020; 11:593467. [PMID: 33178174 PMCID: PMC7593272 DOI: 10.3389/fmicb.2020.593467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The strictly anaerobic acetogenic bacterium Acetobacterium woodii is metabolically diverse and grows on variety of substrates which includes H2 + CO2, sugars, alcohols and diols. It is unique in producing bacterial microcompartments (BMC) during growth on different substrates such as 1,2-propanediol, 2,3-butanediol, ethanol or fructose. In this study, we analyzed the genetic organization and expression of the BMC genes within the A. woodii genome, the previously described 18 gene pdu cluster as well as four other cluster potentially encoding one or two shell proteins. Expression analysis of respective gene clusters revealed that the pdu gene cluster is highly expressed during growth on 1,2-PD, 2,3-BD, ethanol and ethylene glycol. The promoter region upstream of the pduA gene was identified and used to establish a reporter gene assay based on chloramphenicol acetyl transferase as a reporter protein. The reporter gene assay confirmed the qPCR data and demonstrated that 1,2-PD is superior over ethanol and ethylene glycol as inducer. BMCs were enriched from cells grown on 2,3- BD and 1,2-PD and shown to have typical structure in electron micrographs. Biochemical analyses revealed several of the protein encoded by the pdu cluster to be part of the isolated BMCs. These data demonstrate a very unique situation in A. woodii in which apparently one BMC gene cluster in expressed during growth on different substrates.
Collapse
Affiliation(s)
- Nilanjan Pal Chowdhury
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lydia Alberti
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Mark Linder
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
10
|
Stewart KL, Stewart AM, Bobik TA. Prokaryotic Organelles: Bacterial Microcompartments in E. coli and Salmonella. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0025-2019. [PMID: 33030141 PMCID: PMC7552817 DOI: 10.1128/ecosalplus.esp-0025-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Katie L. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Andrew M. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Thomas A. Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| |
Collapse
|
11
|
Alhajjar N, Chatterjee A, Spencer BL, Burcham LR, Willett JLE, Dunny GM, Duerkop BA, Doran KS. Genome-Wide Mutagenesis Identifies Factors Involved in Enterococcus faecalis Vaginal Adherence and Persistence. Infect Immun 2020; 88:e00270-20. [PMID: 32778611 PMCID: PMC7504943 DOI: 10.1128/iai.00270-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive commensal bacterium native to the gastrointestinal tract and an opportunistic pathogen of increasing clinical concern. E. faecalis also colonizes the female reproductive tract, and reports suggest vaginal colonization increases following antibiotic treatment or in patients with aerobic vaginitis. Currently, little is known about specific factors that promote E. faecalis vaginal colonization and subsequent infection. We modified an established mouse vaginal colonization model to explore E. faecalis vaginal carriage and demonstrate that both vancomycin-resistant and -sensitive strains colonize the murine vaginal tract. Following vaginal colonization, we observed E. faecalis in vaginal, cervical, and uterine tissue. A mutant lacking endocarditis- and biofilm-associated pili (Ebp) exhibited a decreased ability to associate with human vaginal and cervical cells in vitro but did not contribute to colonization in vivo Thus, we screened a low-complexity transposon (Tn) mutant library to identify novel genes important for E. faecalis colonization and persistence in the vaginal tract. This screen revealed 383 mutants that were underrepresented during vaginal colonization at 1, 5, and 8 days postinoculation compared to growth in culture medium. We confirmed that mutants deficient in ethanolamine catabolism or in the type VII secretion system were attenuated in persisting during vaginal colonization. These results reveal the complex nature of vaginal colonization and suggest that multiple factors contribute to E. faecalis persistence in the reproductive tract.
Collapse
Affiliation(s)
- Norhan Alhajjar
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brady L Spencer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lindsey R Burcham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julia L E Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Chowdhury C, Bobik TA. Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Salmonella. MICROBIOLOGY-SGM 2020; 165:1355-1364. [PMID: 31674899 DOI: 10.1099/mic.0.000872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that consist of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by increasing reaction rates and sequestering toxic pathway intermediates. A substantial amount of effort has been directed toward engineering synthetic MCPs as intracellular nanoreactors for the improved production of renewable chemicals. A key challenge in this area is engineering protein shells that allow the entry of desired substrates. In this study, we used site-directed mutagenesis of the PduT shell protein to remove its central iron-sulfur cluster and create openings (pores) in the shell of the Pdu MCP that have varied chemical properties. Subsequently, in vivo and in vitro studies were used to show that PduT-C38S and PduT-C38A variants increased the diffusion of 1,2-propanediol, propionaldehyde, NAD+ and NADH across the shell of the MCP. In contrast, PduT-C38I and PduT-C38W eliminated the iron-sulfur cluster without altering the permeability of the Pdu MCP, suggesting that the side-chains of C38I and C38W occluded the opening formed by removal of the iron-sulfur cluster. Thus, genetic modification offers an approach to engineering the movement of larger molecules (such as NAD/H) across MCP shells, as well as a method for blocking transport through trimeric bacterial microcompartment (BMC) domain shell proteins.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Present address: Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Sector-125, Noida, UP-201313, India.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
13
|
Bacterial Microcompartment-Mediated Ethanolamine Metabolism in Escherichia coli Urinary Tract Infection. Infect Immun 2019; 87:IAI.00211-19. [PMID: 31138611 PMCID: PMC6652756 DOI: 10.1128/iai.00211-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic Escherichia coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal E. coli, both pathogenic enterohemorrhagic E. coli and commensal strains. During a UTI, urease-negative E. coli bacteria thrive, despite the comparative nutrient limitation in urine. Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic Escherichia coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal E. coli, both pathogenic enterohemorrhagic E. coli and commensal strains. During a UTI, urease-negative E. coli bacteria thrive, despite the comparative nutrient limitation in urine. The role of ethanolamine as a potential nutrient source during UTIs is understudied. We evaluated the role of the metabolism of ethanolamine as a potential nitrogen and carbon source for UPEC in the urinary tract. We analyzed infected urine samples by culture, high-performance liquid chromatography, reverse transcription-quantitative PCR, and genomic sequencing. The ethanolamine concentration in urine was comparable to the concentration of the most abundant reported urinary amino acid, d-serine. Transcription of the eut operon was detected in the majority of urine samples containing E. coli screened. All sequenced UPEC strains had conserved eut operons, while metabolic genotypes previously associated with UTI (dsdCXA, metE) were mainly limited to phylogroup B2. In vitro ethanolamine was found to be utilized as a sole source of nitrogen by UPEC strains. The metabolism of ethanolamine in artificial urine medium (AUM) induced metabolosome formation and provided a growth advantage at the physiological levels found in urine. Interestingly, eutE (which encodes acetaldehyde dehydrogenase) was required for UPEC strains to utilize ethanolamine to gain a growth advantage in AUM, suggesting that ethanolamine is also utilized as a carbon source. These data suggest that urinary ethanolamine is a significant additional carbon and nitrogen source for infecting E. coli strains.
Collapse
|
14
|
Keller A, Schink B, Müller N. Alternative Pathways of Acetogenic Ethanol and Methanol Degradation in the Thermophilic Anaerobe Thermacetogenium phaeum. Front Microbiol 2019; 10:423. [PMID: 30949135 PMCID: PMC6436200 DOI: 10.3389/fmicb.2019.00423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 11/26/2022] Open
Abstract
Growth of the anaerobic thermophile Thermacetogenium phaeum with methanol, ethanol, ethanolamine, and acetate was investigated in axenic cultures and in syntrophic cultures with Methanothermobacter thermautotrophicus. Microcompartment genes were identified in the T. phaeum genome, and presence of microcompartments was confirmed by transmission electron microscopy and proteome analysis. These genes were expressed only during growth with ethanolamine. Proteome data were compared after growth with all four substrates, and activities of key enzymes of the Wood–Ljungdahl pathway and of enzyme systems leading to production or degradation of acetaldehyde such as alcohol dehydrogenase, aldehyde:ferredoxin oxidoreductase, acetate kinase, and phosphate acetyltransferase were measured in cytoplasmic fractions. Accounting of fermentation stoichiometries and growth yields with all four substrates showed that ethanol and methanol oxidation follow the same stoichiometries as in Acetobacterium woodii. On the other hand, the pathways of ethanol and methanol degradations vary between both organisms. Growth yields of T. phaeum were substantially lower than reported for A. woodii. Since T. phaeum has no Rnf complex encoded in its genome, the mechanisms of ATP synthesis have to be different from those of A. woodii. In addition to the central degradation pathways also found in A. woodii, T. phaeum maintains enzyme systems that compensate for the absence of an Rnf-complex but which on the other hand cause a loss of energy. On the basis of our data, pathways of methanol and ethanol degradation in T. phaeum are discussed.
Collapse
Affiliation(s)
- Anja Keller
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Modulation of Enterohaemorrhagic Escherichia coli Survival and Virulence in the Human Gastrointestinal Tract. Microorganisms 2018; 6:microorganisms6040115. [PMID: 30463258 PMCID: PMC6313751 DOI: 10.3390/microorganisms6040115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen responsible for human diseases ranging from diarrhoea to life-threatening complications. Survival of the pathogen and modulation of virulence gene expression along the human gastrointestinal tract (GIT) are key features in bacterial pathogenesis, but remain poorly described, due to a paucity of relevant model systems. This review will provide an overview of the in vitro and in vivo studies investigating the effect of abiotic (e.g., gastric acid, bile, low oxygen concentration or fluid shear) and biotic (e.g., gut microbiota, short chain fatty acids or host hormones) parameters of the human gut on EHEC survival and/or virulence (especially in relation with motility, adhesion and toxin production). Despite their relevance, these studies display important limitations considering the complexity of the human digestive environment. These include the evaluation of only one single digestive parameter at a time, lack of dynamic flux and compartmentalization, and the absence of a complex human gut microbiota. In a last part of the review, we will discuss how dynamic multi-compartmental in vitro models of the human gut represent a novel platform for elucidating spatial and temporal modulation of EHEC survival and virulence along the GIT, and provide new insights into EHEC pathogenesis.
Collapse
|
16
|
Küken A, Sommer F, Yaneva-Roder L, Mackinder LCM, Höhne M, Geimer S, Jonikas MC, Schroda M, Stitt M, Nikoloski Z, Mettler-Altmann T. Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts. eLife 2018; 7:e37960. [PMID: 30306890 PMCID: PMC6235561 DOI: 10.7554/elife.37960] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/27/2018] [Indexed: 11/16/2022] Open
Abstract
Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.
Collapse
Affiliation(s)
- Anika Küken
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
- Bioinformatics Group, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Frederik Sommer
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | | | - Luke CM Mackinder
- Department of Plant BiologyCarnegie Institution for ScienceStanfordUnited States
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | - Stefan Geimer
- Institute of Cell BiologyUniversity of BayreuthBayreuthGermany
| | - Martin C Jonikas
- Department of Plant BiologyCarnegie Institution for ScienceStanfordUnited States
| | - Michael Schroda
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
- Bioinformatics Group, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Tabea Mettler-Altmann
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
- Cluster of Excellence on Plant SciencesHeinrich-Heine UniversityDüsseldorfGermany
- Institute of Plant BiochemistryHeinrich-Heine UniversityDüsseldorfGermany
| |
Collapse
|
17
|
Tavares NK, Zayas CL, Escalante-Semerena JC. The Methanosarcina mazei MM2060 Gene Encodes a Bifunctional Kinase/Decarboxylase Enzyme Involved in Cobamide Biosynthesis. Biochemistry 2018; 57:4478-4495. [PMID: 29950091 PMCID: PMC6143143 DOI: 10.1021/acs.biochem.8b00546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cobamides (Cbas) are synthesized by many archaea, but some aspects of Cba biosynthesis in these microorganisms remain unclear. Here, we demonstrate that open reading frame MM2060 in the archaeum Methanosarcina mazei strain Gö1 encodes a bifunctional enzyme with l-threonine- O-3-phosphate (l-Thr-P) decarboxylase (EC 4.1.1.81) and l-Thr kinase activities (EC 2.7.1.177). In Salmonella enterica, where Cba biosynthesis has been extensively studied, the activities mentioned above are encoded by separate genes, namely, cobD and pduX, respectively. The activities associated with the MM2060 protein ( MmCobD) were validated in vitro and in vivo. In vitro, MmCobD used ATP and l-Thr as substrates and generated ADP, l-Thr-P, and ( R)-1-aminopropan-2-ol O-phosphate as products. Notably, MmCobD has a 111-amino acid C-terminal extension of unknown function, which contains a putative metal-binding motif. This C-terminal domain alone did not display activity either in vivo or in vitro. Although the C-terminal MmCobD domain was not required for l-Thr-P decarboxylase or l-Thr kinase activities in vivo, its absence negatively affected both activities. In vitro results suggested that this domain may have a regulatory or substrate-gating role. When purified under anoxic conditions, MmCobD displayed Michaelis-Menten kinetics and had a 1000-fold higher affinity for ATP and a catalytic efficiency 1300-fold higher than that of MmCobD purified under oxic conditions. To the best of our knowledge, MmCobD is the first example of a new class of l-Thr-P decarboxylases that also have l-Thr kinase activity. An archaeal protein with l-Thr kinase activity had not been identified prior to this work.
Collapse
Affiliation(s)
- Norbert K. Tavares
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Carmen L. Zayas
- Department of Bacteriology, University of Wisconsin, Madison, 53706, USA
| | | |
Collapse
|
18
|
Wang Z, Sun J, Xia T, Liu Y, Fu J, Lo YK, Chang C, Yan A, Liu X. Proteomic Delineation of the ArcA Regulon in Salmonella Typhimurium During Anaerobiosis. Mol Cell Proteomics 2018; 17:1937-1947. [PMID: 30038032 DOI: 10.1074/mcp.ra117.000563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/08/2018] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most used models for bacterial pathogenesis and successful infection requires its adaptation to the low oxygen environment in host gastrointestinal tracts. Central to this process is the Arc (aerobic respiratory control) two-component regulatory system that contains a sensor kinase ArcB and a response regulator ArcA. Nevertheless, a comprehensive profile of the ArcA regulon on the proteome level is still lacking in S. Typhimurium. Here we quantitatively profiled Salmonella proteome during anaerobiosis in an arcA-deleting mutant compared with its parental strain. In addition to known processes under its control, notably we found that ArcA represses ethanolamine utilization by directly binding to the promoter region of the eut operon. Furthermore, we found opposing changes of several bacterial genes on the protein and transcript levels in the arcA-deleting mutant including the virulence genes of Salmonella pathogenicity island 1 (SPI-1), thereby indicating potentially prevalent post-transcriptional regulatory mechanisms. Altogether, our study provides important new insights into ArcA-dependent bacterial physiology and virulence during Salmonella anaerobiosis.
Collapse
Affiliation(s)
- Zhen Wang
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingjing Sun
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tingying Xia
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yanhua Liu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Fu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yat Kei Lo
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Cheng Chang
- ¶State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (Beijing), Beijing 102206, P.R. China
| | - Aixin Yan
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China;
| | - Xiaoyun Liu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
19
|
Ethanolamine enhances intestinal functions by altering gut microbiome and mucosal anti-stress capacity in weaned rats. Br J Nutr 2018; 120:241-249. [PMID: 29789027 DOI: 10.1017/s0007114518001101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ethanolamine (Etn) contained in milk is the base constituent of phosphatidylethanolamine and is required for the proliferation of intestinal epithelial cells and bacteria, which is important for maintenance of the gut microbiome and intestinal development. The present study investigated the effect of Etn on intestinal function and microbiome using 21-d-old Sprague-Dawley rats treated with 0, 250, 500 and 1000 μm Etn in drinking water for 2 weeks immediately after weaning. Growth performance, intestinal morphology, antioxidant capacity and mucosal immunity, as well as gut microbiota community composition, were evaluated. Metagenomic prediction and metabolic phenotype analysis based on 16S RNA sequencing were also carried out to assess changes in metabolic functions. We found that weaned rats administered 500 μm Etn enhanced mucosal antioxidant capacity, as evidenced by higher superoxide dismutase and glutathione peroxidase levels in the jejunum (P<0·05) compared with those in the control group. Predominant microbes including Bacteroidetes, Proteobacteria, Elusimicrobia and Tenericutes were altered by different levels of Etn compared with the control group. An Etn concentration of 500 µm shifted colonic microbial metabolic functions that are in favour of lipid- and sugar-related metabolism and biosynthesis. Etn also altered the metabolic phenotypes such as anaerobic microbial counts, and oxidative stress tolerance at over 250 µm. This is the first report for a role of Etn in modifying gut microbiota and intestinal functions. Our findings highlighted the important role of Etn in shaping gut microbial community and promotes intestinal functions, which may provide a better insight of breast-feeding to infant's gut health.
Collapse
|
20
|
Nawrocki KL, Wetzel D, Jones JB, Woods EC, McBride SM. Ethanolamine is a valuable nutrient source that impacts Clostridium difficile pathogenesis. Environ Microbiol 2018; 20:1419-1435. [PMID: 29349925 PMCID: PMC5903940 DOI: 10.1111/1462-2920.14048] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Abstract
Clostridium (Clostridioides) difficile is a gastrointestinal pathogen that colonizes the intestinal tract of mammals and can cause severe diarrheal disease. Although C. difficile growth is confined to the intestinal tract, our understanding of the specific metabolites and host factors that are important for the growth of the bacterium is limited. In other enteric pathogens, the membrane-derived metabolite, ethanolamine (EA), is utilized as a nutrient source and can function as a signal to initiate the production of virulence factors. In this study, we investigated the effects of ethanolamine and the role of the predicted ethanolamine gene cluster (CD1907-CD1925) on C. difficile growth. Using targeted mutagenesis, we disrupted genes within the eut cluster and assessed their roles in ethanolamine utilization, and the impact of eut disruption on the outcome of infection in a hamster model of disease. Our results indicate that the eut gene cluster is required for the growth of C. difficile on ethanolamine as a primary nutrient source. Further, the inability to utilize ethanolamine resulted in greater virulence and a shorter time to morbidity in the animal model. Overall, these data suggest that ethanolamine is an important nutrient source within the host and that, in contrast to other intestinal pathogens, the metabolism of ethanolamine by C. difficile can delay the onset of disease.
Collapse
Affiliation(s)
- Kathryn L. Nawrocki
- Department of Microbiology and Immunology, and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniela Wetzel
- Department of Microbiology and Immunology, and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua B. Jones
- Department of Microbiology and Immunology, and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily C. Woods
- Department of Microbiology and Immunology, and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Abstract
Ethanolamine (EA) is a valuable source of carbon and/or nitrogen for bacteria capable of its catabolism. Because it is derived from the membrane phospholipid phosphatidylethanolamine, it is particularly prevalent in the gastrointestinal tract, which is membrane rich due to turnover of the intestinal epithelium and the resident microbiota. Intriguingly, many gut pathogens carry the eut (ethanolamine utilization) genes. EA utilization has been studied for about 50 years, with most of the early work occurring in just a couple of species of Enterobacteriaceae. Once the metabolic pathways and enzymes were characterized by biochemical approaches, genetic screens were used to map the various activities to the eut genes. With the rise of genomics, the diversity of bacteria containing the eut genes and surprising differences in eut gene content were recognized. Some species contain nearly 20 genes and encode many accessory proteins, while others contain only the core catabolic enzyme. Moreover, the eut genes are regulated by very different mechanisms, depending on the organism and the eut regulator encoded. In the last several years, exciting progress has been made in elucidating the complex regulatory mechanisms that govern eut gene expression. Furthermore, a new appreciation for how EA contributes to infection and colonization in the host is emerging. In addition to providing an overview of EA-related biology, this minireview will give special attention to these recent advances.
Collapse
|
22
|
Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A, Maufrais C, Matondo M, Norel F. Proteome remodelling by the stress sigma factor RpoS/σ S in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Sci Rep 2017; 7:2127. [PMID: 28522802 PMCID: PMC5437024 DOI: 10.1038/s41598-017-02362-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
The RpoS/σS sigma subunit of RNA polymerase is the master regulator of the general stress response in many Gram-negative bacteria. Extensive studies have been conducted on σS-regulated gene expression at the transcriptional level. In contrast, very limited information regarding the impact of σS on global protein production is available. In this study, we used a mass spectrometry-based proteomics approach to explore the wide σS-dependent proteome of the human pathogen Salmonella enterica serovar Typhimurium. Our present goals were twofold: (1) to survey the protein changes associated with the ΔrpoS mutation and (2) to assess the coding capacity of σS-dependent small RNAs. Our proteomics data, and complementary assays, unravelled the large impact of σS on the Salmonella proteome, and validated expression and σS regulation of twenty uncharacterized small proteins of 27 to 96 amino acids. Furthermore, a large number of genes regulated at the protein level only were identified, suggesting that post-transcriptional regulation is an important component of the σS response. Novel aspects of σS in the control of important catabolic pathways such as myo-inositol, L-fucose, propanediol, and ethanolamine were illuminated by this work, providing new insights into the physiological remodelling involved in bacterial adaptation to a non-actively growing state.
Collapse
Affiliation(s)
- Magali Lago
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, rue du Dr. Roux, 75015, Paris, France
| | - Véronique Monteil
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France
| | - Thibaut Douche
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Julien Guglielmini
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Françoise Norel
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France.
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France.
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
23
|
Held M, Kolb A, Perdue S, Hsu SY, Bloch SE, Quin MB, Schmidt-Dannert C. Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli. Sci Rep 2016; 6:24359. [PMID: 27063436 PMCID: PMC4827028 DOI: 10.1038/srep24359] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/29/2016] [Indexed: 01/17/2023] Open
Abstract
Compartmentalization of designed metabolic pathways within protein based nanocompartments has the potential to increase reaction efficiency in multi-step biosynthetic reactions. We previously demonstrated proof-of-concept of this aim by targeting a functional enzyme to single cellular protein nanocompartments, which were formed upon recombinant expression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcompartment shell proteins EutS or EutSMNLK in Escherichia coli. To optimize this system, increasing overall encapsulated enzyme reaction efficiency, factor(s) required for the production of more than one nanocompartment per cell must be identified. In this work we report that the cupin domain protein EutQ is required for assembly of more than one nanocompartment per cell. Overexpression of EutQ results in multiple nanocompartment assembly in our recombinant system. EutQ specifically interacts with the shell protein EutM in vitro via electrostatic interactions with the putative cytosolic face of EutM. These findings lead to the theory that EutQ could facilitate multiple nanocompartment biogenesis by serving as an assembly hub for shell proteins. This work offers insights into the biogenesis of Eut bacterial microcompartments, and also provides an improved platform for the production of protein based nanocompartments for targeted encapsulation of enzyme pathways.
Collapse
Affiliation(s)
- Mark Held
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Alexander Kolb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah Perdue
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Szu-Yi Hsu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah E Bloch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Maureen B Quin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|