1
|
Kubo T, Tani Y, Yanagisawa HA, Kikkawa M, Oda T. α- and β-tubulin C-terminal tails with distinct modifications are crucial for ciliary motility and assembly. J Cell Sci 2023; 136:jcs261070. [PMID: 37519241 DOI: 10.1242/jcs.261070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
α- and β-tubulin have an unstructured glutamate-rich region at their C-terminal tails (CTTs). The function of this region in cilia and flagella is still unclear, except that glutamates in CTTs act as the sites for post-translational modifications that affect ciliary motility. The unicellular alga Chlamydomonas possesses only two α-tubulin and two β-tubulin genes, each pair encoding an identical protein. This simple gene organization might enable a complete replacement of the wild-type tubulin with its mutated version. Here, using CRISPR/Cas9, we generated mutant strains expressing tubulins with modified CTTs. We found that the mutant strain in which four glutamate residues in the α-tubulin CTT had been replaced by alanine almost completely lacked polyglutamylated tubulin and displayed paralyzed cilia. In contrast, the mutant strain lacking the glutamate-rich region of the β-tubulin CTT assembled short cilia without the central apparatus. This phenotype is similar to mutant strains harboring a mutation in a subunit of katanin, the function of which has been shown to depend on the β-tubulin CTT. Therefore, our study reveals distinct and important roles of α- and β-tubulin CTTs in the formation and function of cilia.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Yuma Tani
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haru-Aki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
2
|
Szczesna E, Zehr EA, Cummings SW, Szyk A, Mahalingan KK, Li Y, Roll-Mecak A. Combinatorial and antagonistic effects of tubulin glutamylation and glycylation on katanin microtubule severing. Dev Cell 2022; 57:2497-2513.e6. [PMID: 36347241 PMCID: PMC9665884 DOI: 10.1016/j.devcel.2022.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and β-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on β-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.
Collapse
Affiliation(s)
- Ewa Szczesna
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kishore K Mahalingan
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Scarinci N, Perez PL, Cantiello HF, Cantero MDR. Polycystin-2 (TRPP2) regulates primary cilium length in LLC-PK1 renal epithelial cells. Front Physiol 2022; 13:995473. [PMID: 36267587 PMCID: PMC9577394 DOI: 10.3389/fphys.2022.995473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polycystin-2 (PC2, TRPP2) is a Ca2+ permeable nonselective cation channel whose dysfunction generates autosomal dominant polycystic kidney disease (ADPKD). PC2 is present in different cell locations, including the primary cilium of renal epithelial cells. However, little is known as to whether PC2 contributes to the primary cilium structure. Here, we explored the effect(s) of external Ca2+, PC2 channel blockers, and PKD2 gene silencing on the length of primary cilia in wild-type LLC-PK1 renal epithelial cells. Confluent cell monolayers were fixed and immuno-labeled with an anti-acetylated α-tubulin antibody to identify primary cilia and measure their length. Although primary cilia length measurements did not follow a Normal distribution, the data were normalized by Box-Cox transformation rendering statistical differences under all experimental conditions. Cells exposed to high external Ca2+ (6.2 mM) decreased a 13.5% (p < 0.001) primary cilia length as compared to controls (1.2 mM Ca2+). In contrast, the PC2 inhibitors amiloride (200 μM) and LiCl (10 mM), both increased primary ciliary length by 33.2% (p < 0.001), and 17.4% (p < 0.001), respectively. PKD2 gene silencing by siRNA elicited a statistically significant, 10.3% (p < 0.001) increase in primary cilia length compared to their respective scrambled RNA transfected cells. The data indicate that conditions that regulate PC2 function or gene expression modify the length of primary cilia in renal epithelial cells. Blocking of PC2 mitigates the effects of elevated external Ca2+ concentration on primary cilia length. Proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.
Collapse
Affiliation(s)
| | | | | | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, IMSaTeD, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (CONICET-UNSE), Santiago del Estero, Argentina
| |
Collapse
|
4
|
Cole E, Gaertig J. Anterior-posterior pattern formation in ciliates. J Eukaryot Microbiol 2022; 69:e12890. [PMID: 35075744 PMCID: PMC9309198 DOI: 10.1111/jeu.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
As single cells, ciliates build, duplicate, and even regenerate complex cortical patterns by largely unknown mechanisms that precisely position organelles along two cell‐wide axes: anterior–posterior and circumferential (left–right). We review our current understanding of intracellular patterning along the anterior–posterior axis in ciliates, with emphasis on how the new pattern emerges during cell division. We focus on the recent progress at the molecular level that has been driven by the discovery of genes whose mutations cause organelle positioning defects in the model ciliate Tetrahymena thermophila. These investigations have revealed a network of highly conserved kinases that are confined to either anterior or posterior domains in the cell cortex. These pattern‐regulating kinases create zones of cortical inhibition that by exclusion determine the precise placement of organelles. We discuss observations and models derived from classical microsurgical experiments in large ciliates (including Stentor) and interpret them in light of recent molecular findings in Tetrahymena. In particular, we address the involvement of intracellular gradients as vehicles for positioning organelles along the anterior‐posterior axis.
Collapse
Affiliation(s)
- Eric Cole
- Biology Department, St. Olaf College, Northfield, MN, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Lynn NA, Martinez E, Nguyen H, Torres JZ. The Mammalian Family of Katanin Microtubule-Severing Enzymes. Front Cell Dev Biol 2021; 9:692040. [PMID: 34414183 PMCID: PMC8369831 DOI: 10.3389/fcell.2021.692040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The katanin family of microtubule-severing enzymes is critical for cytoskeletal rearrangements that affect key cellular processes like division, migration, signaling, and homeostasis. In humans, aberrant expression, or dysfunction of the katanins, is linked to developmental, proliferative, and neurodegenerative disorders. Here, we review current knowledge on the mammalian family of katanins, including an overview of evolutionary conservation, functional domain organization, and the mechanisms that regulate katanin activity. We assess the function of katanins in dividing and non-dividing cells and how their dysregulation promotes impaired ciliary signaling and defects in developmental programs (corticogenesis, gametogenesis, and neurodevelopment) and contributes to neurodegeneration and cancer. We conclude with perspectives on future katanin research that will advance our understanding of this exciting and dynamic class of disease-associated enzymes.
Collapse
Affiliation(s)
- Nicole A. Lynn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emily Martinez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hieu Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Composition and function of the C1b/C1f region in the ciliary central apparatus. Sci Rep 2021; 11:11760. [PMID: 34083607 PMCID: PMC8175508 DOI: 10.1038/s41598-021-90996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
Motile cilia are ultrastructurally complex cell organelles with the ability to actively move. The highly conserved central apparatus of motile 9 × 2 + 2 cilia is composed of two microtubules and several large microtubule-bound projections, including the C1b/C1f supercomplex. The composition and function of C1b/C1f subunits has only recently started to emerge. We show that in the model ciliate Tetrahymena thermophila, C1b/C1f contains several evolutionarily conserved proteins: Spef2A, Cfap69, Cfap246/LRGUK, Adgb/androglobin, and a ciliate-specific protein Tt170/TTHERM_00205170. Deletion of genes encoding either Spef2A or Cfap69 led to a loss of the entire C1b projection and resulted in an abnormal vortex motion of cilia. Loss of either Cfap246 or Adgb caused only minor alterations in ciliary motility. Comparative analyses of wild-type and C1b-deficient mutant ciliomes revealed that the levels of subunits forming the adjacent C2b projection but not C1d projection are greatly reduced, indicating that C1b stabilizes C2b. Moreover, the levels of several IFT and BBS proteins, HSP70, and enzymes that catalyze the final steps of the glycolytic pathway: enolase ENO1 and pyruvate kinase PYK1, are also reduced in the C1b-less mutants.
Collapse
|
7
|
Bazan R, Schröfel A, Joachimiak E, Poprzeczko M, Pigino G, Wloga D. Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet 2021; 17:e1009388. [PMID: 33661892 PMCID: PMC7987202 DOI: 10.1371/journal.pgen.1009388] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.
Collapse
Affiliation(s)
- Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adam Schröfel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Human Technopole, Milan, Italy
- * E-mail: (GP); (DW)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (GP); (DW)
| |
Collapse
|
8
|
Joachimiak E, Waclawek E, Niziolek M, Osinka A, Fabczak H, Gaertig J, Wloga D. The LisH Domain-Containing N-Terminal Fragment is Important for the Localization, Dimerization, and Stability of Katnal2 in Tetrahymena. Cells 2020; 9:cells9020292. [PMID: 31991798 PMCID: PMC7072489 DOI: 10.3390/cells9020292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Katanin-like 2 protein (Katnal2) orthologs have a tripartite domain organization. Two highly conserved regions, an N-terminal LisH (Lis-homology) domain and a C-terminal AAA catalytic domain, are separated by a less conserved linker. The AAA domain of Katnal2 shares the highest amino acid sequence homology with the AAA domain of the canonical katanin p60. Katnal2 orthologs are present in a wide range of eukaryotes, from protists to humans. In the ciliate Tetrahymena thermophila, a Katnal2 ortholog, Kat2, co-localizes with the microtubular structures, including basal bodies and ciliary outer doublets, and this co-localization is sensitive to levels of microtubule glutamylation. The functional analysis of Kat2 domains suggests that an N-terminal fragment containing a LisH domain plays a role in the subcellular localization, dimerization, and stability of Kat2.
Collapse
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Ewa Waclawek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
- Correspondence: ; Tel.: +48-(22)-5892338
| |
Collapse
|
9
|
Urbanska P, Joachimiak E, Bazan R, Fu G, Poprzeczko M, Fabczak H, Nicastro D, Wloga D. Ciliary proteins Fap43 and Fap44 interact with each other and are essential for proper cilia and flagella beating. Cell Mol Life Sci 2018; 75:4479-4493. [PMID: 29687140 PMCID: PMC6208767 DOI: 10.1007/s00018-018-2819-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 11/08/2022]
Abstract
Cilia beating is powered by the inner and outer dynein arms (IDAs and ODAs). These multi-subunit macrocomplexes are arranged in two rows on each outer doublet along the entire cilium length, except its distal end. To generate cilia beating, the activity of ODAs and IDAs must be strictly regulated locally by interactions with the dynein arm-associated structures within each ciliary unit and coordinated globally in time and space between doublets and along the axoneme. Here, we provide evidence of a novel ciliary complex composed of two conserved WD-repeat proteins, Fap43p and Fap44p. This complex is adjacent to another WD-repeat protein, Fap57p, and most likely the two-headed inner dynein arm, IDA I1. Loss of either protein results in altered waveform, beat stroke and reduced swimming speed. The ciliary localization of Fap43p and Fap44p is interdependent in the ciliate Tetrahymena thermophila.
Collapse
Affiliation(s)
- Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, USA
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
10
|
Joachimiak E, Jerka‐Dziadosz M, Krzemień‐Ojak Ł, Wacławek E, Jedynak K, Urbanska P, Brutkowski W, Sas‐Nowosielska H, Fabczak H, Gaertig J, Wloga D. Multiple phosphorylation sites on γ‐tubulin are essential and contribute to the biogenesis of basal bodies in
Tetrahymena. J Cell Physiol 2018; 233:8648-8665. [DOI: 10.1002/jcp.26742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Maria Jerka‐Dziadosz
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Łucja Krzemień‐Ojak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Ewa Wacławek
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Katarzyna Jedynak
- Faculty of BiologyDepartment of Animal PhysiologyInstitute of ZoologyUniversity of WarsawWarsawPoland
| | - Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Wojciech Brutkowski
- Laboratory of Imaging Tissue Structure and FunctionNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Hanna Sas‐Nowosielska
- Laboratory of Imaging Tissue Structure and FunctionNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Jacek Gaertig
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgia
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| |
Collapse
|
11
|
Identification of DmTTLL5 as a Major Tubulin Glutamylase in the Drosophila Nervous System. Sci Rep 2017; 7:16254. [PMID: 29176602 PMCID: PMC5701211 DOI: 10.1038/s41598-017-16586-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 01/09/2023] Open
Abstract
Microtubules (MTs) play crucial roles during neuronal life. They are formed by heterodimers of alpha and beta-tubulins, which are subjected to several post-translational modifications (PTMs). Amongst them, glutamylation consists in the reversible addition of a variable number of glutamate residues to the C-terminal tails of tubulins. Glutamylation is the most abundant MT PTM in the mammalian adult brain, suggesting that it plays an important role in the nervous system (NS). Here, we show that the previously uncharacterized CG31108 gene encodes an alpha-tubulin glutamylase acting in the Drosophila NS. We show that this glutamylase, which we named DmTTLL5, initiates MT glutamylation specifically on alpha-tubulin, which are the only glutamylated tubulin in the Drosophila brain. In DmTTLL5 mutants, MT glutamylation was not detected in the NS, allowing for determining its potential function. DmTTLL5 mutants are viable and we did not find any defect in vesicular axonal transport, synapse morphology and larval locomotion. Moreover, DmTTLL5 mutant flies display normal negative geotaxis behavior and their lifespan is not altered. Thus, our work identifies DmTTLL5 as the major enzyme responsible for initiating neuronal MT glutamylation specifically on alpha-tubulin and we show that the absence of MT glutamylation is not detrimental for Drosophila NS function.
Collapse
|